首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies in Amazonian tropical evergreen forests using the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) have highlighted the importance of considering the view-illumination geometry in satellite data analysis. However, contrary to the observed for evergreen forests, bidirectional effects have not been evaluated in Brazilian subtropical deciduous forests. In this study, we used MISR data to characterize the reflectance and vegetation index anisotropies in subtropical deciduous forest from south Brazil under large seasonal solar zenith angle (SZA) variation and decreasing leaf area index (LAI) from the summer to winter. MODIS data were used to observe seasonal changes in the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Topographic effects on their determination were inspected by dividing data from the summer to winter and projecting results over a digital elevation model (DEM). By using the PROSAIL, we investigated the relative contribution of LAI and SZA to vegetation indices (VI) of deciduous forest. We also simulated and compared the MISR NDVI and EVI response of subtropical deciduous and tropical evergreen forests as a function of the large seasonal SZA amplitude of 33°. Results showed that the MODIS-MISR NDVI and EVI presented higher values in the summer and lower ones in the winter with decreasing LAI and increasing SZA or greater amounts of canopy shadows viewed by the sensors. In the winter, NDVI reduced local topographic effects due to the red-near infrared (NIR) band normalization. However, the contrary was observed for the three-band EVI that enhanced local variations in shaded and sunlit surfaces due to its strong dependence on the NIR band response. The reflectance anisotropy of the MISR bands increased from the summer to winter and was stronger in the backscattering direction at large view zenith angles (VZA). EVI was much more anisotropic than NDVI and the anisotropy increased from the summer to winter. It also increased from the forward scatter to the backscattering direction with the predominance of sunlit canopy components viewed by MISR, especially at large VZA. Modeling PROSAIL results confirmed the stronger anisotropy of EVI than NDVI for the subtropical deciduous and tropical evergreen forests. PROSAIL showed that LAI and SZA are coupled factors to decrease seasonally the VIs of deciduous forest with the first one having greater importance than the latter. However, PROSAIL seasonal variations in VIs were much smaller than those observed with MODIS data probably because the effects of shadows in heterogeneous canopy structures or/and cast by emergent trees and from local topography were not modeled.  相似文献   

2.
ABSTRACT

We designed a unique hyperspectral experiment from the Earth Observing One (EO-1) orbit change to evaluate solar illumination effects over tropical forests in Brazil. Ten nadir-viewing Hyperion images collected over a fixed site and period of the year (July to August) were selected for analysis. We evaluated variations in reflectance and in 16 narrowband vegetation indices (VIs) with increasing solar zenith angle (SZA) from the pre-drift (2004–2008) to the EO-1 drift period (2011–2016). To detect changes in reflectance and shadows, we applied spectral mixture analysis (SMA) and principal component analysis (PCA) and calculated the similarity spectral angle (θ) between the vegetation spectra measured with variable SZA. The magnitude of the illumination effects was also evaluated from change-point analysis and nonparametric Mann-Whitney U tests applied over the time series. Finally, we complemented our experiment using the PROSAIL model to simulate the VIs variation with increasing SZA resultant from satellite drift. The results showed significant changes in Hyperion reflectance and VIs, especially when the EO-1 crossed the study area at earlier times and larger SZA in 2015 (9:05 a.m.; SZA = 59°) and 2016 (8:30 a.m.; SZA = 67°). Compared to the pre-drift period (10:30 a.m.; SZA = 45°), the SZA differences of 14° (2015) and 22° (2016) increased the shade fractions and decreased the vegetation brightness. PCA separated the pre-drift and drift reflectance datasets, showing shifts in scores due to changes in brightness. θ increased with SZA, indicating changes in the shape of the vegetation spectra with drift. For most VIs, the change-point analysis indicated 2015 (SZA = 59°) as the predominant year of detected changes. Compared to the EO-1 original orbit, the Plant Senescence Reflectance Index (PSRI), Anthocyanin Reflectance Index (ARI) and Structure Insensitive Pigment Index (SIPI) presented the largest positive changes during drift, while the Photochemical Reflectance Index (PRI), Visible Atmospherically Resistant Index (VARI) and Enhanced Vegetation Index (EVI) had the largest negative changes. The effect size of the illumination geometry on these VIs was large, as indicated by increasing values of the Cohen’s r metric toward 2016. The anisotropy of the Hyperion VIs was generally consistent with that from PROSAIL in the simulated pre-drift and drift periods. Focusing on structural indices, it affected the relationships between VIs and simulated leaf area index (LAI) at large SZA.  相似文献   

