首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《国际泥沙研究》2020,35(5):504-515
A numerical study of propagation of cohesive fluid mud gravity currents in the form of lock-exchange was done using the OpenFOAM open source toolbox. An Eulerian approach solution for three separate phases was developed by incorporating a rheological model to predict the front position of cohesive fluid mud gravity currents. The model also simulates features in the complete movement phases including slumping, self-similar, and viscous in which the dynamics of propagation are affected by the balance of viscous and buoyancy forces, and the inertia force is negligible. The influence of using different turbulence models containing sub-grid scale (SGS), modified SGS, detached eddy simulation (DES), delayed-detached eddy simulation (DDES), Launder-R eece-Rodi (LRR), and k-ɛ models on the accuracy of simulation results was evaluated by comparing with available experimental data. The results show that the selection of the proper turbulence model is one of the most important issues for this type of the numerical modeling. The more efficient turbulence model was suggested and tabulated for each stage of propagation and different selected concentrations of 1,045, 1,140, and 1,214 g/L. Although different turbulence models (except k-ɛ) lead to front propagation dynamic simulation results that are in good agreement with the experimental measurements in the early stage of propagation for low concentrations, only DES, SGS, and modified SGS are able to capture the Kelvin-Helmholtz instability vortex shapes at the dense fluid interface, which is the main characteristic of the gravity current through the slumping phase. The calculated accuracies of SGS and modified SGS in predicting gravity current propagation for the both self-similar and viscous phases also are slightly better than DES, DDES, and LRR model results. The results of this study confirmed the performance and efficiency of the modified SGS model in which the interaction coefficients between phases are calibrated for the numerical modeling of fluid mud gravity current propagation.  相似文献   

2.
Extensive field data of a density current driven by the differences in the cooling rates between the two lobes of a small lake are presented. These data illustrate the fact that this gravitational motion affects the whole system and dominates its lakewide circulation. Moreover, data are used to evaluate the entrainment into the density current and also to discuss the regime of the flow from a scaling analysis of the horizontal momentum equations. This analysis is specifically applied to the central area of the lake, where the density current flows from one lobe to the other. Results of this study show that in the longitudinal direction there is a balance between the pressure gradient and the turbulent viscous term. Further, it is found that geostrophy correctly describes the transversal pattern of the passage of the gravity current from the northern lobe to the southern, where it flows confined to the western shoreline.  相似文献   

3.
利用实测布格异常和EGM2008重力异常融合结果,采用频率域位场反演方法计算大别造山带东段莫霍面三维空间分布,结合区域地质构造和地震活动等资料讨论大别造山带东段莫霍面分布特征及其构造含义等。研究结果显示:①莫霍面空间分布体现了块体构造差异,大别造山带莫霍面最深,最大深度达42km,显示东大别造山带存在明显山根,扬子地块深度次之,华北地块最浅;郯庐断裂带及其东侧区域存在莫霍面上隆带;②大别造山带北侧和南侧莫霍面陡变带分别位于青山—晓天断裂附近和襄樊—广济断裂以北,体现华北地块和扬子地块向大别造山带之下俯冲的构造特征,指示了深部构造缝合带位置;莫霍面深度特征表明郯庐断裂带区域构造边界带属性明显,其切割深度至少达到壳幔边界,大别造山带商城—麻城断裂两侧经历了差异隆升;③研究区域绝大多数地震发生在莫霍面以上深度,莫霍面深度陡变带、上隆带及不同莫霍面深度特征区的转换带为区域地震活动提供了深部构造条件。  相似文献   

