首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Continental Shelf Research》2007,27(10-11):1408-1421
Particle size distribution and size-specific settling velocity are critical parameters for understanding the transport of fine sediment on continental margins. In this study, observed floc size versus settling velocity, volume distributions of particles 2 μm–1 cm in diameter, and calculated effective densities for all particle sizes provided estimates of the mass distribution in suspension, which is used to apportion mass among component particles, microflocs, and macroflocs. Measurements were made during relatively quiescent environmental conditions. Observations of size distributions based on mass demonstrate an increase in the component particle fraction through time. The increase in the percentage of component particles in suspension had implications on water column properties, as small changes in the component particle fraction affected water column optical transmission in a way that was not as easily detected by changes in the volume concentration distribution or total mass concentration. Flocs larger than 133 μm in diameter only comprised one quarter to one third of the mass in suspension. This finding may explain why suspension bulk clearance rates are often an order of magnitude lower than those predicted by other methods.  相似文献   

2.
Sediment particles are often colonized by biofilm in a natural aquatic ecological system, especially in eutrophic water body. A series of laboratory experiments on particle size gradation, drag coefficient and settling velocity were conducted after natural sediment was colonized by biofilm for 5, 10, 15 and 20 days. Particle image acquisition, particle tracking techniques of Particle Image Velocimetry and Particle Tracking Velocimetry were utilized to analyze the changes of these properties. The experimental results indicate that the size gradation, the drag force exerted on bio-particles, and the settling velocity of bio-particles underwent significant change due to the growth of biofilm onto the sediment surface. The study proposes a characteristic particle size formula and a bio-particle settling velocity formula based on the regression of experiment results, that the settling velocity is only 50% to 60% as the single particle which has the same diameter and density. However, biofilm growth causes large particle which the settling velocities are approximately 10 times larger than that of primary particles. These results may be specifically used in the low energy reservoir or lake environment.  相似文献   

3.
Aggregation processes of fine sediments have rarely been integrated in numerical simulations of cohesive sediment transport in riverine systems. These processes, however, can significantly alter the hydrodynamic characteristics of suspended particulate matter (SPM), modifying the particle settling velocity, which is one of the most important parameters in modelling suspended sediment dynamics. The present paper presents data from field measurements and an approach to integrate particle aggregation in a hydrodynamic sediment transport model. The aggregation term used represents the interaction of multiple sediment classes (fractions) with corresponding multiple deposition behaviour. The k–ε–turbulence model was used to calculate the coefficient of vertical turbulent mixing needed for the two‐dimensional vertical‐plane simulations. The model has been applied to transport and deposition of tracer particles and natural SPM in a lake‐outlet lowland river (Spree River, Germany). The results of simulations were evaluated by comparison with field data obtained for two levels of river discharge. Experimental data for both discharge levels showed that under the prevailing uniform hydraulic conditions along the river reach, the settling velocity distribution did not change significantly downstream, whereas the amount of SPM declined. It was also shown that higher flow velocities (higher fluid shear) resulted in higher proportions of fast settling SPM fractions. We conclude that in accordance with the respective prevailing turbulence structures, typical aggregation mechanisms occur that continuously generate similar distribution patterns, including particles that settle toward the river bed and thus mainly contribute to the observed decline in the total SPM concentration. In order to determine time‐scales of aggregation and related mass fluxes between the settling velocity fractions, results of model simulations were fitted to experimental data for total SPM concentration and of settling velocity frequency distributions. The comparison with simulations for the case of non‐interacting fractions clearly demonstrated the practical significance of particle interaction for a more realistic modelling of cohesive sediment and contaminant transport. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Grain-size distributions of suspended load over a sand-gravel bed at two different flow velocities were studied in a laboratory flume.The experiments had been performed to study the influence of flow velocity and suspension height on grain-size distribution in suspension over a sand-gravel bed.The experimental findings show that with an increase of flow velocity,the grain-size distribution of suspended load changed from a skewed form to a bimodal one at higher suspension heights.This study focuses on the determination of the parameter β_n which is the ratio of the sediment diffusion coefficient to the momentum diffusion coefficient of n th grain-size.A new relationship has been proposed involving β_n,the normalizing settling velocity of sediment particles and suspension height,which is applicable for widest range of normalizing settling velocity available in literature so far.A similar parameter β for calculating total suspension concentration is also developed.The classical Rouse equation is modified with β_n and β and used to compute grain-size distribution and total concentration in suspension,respectively.The computed values have shown good agreement with the measured values of experimental data.  相似文献   