3.
There is growing evidence that imaging spectroscopy could improve the accuracy of satellite-based retrievals of vegetation attributes, such as leaf area index (LAI) and biomass. In this study, we evaluated narrowband vegetation indices (VIs) for estimating overstory effective LAI (LAIeff) in a southern boreal forest area for the period between the end of snowmelt and maximum LAI using three Hyperion images and concurrent field measurements. We compared the performance of narrowband VIs with two SPOT HRVIR images, which closely corresponded to the imaging dates of the Hyperion data, and with synthetic broadband VIs computed from Hyperion images. According to the results, narrowband VIs based on near infrared (NIR) bands, and NIR and shortwave infrared (SWIR) bands showed the strongest linear relationships with LAIeff over its typical range of variation and for the studied period of the snow-free season. The relationships were not dependent on dominant tree species (coniferous vs. broadleaved), which is an advantage in heterogeneous boreal forest landscapes. The best VIs, particularly those based on NIR spectral bands close to the 1200 nm liquid water absorption feature, provided a clear improvement over the best broadband VIs.  相似文献   

4.
We used RapidEye and Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra data to study terrain illumination effects on 3 vegetation indices (VIs) and 11 phenological metrics over seasonal deciduous forests in southern Brazil. We applied TIMESAT for the analysis of the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) derived from the MOD13Q1 product to calculate phenological metrics. We related the VIs with the cosine of the incidence angle i (Cos i) and inspected percentage changes in VIs before and after topographic C-correction. The results showed that the EVI was more sensitive to seasonal changes in canopy biophysical attributes than the NDVI and Red-Edge NDVI, as indicated by analysis of non-topographically corrected RapidEye images from the summer and winter. On the other hand, the EVI was more sensitive to terrain illumination, presenting higher correlation coefficients with Cos i that decreased with reduction in the canopy background L factor. After C-correction, the RapidEye Red-Edge NDVI, NDVI, and EVI decreased 2%, 1%, and 13% over sunlit surfaces and increased up to 5%, 14%, and 89% over shaded surfaces, respectively. The EVI-related phenological metrics were also much more affected by topographic effects than the NDVI-derived metrics. From the set of 11 metrics, the 2 that described the period of lower photosynthetic activity and seasonal VI amplitude presented the largest correlation coefficients with Cos i. The results showed that terrain illumination is a factor of spectral variability in the seasonal analysis of phenological metrics, especially for VIs that are not spectrally normalized.  相似文献   

5.
Motivated by the increasingly availability and importance of hyperspectral remote sensing data, this study aims to determine whether current generation narrowband hyperspectral remote sensing data could be used to estimate vegetation Leaf Area Index (LAI) accurately than the traditional broadband multispectral data. A comparative study has been carried out to evaluate the performance of the narrowband Normalized Difference Vegetation Index (NDV1) derived from Hyperion hyperspectral sensor with that of derived from IRS LISS-III for the estimation of LAI of some major agricultural crops (e.g. cotton, sugarcane and rice) in part of Guntur district, India. It has been found that the narrowband NDVI derived from Hyperion has shown better results over its counterpart derived from broadband LISS-III. Linear regression models have been used which with selected subsets of individual Hyperion bands performed better to predict LAI than those based on the broadband datasets, although the potential to overfit models using the large number of available Hyperion bands is a concern for further research.  相似文献   