4.
 In this study we aim at comparing turbulence parameters from field observations and model simulations under convective conditions. The comparison is focused on the depth dependence and temporal dynamics of viscous and diffusive dissipation rates ɛ and χ. The near-surface observations were obtained by using a quasi-free-rising profiler which measured small-scale shear and temperature fluctuations to within the vicinity of the water surface. Convective conditions during the experiment are characterized by low wind speeds (between 0 and 4 m s−1) and a typical heat loss of about 150 Wm−2. We applied a state-of-the-art two-equation k-ɛ turbulence model with an algebraic second-moment closure scheme. The qualitative agreement of the turbulence quantities resulting from observations and simulations is rather good. The temporal dynamics of the temperature field is simulated correctly, whereas in the spatial dynamics some deficiencies of the model due to its local character can be seen. It is concluded that such models realistically reproduce convective turbulence and therefore represent a reasonable compromise between complexity and simplicity, so that they can be used with acceptable costs in large-scale models. Received: 31 October 2001 / Accepted: 20 September 2002 Acknowledgements The whole project was intitiated by Peter Schlittenhardt, who strongly supported the development of the observational technique in uprising mode and encouraged us to undertake the experiment in Lake Maggiore; for which we will thank him most. Performing the measurement campaign was only possible with the help of several colleagues from the Marine Environment Unit at the Joint Research Centre. Thanks to all of them, but especially to Dirk van d. Linde, Ulisse Devisioni, Bjarke Rasmussen and Hartmut Prandke. The Istituto Italiano di Idrobiologia, Verbania Pallanza, provided the boat Livia for the installation and removal of the measurement system; thanks to the master Stefano Maurizio for his engagement. Ute Tschesche provided the data evaluation and presentation software and Judith Challis helped to polish our English. Part of the study was␣supported by the PROVESS project (MAS3-CT97-0159); thanks to our sponsors at the European Commission. We are further grateful to two anonymous referees for their constructive comments. Responsible Editor: Charitha Pattiaratchi  相似文献   

5.
6.
Systematic westerly biases in the southern hemisphere wintertime flow and easterly equatorial biases are experienced in the Météo-France climate model. These biases are found to be much reduced when a simple parameterization is introduced to take into account the vertical momentum transfer through the gravity waves excited by deep convection. These waves are quasi-stationary in the frame of reference moving with convection and they propagate vertically to higher levels in the atmosphere, where they may exert a significant deceleration of the mean flow at levels where dissipation occurs. Sixty-day experiments have been performed from a multiyear simulation with the standard 31 levels for a summer and a winter month, and with a T42 horizontal resolution. The impact of this parameterization on the integration of the model is found to be generally positive, with a significant deceleration in the westerly stratospheric jet and with a reduction of the easterly equatorial bias. The sensitivity of the Météo-France climate model to vertical resolution is also investigated by increasing the number of vertical levels, without moving the top of the model. The vertical resolution is increased up to 41 levels, using two kinds of level distribution. For the first, the increase in vertical resolution concerns especially the troposphere (with 22 levels in the troposphere), and the second treats the whole atmosphere in a homogeneous way (with 15 levels in the troposphere); the standard version of 31 levels has 10 levels in the troposphere. A comparison is made between the dynamical aspects of the simulations. The zonal wind and precipitation are presented and compared for each resolution. A positive impact is found with the finer tropospheric resolution on the precipitation in the mid-latitudes and on the westerly stratospheric jet, but the general impact on the model climate is weak, the physical parameterizations used appear to be mostly independent to the vertical resolution.  相似文献   

7.
Derivation of equivalent current systems(ECS)from a global magnetospheric magnetohydrodynamics(MHD)model is very useful in studying magnetosphere-ionosphere coupling,ground induction effects,and space weather forecast.In this study we introduce an improved method to derive the ECS from a global MHD model,which takes account of the obliqueness of the magnetic field lines.By comparing the ECS derived from this improved method and the previous method,we find that the main characteristics of the ECS derived from the two methods are generally consistent with each other,but the eastward-westward component of the geomagnetic perturbation calculated from the ECS derived from the improved method is much stronger than that from the previous method.We then compare the geomagnetic perturbation as a function of the interplanetary magnetic field(IMF)clock angle calculated from the ECS derived from both methods with the observations.The comparison indicates that the improved method can improve the performance of the simulation.Furthermore,it is found that the incomplete counterbalance of the geomagnetic effect produced by the ionospheric poloidal current and field-aligned current(FAC)contributes to most of the eastward-westward component of geomagnetic perturbation.  相似文献   