5.
1 INTRODUCTION AND REVIEW Numerous investigations related to vertical velocity and suspension concentration distributions have been undertaken to the steady, uniform, open channel turbulent flow. The problems of sediment mixed water flows are of direct interest to the practical situations in the field of river sedimentation, coastalsediment transport and in the field of two-phase flow in particular. In hydraulic open channel flow, the vertical velocity profile is usually described by…  相似文献   

6.
Reinvestigation on mixing length in an open channel turbulent flow   总被引:1,自引:0,他引:1  
The present study proposes a model on vertical distribution of streamwise velocity in an open channel turbulent flow through a newly proposed mixing length, which is derived for both clear water and sediment-laden turbulent flows. The analysis is based on a theoretical consideration which explores the effect of density stratification on the streamwise velocity profile. The derivation of mixing length makes use of the diffusion equation where both the sediment diffusivity and momentum diffusivity are taken as a function of height from the channel bed. The damping factor present in the mixing length of sediment-fluid mixture contains velocity and concentration gradients. This factor is capable of describing the dip-phenomenon of velocity distribution. From the existing experimental data of velocity, the mixing length data are calculated. The pattern shows that mixing length increases from bed to the dip-position, having a larger value at dip-position and then decreases up to the water surface with a zero value thereat. The present model agrees well with these data sets and this behavior cannot be described by any other existing model. Finally, the proposed mixing length model is applied to find the velocity distribution in wide and narrow open channels. The derived velocity distribution is compared with laboratory channel data of velocity, and the comparison shows good agreement.  相似文献   

7.
In natural waters,exopolymers or extracellular polymeric substances(EPS) exuded by microorganisms interact with clay particles,resulting in the flocculation of clays and hence alteration to the properties of suspended cohesive sediments.To investigate and further understand how neutral EPS affect cohesive sediment transport and the final sediment yield,an experimental study was conducted on laboratory-prepared clay and guar gum(used as an analog for neutral EPS) suspensions to characterize EPS-induced flocculation and the settling velocity of resultant floes.Four different clays consisting of kaolinite,illite,Ca-montmorillonite,and Na-montmorillonite were studied to examine the influence of different layer charges on clay flocculation induced by neutral EPS.Floc size was determined by a laser particle size analyzer,and settling velocity estimated by analyzing the time-series floc settling images captured by an optical microscope.Results indicate that neutral EPS promote clay-EPS flocculation for all four clays with the particle/floc size significantly increased from~0.1-60μm to as large as~600μm.Clays’ layer charge has a profound influence on the clay-EPS flocculation.With the same floc size,the settling velocity of clay-EPS flocs is typically smaller than that of pure clay flocs,which is attributed to the reduced density of flocs caused by the EPS. However,for flocs of the same composition(e.g.pure clay or hybrid clay-EPS mixture),the settling velocity increases with size.The fractal dimension of these clay-EPS flocs estimated from settling velocity ranges from 1.39 to 1.47,which are smaller than that of pure clay flocs,indicating that these flocs are less compacted than the pure clay flocs.  相似文献   

8.
1. INTRODUCTIONAs a wide range of size distirbution including usually a certain POrtion of cohesive material is thecommon feature of the sediment constituting hyperconcentrated flows. it is desirable to study the settling properties of mixtures of cohesive and non--cohesjve sediment particles at high concentrations.Past studies on the settling of discrete particles in a suspension of fine cohesjve sediment is scarcein the literature. The Sediment Research Laboratory of Tsinghua Universi…  相似文献   

9.
A model is developed for predicting the settling velocity in suspensions of particles of two different sizes based on experimental data for the settling rate of two-size suspensions in various liquids using particles of equal density. In these experiments, the retarding effect of the smaller particles on the settling velocities of the larger ones is taken into account. The model considers Steinour’s fundamental equation and assumes a fixed arrangement of particles and constant velocity in a single-size susp...  相似文献   

