首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
基于传感器光谱特性的全色与多光谱图像融合   总被引:9,自引:3,他引:9  
提出了一种基于传感器光谱特性的全色与多光谱影像融合方法.该方法主要基于快速IHS融合方法的思想,在充分考虑各波段成像传感器的相对光谱响应的基础上,对强度分量的构造和空间细节信息的注入方式2个方面进行了改进.改进后的方法有效地改善了光谱畸变问题,且能同时对所有的光谱波段进行融合.分别对IKONOS、ETM+影像进行融合实验,结果表明该方法在光谱信息损失最少的情况下,较大地提高了影像的空间分辨率,与其他方法相比具有更好的综合性能.  相似文献   

2.
结合光谱角的最大似然法遥感影像分类   总被引:3,自引:0,他引:3  
陈亮  刘希  张元 《测绘工程》2007,16(3):40-42,47
遥感影像含有丰富的信息,反映了地物特征。其中光谱角侧重描述了光谱的形状特征,具有对多光谱图像增益不敏感的特点。最大似然法是遥感影像分类最常用的方法之一,文中对该方法的后验概率判别函数进行修改,将光谱角以概率因子的形式加入到判别函数中构造一种新的判别函数,有机地将光谱角这一特征信息加入影像分类。通过实验,并与最大似然法和光谱角匹配法分类结果进行比较,结果表明,结合光谱角的最大似然分类法的分类精度得到提高。  相似文献   

3.
In this paper, we evaluate the extent to which the resampled field spectra compare with the actual image spectra of the new generation multispectral WorldView-2 (WV-2) satellite. This was achieved by developing models from resampled field spectra data and testing them on an actual WV-2 image of the study area. We evaluated the performance of reflectance ratios (RI), normalized difference indices (NDI) and random forest (RF) regression model in predicting foliar nitrogen concentration in a grassland environment. The field measured spectra were used to calibrate the RF model using a randomly selected training (n = 70%) nitrogen data set. The model developed from the field spectra resampled to WV-2 wavebands was validated on an independent field spectral test dataset as well as on the actual WV-2 image of the same area (n = 30%, bootstrapped a 100 times). The results show that the model developed using RI could predict nitrogen with a mean R2 of 0.74 and 0.65 on an independent field spectral test data set and on the actual WV-2 image, respectively. The root mean square error of prediction (RMSE %) was 0.17 and 0.22 for the field test data set and the WV-2 image, respectively. Results provide an insight on the magnitude of errors that are expected when up-scaling field spectral models to airborne or satellite image data. The prediction also indicates the unceasing relevance of field spectroscopy studies to better understand the spectral models critical for vegetation quality assessment.  相似文献   

4.
In this paper, we carried out a laboratory experiment to study changes in canopy reflectance of Tamarugo plants under controlled water stress. Tamarugo (Prosopis tamarugo Phil.) is an endemic and endangered tree species adapted to the hyper-arid conditions of the Atacama Desert, Northern Chile. Observed variation in reflectance during the day (due to leaf movements) as well as changes over the experimental period (due to water stress) were successfully modelled by using the Soil-Leaf-Canopy (SLC) radiative transfer model. Empirical canopy reflectance changes were mostly explained by the parameters leaf area index (LAI), leaf inclination distribution function (LIDF) and equivalent water thickness (EWT) as shown by the SLC simulations. Diurnal leaf movements observed in Tamarugo plants (as adaptation to decrease direct solar irradiation at the hottest time of the day) had an important effect on canopy reflectance and were explained by the LIDF parameter. The results suggest that remote sensing based assessment of this desert tree should consider LAI and canopy water content (CWC) as water stress indicators. Consequently, we tested fifteen different vegetation indices and spectral absorption features proposed in literature for detecting changes of LAI and CWC, considering the effect of LIDF variations. A sensitivity analysis was carried out using SLC simulations with a broad range of LAI, LIDF and EWT values. The Water Index was the most sensitive remote sensing feature for estimating CWC for values less than 0.036 g/cm2, while the area under the curve for the spectral range 910–1070 nm was most sensitive for values higher than 0.036 g/cm2. The red-edge chlorophyll index (CIred-edge) performed the best for estimating LAI. Diurnal leaf movements had an effect on all remote sensing features tested, particularly on those for detecting changes in CWC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号