8.
Density currents are caused by a difference in density,though low,of an entering fluid with the ambient fluid.This type of current is two-phased and found on riverbeds or in reservoirs behind dams,and is nonlinear in nature,complex,and sensitive to initial conditions.Fractal geometry is used as a powerful tool for studying complex natural phenomena.Using experimental studies and changes in inlet current conditions,the fractal and multi-fractal analyses of the interface between the density current and the ambient fluid were done.In addition,a search was made to find a possible connection between the nonlinear patterns.According to the results,with an increase in the inlet discharge and inlet density of the current the fractal dimension decreased.Further,the smaller the range of the singularity spectrum diagram was,i.e.,the more it was less than 0.34,the lower the system's tendency was to be multi-fractal,and the system sensitive to large local changes.In the interface between the density current and the ambient fluid,using the fractal dimension-based Richardson number could improve experimental data by 12.4%.Moreover,with an increase in the Richardson number,the Reynolds number of the current decreased.Further,upon considering the fractal dimension,the Reynolds number improved by 23%and a good correlation with a coefficient of determination of 0.76.  相似文献   

9.
The objective of the paper is to show that the use of a discrimination procedure for selecting a flood frequency model without the knowledge of its performance for the considered underlying distributions may lead to erroneous conclusions. The problem considered is one of choosing between lognormal (LN) and convective diffusion (CD) distributions for a given random sample of flood observations. The probability density functions of these distributions are similarly shaped in the range of the main probability mass and the discrepancies grow with the increase in the value of the coefficient of variation (C V ). This problem was addressed using the likelihood ratio (LR) procedure. Simulation experiments were performed to determine the probability of correct selection (PCS) for the LR method. Pseudo-random samples were generated for several combinations of sample sizes and the coefficient of variation values from each of the two distributions. Surprisingly, the PCS of the LN model was twice smaller than that of the CD model, rarely exceeding 50%. The results obtained from simulation were analyzed and compared both with those obtained using real data and with the results obtained from another selection procedure known as the QK method. The results from the QK are just the opposite to that of the LR procedure.  相似文献   

10.
This study presents two-dimensional direct numerical simulations for sediment-laden current with higher density propagating forward through a lighter ambient water.The incompressible NavierStokes equations including the buoyancy force for the density difference between the light and heavy fluids are solved by a finite difference scheme based on a structured mesh.The concentration transport equations are used to explore such rich transport phenomena as gravity and turbidity currents.Within the framework of an Upwinding Combined Compact finite Difference(UCCD)scheme,rigorous determination of weighting coefficients underlies the modified equation analysis and the minimization of the numerical modified wavenumber.This sixth-order UCCD scheme is implemented in a four-point grid stencil to approximate advection and diffusion terms in the concentration transport equations and the first-order derivative terms in the Navier-Stokes equations,which can greatly enhance convective stability and increase dispersive accuracy at the same time.The initial discontinuous concentration field is smoothed by solving a newly proposed Heaviside function to prevent numerical instabilities and unreasonable concentration values.A two-step projection method is then applied to obtain the velocity field.The numerical algorithm shows a satisfying ability to capture the generation,development,and dissipation of the Kelvin-Helmholz instabilities and turbulent billows at the interface between the current and the ambient fluid.The simulation results also are compared with the data in published literatures and good agreements are found to prove that the present numerical model can well reproduce the propagation,particle deposition,and mixing processes of lock-exchange gravity and turbidity currents.  相似文献   