6.
The vegetation index is derived using many remote sensing sensors. Vegetation Index is extensively used and remote sensing has become the primary data source. Number of vegetation indices (VIs) have been developed during the past decades in order to assess the state of vegetation qualitatively and quantitatively. Analysis of vegetation indices has been carried out by many investigators scaling from regional level to global level using the remote sensing data of varying spatial, temporal and radiometric resolutions. There are as many as 14 VIs in use. Globally operational algorithms for generation of NDVI have utilized digital counts, at sensor radiances, ‘normalized’ reflectance (top of the atmosphere), and more recently, partially atmospheric corrected (ozone absorption and molecular scattering) reflectance. Presently NDVI and EVI are standard MODIS data products which are widely used by the scientific community for environmental studies. The OCM sensor in Oceansat 2 is designed for ocean colour studies. The OCM sensor has been used for studying ocean phytoplankton, suspended sediments and aerosol optical depth by many investigators. In addition to its capability of studying the ocean surface, OCM sensor has also the potential to study the land surface features. In a past EVI has been retrieved using OCM sensor of Oceansat 1. However, there is slight change in the band width of Oceansat 2—OCM sensor compared with OCM of Oceansat 1 sensor. In the present paper an attempt has been made to derive EVI using Oceansat 2 OCM sensor and the results have been compared with MODIS data. The enhanced vegetation index (EVI) is calculated using the reflectance values obtained after removing molecular scattering and ozone absorption component from the total radiance detected by the sensor. The band-2, Band-3, band-6 and band-8 corresponding to Blue, Red and Infrared part of the visible spectrum have been used to determine EVI. The result shows that Oceansat 2 derived EVI and MODIS derived EVI are well correlated.  相似文献   

7.
Tropical Dry Forest deciduousness is a behavioral response to climate conditions that determines ecosystem-level carbon uptake, energy flux, and habitat conditions. It is regulated by factors related to stand age, and landscape scale variability in deciduous phenology may affect ecosystem functioning in forests throughout the tropics. This study determines whether observed phenological differences are explainable by forest age in the southern Yucatán Peninsula in Mexico, where forest clearing for shifting cultivation has created a mosaic of forest stands of varying age. Matched-pair statistical tests compare neighboring forest pixels of different age class (12–22 years versus 22+ years) and detect significant differences in Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI)-derived metrics related to the timing and intensity of deciduousness during three dry seasons (2008–2011). In all seasons, young forests exhibit significantly more intense deciduousness, measured as total seasonal change of EVI normalized by annual maximum EVI (p < 0.001), and larger normalized EVI change during successive dry season months relative to start-of-dry-season EVI (p < 0.001), than neighboring older forests subject to similar environmental conditions.  相似文献   

8.
陈拉  黄敬峰  王秀珍 《遥感学报》2008,12(1):143-151
本研究利用水稻冠层高光谱数据,模拟NOAA-AVHRR,Terra-MODIS和Landsat-TM的可见光波段反射率数据,计算各传感器的多种植被指数(NDVI,RVI,EVI,GNDVI,GRVI和Red-edge RVI),比较植被指数模型对水稻LAI的估测精度,分析不同植被指数对LAI变化的敏感性.相对于红波段植被指数,红边比值植被指数(Red-edge RVI)和绿波段指数GRVI与LAI有更好的线性相关关系,而GNDVI和LAI呈现更好的对数相关关系.MODIS的Red-edge RVI指数不仅模型拟合的精度最高,还有独立数据验证的估测精度也最高,而且它的验证精度较拟合精度下降幅度最小;其次是绿波段构建的GNDVI和GRVI植被指数的估测精度,再次是NDVI和EVI的估测精度,而RVI的估测精度最差.敏感性分析发现,13个植被指数对水稻LAI的估测能力都随着LAI的增加而下降,但归一化类植被指数和比值类植被指数对LAI变化反应的差异明显,归一化类植被指数在LAI较低时(LAI<1.5)对LAI变化的反应开始非常敏感,但迅速下降,而比值类植被指数在LAI较低时,明显小于归一化类植被指数,之后随着LAI的增大(LAI>1.5)比值类植被指数对LAI的变化敏感性,则明显高于归一化类植被指数.Red-edge RVI和绿波段指数GRVI和LAI不仅表现了很好的线性相关关系,而且在LAI大于2.9左右保持较高的敏感性.  相似文献   

9.
徐雯靓  王少军 《遥感学报》2014,18(4):826-842
为了消除土壤背景信息对植被指数的影响,近几十年发展了土壤调节植被指数系列(SAVI family)。在不同环境条件下,不同指数抗土壤影响的能力不同。在总结了以消除土壤影响为目的的植被指数建立过程的基础上,利用PROSAIL辐射传输模型模拟的两组数据集,比较分析了NDVI、SAVI、TSAVI、MSAVI、OSAVI和GESAVI在不同叶面积指数(LAI)对应不同土壤背景的情况下抗土壤干扰、表达植被信息的能力,指出了不同植被指数应用的最适环境条件。结合植被指数—信噪比图,将这6种植被指数分成3类:在中低LAI值下,若植被覆盖度均匀,OSAVI和TSAVI有较强的消除土壤影响、表达植被信息的能力;当区域LAI分布不均、植被类型混杂时,MSAVI在表达植被信息时具有较好的稳定性。根据每类植被指数的特征,利用MODIS-VI和MODIS-LAI产品初步验证了上述结论的有效性。  相似文献   