10.
Flocculation settling characteristics of mud: sand mixtures   总被引:2,自引:1,他引:1  
When natural muds become mixed with sandy sediments in estuaries, it has a direct effect on the flocculation process and resultant sediment transport regime. Much research has been completed on the erosion and consolidation of mud/sand mixtures, but very little is known quantitatively about how mixed sediments interact whilst in suspension, particularly in terms of flocculation. This paper presents the settling velocity findings from a recent laboratory study which examined the flocculation dynamics for three different mud/sand mixtures at different concentrations (0.2–5 g.l?1) and turbulent shear stresses (0.06–0.9 Pa) in a mini-annular flume. The low intrusive video-based Laboratory Spectral Flocculation Characteristics instrument was used to determine floc/aggregate properties (e.g., size, settling velocity, density and mass) for each population. Settling data was assessed in terms of macrofloc (>160 μm) and microfloc (<160 μm) settling parameters: Wsmacro and Wsmicro, respectively. For pure muds, the macroflocs are regarded as the most dominant contributors to the total depositional flux. The parameterised settling data indicates that by adding more sand to a mud/sand mixture, the fall velocity of the macrofloc fraction slows and the settling velocity of microflocs quickens. Generally, a mainly sandy suspension comprising 25% mud and 75% sand (25M:75S), will produce resultant Wsmacro which are slower than Wsmicro. The quickest Wsmicro appears to consistently occur at a higher level of turbulent shear stress (τ?~?0.6 Pa) than both the macrofloc and microfloc fractions from suspensions of pure natural muds. Flocculation within a more cohesively dominant muddy-sand suspension (i.e., 75M:25S) produced macroflocs which fell at similar speeds (±10%) to pure mud suspensions at both low (200 mg l?1) and intermediate (1 g?l?1) concentrations at all shear stress increments. Also, low sand content suspensions produced Wsmacro values that were faster than the Wsmicro rates. In summary, the experimental results of the macrofloc and microfloc settling velocities have demonstrated that flocculation is an extremely important factor with regards to the depositional behaviour of mud/sand mixtures, and these factors must be considered when modelling mixed sediment transport in the estuarine or marine environment.  相似文献   

11.
The settling potential of fine sediment is known to be influenced by particle size, shape, density and porosity, and is commonly predicted using Stokes's law, despite its known limitations for modelling the behaviour of natural particles. In order to develop an improved understanding of the potential for fine sediment to settle out of suspension or undergo transport by hydraulic processes, it is important to examine the role of particle structure in detail. In this study, stepwise regression was used to identify which structural properties of particles exert an important control on fine sediment behaviour in river systems. The presence of composite particles and their associated particle size, porosity and fractal dimension were shown to be the most important controls on settling potential. Composite particles that form in the aquatic environment (flocs) were shown to have significantly different form and behaviour from composite particles of terrestrial origin (aggregates). Importantly, it was demonstrated that particle structure and behaviour exhibited consistencies between contrasting river catchments in different locations. An understanding of the mechanisms responsible for the formation of composite particles is viewed as providing a valuable input to efforts to model the mobilisation, transport and fate of fine sediment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The ability of turbulent nuées ardentes (surges) to transport coarse pyroclasts has been questioned on the basis that settling velocities of coarse fragments in the deposits are much too high for them to have been supported by turbulence in a dilute gas suspension. A computer model is used to evaluate the settling velocity of pyroclasts in suspensions of varying concentration and temperature. Since suspension of grains in low-concentration surges occurs if the shear velocity exceeds the settling velocity, the shear velocities related to the 16th and 84th percentiles, and the mean of the grain-size distribution are compared in surge deposits of the Vulsini, with the shear velocity necessary to move the coarsest grain on the bed surface (the Shields criterion). The results show that the settling velocities do not vary significantly in gaseous suspensions having volume concentrations lower than 15%, and that an increase in concentration to 25% is not sufficient to decrease the settling velocity of the coarser fraction, if it represents flow shear velocity. It is shown that the settling velocity of the mean grain size (M z ) best depicts the shear velocity of a dilute turbulent suspension. Applying the results to the May 1902 paroxysmal nuées ardentes of Mount Pelée shows that the estimated mean velocities are well within the observed velocities, and sufficient to support all the clasts in dilute, turbulent suspensions.  相似文献   

13.
The ability of turbulent nuées ardentes (surges) to transport coarse pyroclasts has been questioned on the basis that settling velocities of coarse fragments in the deposits are much too high for them to have been supported by turbulence in a dilute gas suspension. A computer model is used to evaluate the settling velocity of pyroclasts in suspensions of varying concentration and temperature. Since suspension of grains in low-concentration surges occurs if the shear velocity exceeds the settling velocity, the shear velocities related to the 16th and 84th percentiles, and the mean of the grain-size distribution are compared in surge deposits of the Vulsini, with the shear velocity necessary to move the coarsest grain on the bed surface (the Shields criterion). The results show that the settling velocities do not vary significantly in gaseous suspensions having volume concentrations lower than 15%, and that an increase in concentration to 25% is not sufficient to decrease the settling velocity of the coarser fraction, if it represents flow shear velocity. It is shown that the settling velocity of the mean grain size (M z ) best depicts the shear velocity of a dilute turbulent suspension. Applying the results to the May 1902 paroxysmal nuées ardentes of Mount Pelée shows that the estimated mean velocities are well within the observed velocities, and sufficient to support all the clasts in dilute, turbulent suspensions.  相似文献   