11.
We used the 3D continuum-scale reactive transport models to simulate eight core flood experiments for two different carbonate rocks. In these experiments the core samples were reacted with brines equilibrated with pCO2 = 3, 2, 1, 0.5 MPa (Smith et al., 2013 [27]). The carbonate rocks were from specific Marly dolostone and Vuggy limestone flow units at the IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project in south-eastern Saskatchewan, Canada. Initial model porosity, permeability, mineral, and surface area distributions were constructed from micro tomography and microscopy characterization data. We constrained model reaction kinetics and porosity–permeability equations with the experimental data. The experimental data included time-dependent solution chemistry and differential pressure measured across the core, and the initial and final pore space and mineral distribution. Calibration of the model with the experimental data allowed investigation of effects of carbonate reactivity, flow velocity, effective permeability, and time on the development and consequences of stable and unstable dissolution fronts.The continuum scale model captured the evolution of distinct dissolution fronts that developed as a consequence of carbonate mineral dissolution and pore scale transport properties. The results show that initial heterogeneity and porosity contrast control the development of the dissolution fronts in these highly reactive systems. This finding is consistent with linear stability analysis and the known positive feedback between mineral dissolution and fluid flow in carbonate formations. Differences in the carbonate kinetic drivers resulting from the range of pCO2 used in the experiments and the different proportions of more reactive calcite and less reactive dolomite contributed to the development of new pore space, but not to the type of dissolution fronts observed for the two different rock types. The development of the dissolution front was much more dependent on the physical heterogeneity of the carbonate rock. The observed stable dissolution fronts with small but visible dissolution fingers were a consequence of the clustering of a small percentage of larger pores in an otherwise homogeneous Marly dolostone. The observed wormholes in the heterogeneous Vuggy limestone initiated and developed in areas of greater porosity and permeability contrast, following pre-existing preferential flow paths.Model calibration of core flood experiments is one way to specifically constrain parameter input used for specific sites for larger scale simulations. Calibration of the governing rate equations and constants for Vuggy limestones showed that dissolution rate constants reasonably agree with published values. However the calcite dissolution rate constants fitted to the Marly dolostone experiments are much lower than those suggested by literature. The differences in fitted calcite rate constants between the two rock types reflect uncertainty associated with measured reactive surface area and appropriately scaling heterogeneous distribution of less abundant reactive minerals. Calibration of the power-law based porosity–permeability equations was sensitive to the overall heterogeneity of the cores. Stable dissolution fronts of the more homogeneous Marly dolostone could be fit with the exponent n = 3 consistent with the traditional Kozeny–Carman equation developed for porous sandstones. More impermeable and heterogeneous cores required larger n values (n = 6–8).  相似文献   

12.
13.
The precipitation of freshwater carbonates (tufa) along karstic rivers is enhanced by degassing of carbon dioxide (CO2) downstream of karstic springs. However, in most karstic springs CO2 degassing is not enough to force the precipitation of tufa sediments. Little is known about the role of dissolution of gypsum or dolomite in the hydrochemistry of these systems and how this affects the formation of tufa deposits. Here we present a monitoring study conducted over a year in Trabaque River (Spain). The river has typical karst hydrological dynamics with water sinking upstream and re‐emerging downstream of the canyon. Mixing of calcium–magnesium bicarbonate and calcium sulphate waters downstream of the sink enhances the dissolution of carbonates and potentially plays a positive role in the formation of tufa sediments. However, due to the common‐ion effect, dissolution of dolomite and/or gypsum causes precipitation of underground calcite cements as part of the incongruent dissolution of dolomite/dedolomitization process, which limits the precipitation of tufa sediments. Current precipitation of tufa is scant compared to previous Holocene tufa deposits, which likely precipitated from solutions with higher saturation indexes of calcite (SIcc values) than nowadays. Limited incongruent dissolution of dolomite/dedolomitization favours higher SIcc values. This circumstance occurs when waters with relatively high supersaturation of dolomite and low SO42? composition sink in the upper sector of the canyon. In such a scenario, the process of mixing waters enhances the exclusive dissolution of limestones, preventing the precipitation of calcite within the aquifer and favouring the increase of SIcc values downstream of the springs. Such conditions were recorded during periods of high water level of the aquifers and during floods. This research shows that the common‐ion effect caused by the dissolution of gypsum and/or dolomite rocks can limit [or favour] the precipitation of tufa sediments depending on the occurrence [or not] of incongruent dissolution of dolomite/dedolomitization. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
从杂散电流腐蚀的数学模型、监测手段、防护措施和可展望的问题等方面,对交流电引起的杂散电流腐蚀进行系统评述。首先,介绍杂散电流腐蚀的机理及数据模型,并从不同行业学者所选取的模型及软件入手,介绍杂散电流腐蚀的模型建立的相关类型;其次,对目前杂散电流监测的主要方法及其自动监测系统的发展进行阐述;最后,介绍基于杂散电流腐蚀防护原则建立的防护体系及其相应特点,并对杂散电流腐蚀的监测中具有可行性发展的技术进行探讨。  相似文献   