10.
In remote sensing the identification accuracy of mangroves is greatly influenced by terrestrial vegetation. This paper deals with the use of specific vegetation indices for extracting mangrove forests using Earth Observing-1 Hyperion image over a portion of Indian Sundarbans, followed by classification of mangroves into floristic composition classes. Five vegetation indices (three new and two published), namely Mangrove Probability Vegetation Index, Normalized Difference Wetland Vegetation Index, Shortwave Infrared Absorption Index, Normalized Difference Infrared Index and Atmospherically Corrected Vegetation Index were used in decision tree algorithm to develop the mangrove mask. Then, three full-pixel classifiers, namely Minimum Distance, Spectral Angle Mapper and Support Vector Machine (SVM) were evaluated on the data within the mask. SVM performed better than the other two classifiers with an overall precision of 99.08%. The methodology presented here may be applied in different mangrove areas for producing community zonation maps at finer levels.  相似文献   

11.
Satellite-based remote sensed phenology has been widely used to assess global climate change. However, it is constrained by uncertain linkages with photosynthesis activity. Two dynamic threshold methods were employed to retrieve spring phenology metrics from four Moderate Resolution Imaging Spectroradiometer (MODIS) products, including fraction of Absorbed Photosynthetically Active Radiation (fAPAR), Leaf Area Index (LAI), Normalized Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) for three temperate deciduous broadleaf forests in North America between 2001 and 2009. These MODIS-based spring phenology metrics were subsequently linked to the photosynthetic curves (daily gross primary productivity, GPP) measured by an eddy covariance flux tower. The 20% dynamic threshold spring onset metrics from MODIS products were closer to the photosynthesis onset metrics at the date of 2% GPP increase for NDVI and fAPAR, and closer to the date of 5% and 10% increase of GPP for EVI and LAI, respectively. The 50% dynamic threshold onset metrics were closer to the photosynthesis onset metrics at the date of 10% GPP increase for NDVI, and closer to the date of 20% GPP increase for fAPAR, LAI and EVI, respectively. These results can improve our knowledge on the photosynthesis activity status of remotely sensed spring phenology metrics.  相似文献   

12.
The Moderate Resolution Imaging Spectroradiometer (MODIS) is largely used to estimate Leaf Area Index (LAI) using radiative transfer modeling (the “main” algorithm). When this algorithm fails for a pixel, which frequently occurs over Brazilian soybean areas, an empirical model (the “backup” algorithm) based on the relationship between the Normalized Difference Vegetation Index (NDVI) and LAI is utilized. The objective of this study is to evaluate directional effects on NDVI and subsequent LAI estimates using global (biome 3) and local empirical models, as a function of the soybean development in two growing seasons (2004–2005 and 2005–2006). The local model was derived from the pixels that had LAI values retrieved from the main algorithm. In order to keep the reproductive stage for a given cultivar as a constant factor while varying the viewing geometry, pairs of MODIS images acquired in close dates from opposite directions (backscattering and forward scattering) were selected. Linear regression relationships between the NDVI values calculated from these two directions were evaluated for different view angles (0–25°; 25–45°; 45–60°) and development stages (<45; 45–90; >90 days after planting). Impacts on LAI retrievals were analyzed. Results showed higher reflectance values in backscattering direction due to the predominance of sunlit soybean canopy components towards the sensor and higher NDVI values in forward scattering direction due to stronger shadow effects in the red waveband. NDVI differences between the two directions were statistically significant for view angles larger than 25°. The main algorithm for LAI estimation failed in the two growing seasons with gradual crop development. As a result, up to 94% of the pixels had LAI values calculated from the backup algorithm at the peak of canopy closure. Most of the pixels selected to compose the 8-day MODIS LAI product came from the forward scattering view because it displayed larger LAI values than the backscattering. Directional effects on the subsequent LAI retrievals were stronger at the peak of the soybean development (NDVI values between 0.70 and 0.85). When the global empirical model was used, LAI differences up to 3.2 for consecutive days and opposite viewing directions were observed. Such differences were reduced to values up to 1.5 with the local model. Because of the predominance of LAI retrievals from the MODIS backup algorithm during the Brazilian soybean development, care is necessary if one considers using these data in agronomic growing/yield models.  相似文献   