14.
Estuarine and coastal sediment transport is characterised by the transport of both sand-sized particles (of diameter greater than 63?μm) and muddy fine-grained sediments (silt, diameter less than 63?μm; clay, diameter less than 2?μm). These fractions are traditionally considered as non-cohesive and cohesive, respectively, because of the negligible physico-chemical attraction that occurs between sand grains. However, the flocculation of sediment particles is not only caused by physico-chemical attraction. Cohesivity of sediment is also caused by biology, in particular the sticky extra-cellular polymeric substances secreted by diatoms, and the effect of biology in binding sediment particles can be much larger than that of physico-chemical attraction. As demonstrated by Manning (2008) and further expanded in part 1 of this paper (Manning et al., submitted), the greater binding effect of biology allows sand particles to flocculate with mud. In many estuaries, both the sand and fine sediment fractions are transported in significant quantities. Many of the more common sediment transport modelling suites now have the capability to combine mud and sand transport. However, in all of these modelling approaches, the modelling of mixed sediment transport has still essentially separated the modelling of sand and mud fractions assuming that these different fractions do not interact except at the bed. However, the use of in situ video techniques has greatly enhanced the accuracy and reliability of settling velocity measurements and has led to a re-appraisal of this widely held assumption. Measurements of settling velocity in mixed sands presented by Manning et al. (2009) have shown strong evidence for the flocculation of mixed sediments, whilst the greater understanding of the role of biology in flocculation has identified mechanisms by which this mud-sand flocculation can occur. In the first part of this paper (Manning et al., submitted), the development of an empirical flocculation model is described which represents the interaction between sand and mud particles in the flocculation process. Measurements of the settling velocity of varying mud-sand mixtures are described, and empirical algorithms governing the variation of settling velocity with turbulence, suspended sediment concentration and mud-sand content are derived. The second part of this paper continues the theme of examination of the effects of mud-sand interaction on flocculation. A 1DV mixed transport model is developed and used to reproduce the vertical transport of mixed sediment fractions. The 1DV model is used to reproduce the measured settling velocities in the laboratory experiments described in the part 1 paper and also to reproduce measurements of concentration of mixed sediments in the Outer Thames. In both modelling exercises, the model is run using the algorithms developed in part 1 and repeated using an assumption of no interaction between mud and sand in the flocculation process. The results of the modelling show a significant improvement in the ability of the 1DV to reproduce the observed sediment behaviour when the empirical equations are used. This represents further strong evidence of the interaction between sand and mud in the flocculation process.  相似文献   

15.
The use of predictive models for the understanding and management of sediment and contaminant transport generally requires knowledge of particle size and settling velocity. Particle size is often obtained by direct measurements, and the settling velocities are usually predicted using the Stokes' law (or a modification thereof) for single‐grained spherical particles. Such measurements and estimates are not satisfactory measures for cohesive sediments, which exist as agglomerated particles called flocs and whose behaviour is significantly different from that of the single‐grained particles. Direct measurement of settling velocity and size using optical methods in settling columns has also been employed to improve these predictions; however, the subjectivity in determining which particles are in focus results in unreliable size data. An out‐of‐focus particle will generally possess a larger size than in reality. This paper evaluates a laser‐assisted particle sizing/settling velocity determination technique's ability to eliminate the subjectivity and improve particle‐sizing accuracy during settling column experiments. Although the diffraction of light by the translucent standard beads (used for evaluating the technique's accuracy for determining particle size) posed a problem, the results suggest that this technique has potential for assisting researchers to obtain the most accurate settling particle size data possible. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The transport of fine-grained particles in estuarine and coastal waters is influenced by flocculation processes (aggregation and floc breakup). As a consequence, the particle size varies with time in the water column, and can be orders of magnitude larger than those of primary particles. In this study the variations in floc size is simulated using a size-resolved method, which approximates the real size distribution of particles by a range of size bins and solves a mass balance equation for each bin. To predict the size distribution both aggregation and breakup processes are included. The conventional rectilinear aggregation kernel is used which considers both turbulent shear and differential settling. The breakup kernel accounts for the fractal dimension of the flocs. A flocculation simulation is compared to the settling column lab experiments of Winterwerp [1998. A simple model for turbulence induced flocculation of cohesive sediment, Journal of Hydraulic Research, 36, 309–326], and a one-dimensional sediment transport model is verified with the observed variations in floc size and concentration over tidal cycles in a laboratory flume experiment of Bale et al. [2002. Direct observation of the formation and break-up of aggregates in an annular flume using laser reflectance particle sizing. In: Winterwerp, J.C., Kranenburg, C. (Eds.), Fine Sediment Dynamics in the Marine Environment. Elsevier, pp. 189–201]. The numerical simulations compare qualitatively and quantitatively well with the laboratory measurements, and the analysis of the two simulation results indicates that the median floc size can be correlated to the sediment concentration and Kolmogorov microscale. Sensitivity studies are conducted to explore the role of settling velocity and erosion rate. The results are not sensitive towards the formulation of settling velocity, but the parameterization of erosion flux is important. The studies show that for predicting the sediment deposition flux it is crucial to include flocculation processes.  相似文献   