15.
Jing Wang  Qiang Yu  Xuhui Lee 《水文研究》2007,21(18):2474-2492
Understanding the exchange processes of energy and carbon dioxide (CO2) in the soil–vegetation–atmosphere system is important for assessing the role of the terrestrial ecosystem in the global water and carbon cycle and in climate change. We present a soil–vegetation–atmosphere integrated model (ChinaAgrosys) for simulating energy, water and CO2 fluxes, crop growth and development, with ample supply of nutrients and in the absence of pests, diseases and weed damage. Furthermore, we test the hypotheses of whether there is any significant difference between simulations over different time steps. CO2, water and heat fluxes were estimated by the improving parameterization method of the coupled photosynthesis–stomatal conductance–transpiration model. Soil water evaporation and plant transpiration were calculated using a multilayer water and heat‐transfer model. Field experiments were conducted in the Yucheng Integrated Agricultural Experimental Station on the North China Plain. Daily weather and crop growth variables were observed during 1998–2001, and hourly weather variables and water and heat fluxes were measured using the eddy covariance method during 2002–2003. The results showed that the model could effectively simulate diurnal and seasonal changes of net radiation, sensible and latent heat flux, soil heat flux and CO2 fluxes. The processes of evapotranspiration, soil temperature and leaf area index agree well with the measured values. Midday depression of canopy photosynthesis could be simulated by assessing the diurnal change in canopy water potential. Moreover, the comparisons of simulated daily evapotranspiration and net ecosystem exchange (NEE) under different time steps indicated that time steps used by a model affect the simulated results. There is no significant difference between simulated evapotranspiration using the model under different time steps. However, simulated NEE produces large differences in the response to different time steps. Therefore, the accurate calculation of average absorbed photosynthetic active radiation is important for the scaling of the model from hourly steps to daily steps in simulating energy and CO2 flux exchanges between winter wheat and the atmosphere. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
首都圈地区精细地壳结构——基于重力场的反演   总被引:3,自引:1,他引:3       下载免费PDF全文
本文以地质与地球物理资料作为约束条件,利用小波多尺度分析方法,对首都圈地区重力场进行了有效分离,应用Parker位场界面反演法及变密度模型对莫霍界面进行了反演分析,并构建了两条地壳密度结构剖面模型,对该区精细地壳结构进行了深入研究.研究结果表明首都圈地区受多期构造运动的改造,形成坳、隆相邻,盆、山相间,密度非均匀性,壳内结构与莫霍面埋深相差比较大的地壳分块构造格局.受华北克拉通岩石圈伸展、减薄以及岩浆的上涌底侵作用,首都圈地区莫霍面起伏比较大,莫霍面区域构造方向呈NE—NNE方向,在盆地向太行山、燕山过渡地带形成了莫霍面陡变带;盆地内部莫霍面形成东西向排列、高低起伏的框架,最大起伏约5 km,但平均地壳厚度比较小,北京、唐山地区地壳厚度最小约29 km,武清凹陷地壳厚度最大约34 km.在重力均衡调整作用下,西部太行山区地壳厚度较大,但地壳密度小于华北裂谷盆地内部;中上地壳重力场特征与地表地形及地貌特征具有很大的相关性.受新生代裂谷作用影响,首都圈中上地壳结构非常复杂,形成了NNE方向为主体的构造单元,断层多下延至中地壳;下地壳发生明显的褶曲构造,表现出高低密度异常相间排列的典型特征;首都圈地区地壳密度具有明显的非均匀性.研究认为首都圈地区地震的发生与上地幔顶部及软流层物质的上涌有一定关系.  相似文献   