13.
New optical and microwave integrated vegetation indices (VIs) were designed based on observations from both field experiments and satellite (HJ-1 and RADARSAT-2) data. It was found that these VIs perform better in estimating the structure parameters of maize, such as Leaf Area Index (LAI), height and biomass, than the original ones. This investigation focused on the difference of interaction between the multispectral reflectance and microwave backscattering signatures with the maize growth variables. Because the maize was near the heading stage with large vegetation coverage in the experiment, the reflectance of the near-infrared band of HJ-1 was much less sensitive to the structure variables than that of the visible-light band. Thus, the optical VIs formulated using those bands were saturated to estimate the structure parameters. With respect to the RADARSAT-2 data, there was a relatively strong relationship between the HV cross-polarization and the volume scattering of the maize, which was mostly determined by the crown structure. The modified VIs were designed using both the VIs of HJ-1 and the HV cross-polarization of RADARSAT-2 to overcome the saturation limitation. The validation showed that this integrated method of determining VIs is a good alternative to that using only the optical or microwave observation.  相似文献   

14.
Vegetation indices (VIs) calculated from remotely sensed reflectance are widely used tools for characterizing the extent and status of vegetated areas. Recently, however, their capability to monitor the Amazon forest phenology has been intensely scrutinized. In this study, we analyze the consistency of VIs seasonal patterns obtained from two MODIS products: the Collection 5 BRDF product (MCD43) and the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC). The spatio-temporal patterns of the VIs were also compared with field measured leaf litterfall, gross ecosystem productivity and active microwave data. Our results show that significant seasonal patterns are observed in all VIs after the removal of view-illumination effects and cloud contamination. However, we demonstrate inconsistencies in the characteristics of seasonal patterns between different VIs and MODIS products. We demonstrate that differences in the original reflectance band values form a major source of discrepancy between MODIS VI products. The MAIAC atmospheric correction algorithm significantly reduces noise signals in the red and blue bands. Another important source of discrepancy is caused by differences in the availability of clear-sky data, as the MAIAC product allows increased availability of valid pixels in the equatorial Amazon. Finally, differences in VIs seasonal patterns were also caused by MODIS collection 5 calibration degradation. The correlation of remote sensing and field data also varied spatially, leading to different temporal offsets between VIs, active microwave and field measured data. We conclude that recent improvements in the MAIAC product have led to changes in the characteristics of spatio-temporal patterns of VIs seasonality across the Amazon forest, when compared to the MCD43 product. Nevertheless, despite improved quality and reduced uncertainties in the MAIAC product, a robust biophysical interpretation of VIs seasonality is still missing.  相似文献   

15.
Vegetation phenology has a great impact on land-atmosphere interactions like carbon cycling, albedo, and water and energy exchanges. To understand and predict these critical land-atmosphere feedbacks, it is crucial to measure and quantify phenological responses to climate variability, and ultimately climate change. Coarse-resolution sensors such as MODIS and AVHRR have been useful to study vegetation phenology from regional to global scales. These sensors are, however, not capable of discerning phenological variation at moderate spatial scales. By offering increased observation density and higher spatial resolution, the combination of Landsat and Sentinel-2 time series might provide the opportunity to overcome this limitation.In this study, we analyzed the potential of combined Sentinel-2 and Landsat time series for estimating start of season (SOS) of broadleaf forests across Germany for the year 2018. We tested two common statistical modeling approaches (logistic and generalized additive models using thin plate splines) and the two most commonly used vegetation indices, the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI).We found strong agreement between SOS estimates from logistic and spline models (rEVI = 0.86; rNDVI = 0.65), whereas agreement was higher for EVI than for NDVI (RMSDEVI = 3.07, RMSDNDVI = 5.26 days). The choice of vegetation index thus had a higher impact on the results than the fitting method. The EVI-based SOS also showed higher correlation with ground observations compared to NDVI (rEVI = 0.51, rNDVI = 0.42). Data density played an important role in estimating land surface phenology. Models combining Sentinel-2A/B, with an average cloud-free observation frequency of 12 days, were largely consistent with the combined Landsat and Sentinel-2 models, suggesting that Sentinel-2A/B may be sufficient to capture SOS for most areas in Germany in 2018. However, in non-overlapping swath areas and mountain areas, observation frequency was significantly lower, underlining the need to combine Landsat and Sentinel-2 for consistent SOS estimates over large areas. Our study demonstrates that estimating SOS of temperate broadleaf forests at medium spatial resolution has become feasible with combined Landsat and Sentinel-2 time series.  相似文献   