17.
18.
A new formula for the concentration profile of nonuniform sediment is derived using the diffusion differential equation with equilibrium bed concentration.The interaction coefficient for nonuniform sediment particles as a function of both relative diameter and geometric standard deviation of nonuniform sediment is taken into account in the settling velocity.The diffusion coefficient is obtained from the logarithmic velocity profile.This new formula possesses several advantages as follows:(1)avoids theoretical defect of the Rouse formula,which states that the sediment concentration is infinite at the bottom and zero at the water surface.(2)suitable for an arbitrary fraction of nonuniform sediment,and(3)easy to apply with a simple form.The formula yields less difference among concentration profiles for various particles than that for uniform sediment and reveals the lawfor fractional concentration distribution of nonuniform sediment.The calculated concentration agrees well with the measured data from the Yangtze River.  相似文献   

19.
Flume experiments were carried out to study the turbulence and its impact on suspension and segregation of grain-sizes under unidirectional flow conditions over the sand-gravel mixture bed. The components of fluid velocity with fluctuations were measured vertically using 3-D Micro-acoustic Doppler velocimeter (ADV). The theoretical models for velocity and sediment suspension have been developed based on the concept of mixing length that includes the damping effect of turbulence due to sediment suspension in the flow over the sand-gravel mixture bed. Statistical analysis of segregation of grain-sizes along downstream of the bed has been performed using the principle of unsupervised learning or clustering problem. Exploratory data analysis suggests that there is a progressive downstream fining of sediment sizes with selective depositions of gravels, sand-gravels and sand materials along the stream, which may be segmented into three regions such as, the upstream, the transitional and the downstream respectively. This contribution is relevant to understand the direction of ancient rivers, the bed material character in the river form, sorting process and its role in controlling the sediment flux through landscape.  相似文献   

20.
Suspended sediment is conventionally regarded as that sediment transported by a fluid that it is fine enough for turbulent eddies to outweigh settling of the particles through the fluid. Early work in the fluvial field attributed suspension to turbulence, and led to the notion of a critical threshold for maintaining sediment in suspension. However, research on both turbulence structures and the interactions between suspended sediment and bedforms in rivers has shown a more complex story and, although there appear to have been no studies of the impact of bedforms on aeolian suspended sediment concentrations, turbulent flow structures and transport rates of saltating particles have been shown to be affected. This research indicates that suspended sediment neither travels with the same velocity as the flow in which it is suspended, nor is it likely to remain in suspension in perpetuity, even under conditions of steady flow or in unsteady flow the where dimensionless critical threshold is permanently exceeded. Rather, like bedload, it travels in a series of hops, and is repeatedly deposited on the bed where it remains until it is re‐entrained. Is there, therefore, a qualitative difference between suspended and saltating sediment, or is it just a quantitative difference in the size of the jump length and the frequency of re‐entrainment? It is our contention that the distinction of suspension as a separate class of sediment transport is both arbitrary and an unhelpful anthropocentric artefact. If we recognize that sediment transport is a continuum and applies to any fluid medium rather than split into different “processes” based on arbitrary thresholds and fluids, then recognizing the continuity will enable development of an holistic approach sediment transport, and thus sediment‐transport models that are likely to be viable across a wider range of conditions than hitherto. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号