17.
The stable isotopic composition of dissolved inorganic carbon (δ13C‐DIC) was investigated as a potential tracer of streamflow generation processes at the Sleepers River Research Watershed, Vermont, USA. Downstream sampling showed δ13C‐DIC increased between 3–5‰ from the stream source to the outlet weir approximately 0·5 km downstream, concomitant with increasing pH and decreasing PCO2. An increase in δ13C‐DIC of 2·4 ± 0·1‰ per log unit decrease of excess PCO2 (stream PCO2 normalized to atmospheric PCO2) was observed from downstream transect data collected during snowmelt. Isotopic fractionation of DIC due to CO2 outgassing rather than exchange with atmospheric CO2 may be the primary cause of increased δ13C‐DIC values downstream when PCO2 of surface freshwater exceeds twice the atmospheric CO2 concentration. Although CO2 outgassing caused a general increase in stream δ13C‐DIC values, points of localized groundwater seepage into the stream were identified by decreases in δ13C‐DIC and increases in DIC concentration of the stream water superimposed upon the general downstream trend. In addition, comparison between snowmelt, early spring and summer seasons showed that DIC is flushed from shallow groundwater flowpaths during snowmelt and is replaced by a greater proportion of DIC derived from soil CO2 during the early spring growing season. Thus, in spite of effects from CO2 outgassing, δ13C of DIC can be a useful indicator of groundwater additions to headwater streams and a tracer of carbon dynamics in catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.

楚雄盆地由于其复杂的地质构造,基底深度及内部构造隆拗深度一直不明了.本文以楚雄盆地区域重力及航磁数据为基础,依据横贯东西的两条重磁电震剖面定量反演解释结果,并以云参1及楚参1钻井作为约束,分西区、中区及东区三个区块反演得到了楚雄盆地三叠系顶底界面深度,进而得到三叠系厚度分布特征.本次取得的成果为研究楚雄地区深部地质构造和主要沉积盆地厚度以及盆地基底深度提供了较为可靠的资料,可作为楚雄盆地油气评价的重要依据;同时也为复杂盆地地球物理-地质结构模型的构建提供了一条可行的思路.

  相似文献   

19.
Some advantages and problems of the new geoelectrical prospecting method, i.e., vertical electric current soundings (VECS) are discussed. This method is based on using a new source, namely a circular electric dipole (CED). The source is installed by one of the transmitter poles grounded in the central point and the other pole uniformly grounded around with a radius determined by the depth of investigation desired. It can be defined as a noninductive source. The previous research was based on the diffusion approach. In this paper the author uses the solution with due regards for displacement currents in the frequency and time domain. A major disadvantage of the CED scheme is the need to provide a symmetrical grounding of the outer ring electrode. A possible way to avoid this requirement is to adopt an ungrounded CED array.  相似文献   

20.
The evolution and variation history of the Tsushima warm current during the late Quaternary was reconstructed based on the quantitative census data of planktonic foraminiferal fauna, together with oxygen and carbon isotope records of mixed layer dweller G. ruber and thermocline dweller N. dutertrei in piston core CSH1 and core DGKS9603 collected separately from the Tsushima warm current and the Kuroshio dominated area. The result showed that the Tsushima warm current vanished in the lowstand period during 40―24 cal ka BP, while the Kuroshio still flowed across the Okinawa Trough, arousing strong upwelling in the northern Trough. Meanwhile, the influence of freshwater greatly increased in the northern Okinawa Trough, as the broad East China Sea continental shelf emerged. The freshwater reached its maximum during the last glacial maximum (LGM), when the upwelling obviously weakened for the lowest sea-level and the depression of the Kuroshio. The modern Tsushima warm current began its development since 16 cal ka BP, and the impact of the Kuroshio increased in the middle and north- ern Okinawa Trough synchronously during the deglaciation and gradually evolved as the main water source of the Tsushima current. The modern Tsushima current finally formed at about 8.5 cal ka BP, since then the circulation structure has been relatively stable. The water of the modern Tsushima cur- rent primarily came from the Kuroshio axis. A short-term wiggle of the current occurred at about 3 cal ka BP, probably for the influences from the enhancement of the winter monsoon and the depression of the Kuroshio. The cold water masses greatly strengthened during the wiggle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号