16.
黑河流域遥感物候产品验证与分析   总被引:2,自引:0,他引:2  
植被物候遥感产品对全球变化响应、农业生产管理、生态学的应用等多领域研究具有重要意义。但现有植被物候遥感产品还有较多问题,主要包括一方面使用不同参数的时间序列数据以及不同提取算法导致的产品结果差异较大,另一方面在地面验证中地面观测数据与遥感反演数据的物理含义不一致导致的验证方法的系统性误差。本文以黑河流域为研究区,对比验证基于EVI(Enhanced Vegetation Index)时间序列数据提取的MLCD(MODIS global land cover dynamics product)植被遥感物候产品和基于LAI(Leaf Area Index)时间序列数据提取的UMPM(product by universal multi-life-cycle phenology monitoring method)植被遥感物候产品的有效性及精度等。同时,通过验证分析进一步评估基于EVI和LAI时间序列提取的物候特征的差异及特点,探讨由于地面观测植被物候与遥感提取植被物候的物理意义的不一致问题导致的直接验证结果偏差。结果表明:UMPM产品有效性整体高于MLCD产品,但在以草地和灌木为主的稀疏植被区,由于LAI取值精度的原因,UMPM产品存在较多缺失数据,且时空稳定性较低;基于玉米地面观测数据表明,EVI对植被开始生长的信号比LAI更加敏感,更适合提取生长起点,但植被指数易饱和,峰值起点普遍提前,基于LAI提取的峰值起点更加合理。由于地面观测的物候期在后期更加关注果实生长,遥感观测仅关注叶片的生长,遥感定义的峰值终点和生长终点与玉米的乳熟期和成熟期差异较大。  相似文献   

17.
Several methods have been proposed to delineate management zones in agricultural fields, which can guide interventions of the farmers to increase crop yield. In this study, we propose a new approach using remote sensing data to delineate management zones at three farm sites located in southern Brazil. The approach is based on the hypothesis that the measured aboveground biomass (AGB) of the cover crops is correlated with the measured cash-crop yield and can be estimated from surface reflectance and/or vegetation indices (VIs). Therefore, we used seven different statistical models to estimate AGB of three cover crops (forage turnip, white oats, and rye) in the season prior to cash-crop planting. Surface reflectance and VIs were used as predictors to test the performance of the models. They were obtained from high spatial and temporal resolution data of the PlanetScope (PS) constellation of satellites. From the time series of 30 images acquired in 2017, we used the PS data that matched the dates of the field campaigns to build the models. The results showed that the satellite AGB estimates of the cover crops at the date of maximum VI response at the beginning of the flowering stage were useful to delineate the management zones. The cover-crop AGB models that presented the highest coefficient of determination (R2) and the lowest root mean square (RMSE) in the validation and test datasets were Support Vector Machine (SVM), Cubist (CUB) and Stochastic Gradient Boosting (SGB). For most models and cover crops, the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) were the two most important AGB predictors. At the date of maximum VI at the beginning of the flowering stage, the correlation coefficients (r) between the cover-crop AGB and the cash-crop yield (soybean and maize) ranged from +0.70 for forage turnip to +0.78 for rye. The fuzzy unsupervised classification of the cover-crop AGB estimates delineated two management zones, which were spatially consistent with those obtained from cash-crop yield. The comparison between both maps produced overall accuracies that ranged from 61.20% to 68.25% with zone 2 having higher cover-crop AGB and cash-crop yield than zone 1 over the three sites. We conclude that satellite AGB estimates of cover crops can be used as a proxy for generating management zone maps in agricultural fields. These maps can be further refined in the field with any other type of method and data, whenever necessary.  相似文献   

18.
The red edge position (REP) in the vegetation spectral reflectance is a surrogate measure of vegetation chlorophyll content, and hence can be used to monitor the health and function of vegetation. The Multi-Spectral Instrument (MSI) aboard the future ESA Sentinel-2 (S-2) satellite will provide the opportunity for estimation of the REP at much higher spatial resolution (20 m) than has been previously possible with spaceborne sensors such as Medium Resolution Imaging Spectrometer (MERIS) aboard ENVISAT. This study aims to evaluate the potential of S-2 MSI sensor for estimation of canopy chlorophyll content, leaf area index (LAI) and leaf chlorophyll concentration (LCC) using data from multiple field campaigns. Included in the assessed field campaigns are results from SEN3Exp in Barrax, Spain composed of 35 elementary sampling units (ESUs) of LCC and LAI which have been assessed for correlation with simulated MSI data using a CASI airborne imaging spectrometer. Analysis also presents results from SicilyS2EVAL, a campaign consisting of 25 ESUs in Sicily, Italy supported by a simultaneous Specim Aisa-Eagle data acquisition. In addition, these results were compared to outputs from the PROSAIL model for similar values of biophysical variables in the ESUs. The paper in turn assessed the scope of S-2 for retrieval of biophysical variables using these combined datasets through investigating the performance of the relevant Vegetation Indices (VIs) as well as presenting the novel Inverted Red-Edge Chlorophyll Index (IRECI) and Sentinel-2 Red-Edge Position (S2REP). Results indicated significant relationships between both canopy chlorophyll content and LAI for simulated MSI data using IRECI or the Normalised Difference Vegetation Index (NDVI) while S2REP and the MERIS Terrestrial Chlorophyll Index (MTCI) were found to have the strongest correlation for retrieval of LCC.  相似文献   

19.
High difference between dielectric constant of water (dielectric constant about 80) and dielectric constant of dried soil (dielectric constant about 2–3) makes Synthetic Aperture Radar (SAR) highly capable in soil moisture estimation. However, there are other factors which affect on radar backscattering coefficient. The most important parameters are vegetation cover, surface roughness and sensor parameters (frequency, polarization and incidence angle). In this paper, the importance of considering the effects of these parameters on SAR backscatter coefficients is shown by comparing different soil moisture estimation models. Moreover, an experimental soil moisture estimation model is developed. It is shown that this model can be used to estimate soil moisture under a variety of vegetation cover densities. The new developed model is based on combination of different indices derived from Landsat5-Thematic Mapper and AIRSAR images. The AIRSAR image is used for extraction of backscattering coefficient and incidence angle while TM image is used for calculation of Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI) and Brightness Temperature. Then a soil moisture estimation model which is named as Hybrid model is developed based on integration of all of these parameters. The accuracies of this model are assessed in the NDVI ranges of 0–0.2, 0.2–0.4 and 0.4–0.7 by using SAR data in C band and L band frequencies and also in different polarizations of HH, HV, VV and TP. The results show that for instance in L band with HV polarization, R-square values of 0.728, 0.628 and 0.527 are obtained between ground measured soil moisture and estimated soil moisture values using the Hybrid model for NDVI ranges of 0–0.2, 0.2–0.4 and 0.4–0.7, respectively.  相似文献   

20.
In this study, we have demonstrated the capability of full polarimetric ALOS/Phased Array L-band Synthetic Aperture Radar data for the characterization of the forests and deforestation in Cambodia, to support climate change mitigation policies of Reducing Emission from Deforestation and Forest Degradation (REDD). We have observed mean backscattering coefficient (σ°), entropy (H), alpha angle (α), anisotropy (A), pedestal height (PH), Radar Vegetation Index (RVI) and Freeman–Durden three-component decomposition parameters. The observations show that the forest types and deforested area are showing variable polarimetric and backscattering properties because of the structural difference. Evergreen forest is characterized by a high value of σ° HV (?12.96 dB) as compared with the deforested area (σ° HV=?22.2 dB). The value of polarimetric parameters such as entropy (0.93), RVI (0.91), PH (0.41) and Freeman–Durden volume scattering (0.43) is high for evergreen forest, whereas deforested area is characterized by the low values of entropy (0.36) and RVI (0.17). Based on these parameters, it is found that σ° HV, entropy, RVI and PH provide best results among other parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号