首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a data assimilation method that uses observations of snow covered area (SCA) to update hydrologic model states in a mountainous catchment in Colorado. The assimilation method uses SCA information as part of an ensemble Kalman filter to alter the sub-basin distribution of snow as well as the basin water balance. This method permits an optimal combination of model simulations and observations, as well as propagation of information across model states. Sensitivity experiments are conducted with a fairly simple snowpack/water-balance model to evaluate effects of the data assimilation scheme on simulations of streamflow. The assimilation of SCA information results in minor improvements in the accuracy of streamflow simulations near the end of the snowmelt season. The small effect from SCA assimilation is initially surprising. It can be explained both because a substantial portion of snowmelts before any bare ground is exposed, and because the transition from 100% to 0% snow coverage occurs fairly quickly. Both of these factors are basin-dependent. Satellite SCA information is expected to be most useful in basins where snow cover is ephemeral. The data assimilation strategy presented in this study improved the accuracy of the streamflow simulation, indicating that SCA is a useful source of independent information that can be used as part of an integrated data assimilation strategy.  相似文献   

2.
Many plot‐scale studies have shown that snow‐cover dynamics in forest gaps are distinctly different from those in open and continuously forested areas, and forest gaps have the potential to alter the magnitude and timing of snowmelt. However, the watershed‐level impacts of canopy gap treatment on streamflows are largely unknown. Here, we present the first research that explicitly assesses the impact of canopy gaps on seasonal streamflows and particularly late‐season low flows at the watershed scale. To explicitly model forest–snow interactions in canopy gaps, we made major enhancements to a widely used distributed hydrologic model, distributed hydrology soil vegetation model, with a canopy gap component that represents physical processes of snowpack evolution in the forest gap separately from the surrounding forest on the subgrid scale (within a grid typically 10–150 m). The model predicted snow water equivalent using the enhanced distributed hydrology soil vegetation model showed good agreement (R2 > 0.9) with subhourly snow water equivalent measurements collected from open, forested, and canopy gap sites in Idaho, USA. Compared with the original model that does not account for interactions between gaps and surrounding forest, the enhanced model predicted notably later melt in small‐ to medium‐size canopy gaps (the ratio of gap radius (r) to canopy height (h) ≤ 1.2), and snow melt rates exhibited great sensitivity to changing gap size in medium‐size gaps (0.5 ≤ r/h ≤ 1.2). We demonstrated the watershed‐scale implications of canopy gaps on streamflow in the snow‐dominated Chiwawa watershed, WA, USA. With 24% of the watershed drainage area (about 446 km2) converted to gaps of 60 m diameter, the mean annual 7‐day low flow was increased by 19.4% (i.e., 0.37 m3/s), and the mean monthly 7‐day low flows were increased by 13.5% (i.e., 0.26 m3/s) to 40% (i.e., 1.76 m3/s) from late summer through fall. Lastly, in practical implementation of canopy gaps with the same total gap areas, a greater number of distributed small gaps can have greater potential for longer snow retention than a smaller number of large gaps.  相似文献   

3.
With the objective of improving flood predictions, in recent years sophisticated continuous hydrologic models that include complex land‐surface sub‐models have been developed. This has produced a significant increase in parameterization; consequently, applications of distributed models to ungauged basins lacking specific data from field campaigns may become redundant. The objective of this paper is to produce a parsimonious and robust distributed hydrologic model for flood predictions in Italian alpine basins. Application is made to the Toce basin (area 1534 km2). The Toce basin was a case study of the RAPHAEL European Union research project, during which a comprehensive set of hydrologic, meteorological and physiographic data were collected, including the hydrologic analysis of the 1996–1997 period. Two major floods occurred during this period. We compare the FEST04 event model (which computes rainfall abstraction and antecedent soil moisture conditions through the simple Soil Conservation Service curve number method) and two continuous hydrologic models, SDM and TDM (which differ in soil water balance scheme, and base flow and runoff generation computations). The simple FEST04 event model demonstrated good performance in the prediction of the 1997 flood, but shows limits in the prediction of the long and moderate 1996 flood. More robust predictions are obtained with the parsimonious SDM continuous hydrologic model, which uses a simple one‐layer soil water balance model and an infiltration excess mechanism for runoff generation, and demonstrates good performance in both long‐term runoff modelling and flood predictions. Instead, the use of a more sophisticated continuous hydrologic model, the TDM, that simulates soil moisture dynamics in two layers of soil, and computes runoff and base flow using some TOPMODEL concepts, does not seem to be advantageous for this alpine basin. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Relatively few studies have addressed water management and adaptation measures in the face of changing water balances due to climate change. The current work studies climate change impact on a multipurpose reservoir performance and derives adaptive policies for possible future scenarios. The method developed in this work is illustrated with a case study of Hirakud reservoir on the Mahanadi river in Orissa, India, which is a multipurpose reservoir serving flood control, irrigation and power generation. Climate change effects on annual hydropower generation and four performance indices (reliability with respect to three reservoir functions, viz. hydropower, irrigation and flood control, resiliency, vulnerability and deficit ratio with respect to hydropower) are studied. Outputs from three general circulation models (GCMs) for three scenarios each are downscaled to monsoon streamflow in the Mahanadi river for two future time slices, 2045–65 and 2075–95. Increased irrigation demands, rule curves dictated by increased need for flood storage and downscaled projections of streamflow from the ensemble of GCMs and scenarios are used for projecting future hydrologic scenarios. It is seen that hydropower generation and reliability with respect to hydropower and irrigation are likely to show a decrease in future in most scenarios, whereas the deficit ratio and vulnerability are likely to increase as a result of climate change if the standard operating policy (SOP) using current rule curves for flood protection is employed. An optimal monthly operating policy is then derived using stochastic dynamic programming (SDP) as an adaptive policy for mitigating impacts of climate change on reservoir operation. The objective of this policy is to maximize reliabilities with respect to multiple reservoir functions of hydropower, irrigation and flood control. In variations to this adaptive policy, increasingly more weightage is given to the purpose of maximizing reliability with respect to hydropower for two extreme scenarios. It is seen that by marginally sacrificing reliability with respect to irrigation and flood control, hydropower reliability and generation can be increased for future scenarios. This suggests that reservoir rules for flood control may have to be revised in basins where climate change projects an increasing probability of droughts. However, it is also seen that power generation is unable to be restored to current levels, due in part to the large projected increases in irrigation demand. This suggests that future water balance deficits may limit the success of adaptive policy options.  相似文献   

5.
A hydrologic model for urban areas has been developed which incorporates distributed parameter modelling concepts and functions in the context of a geographic information system. In the proposed model, the watershed is represented as a cascade of grid cells, whose size can be specified by the user. Preliminary processing includes the determination of overland flow directions for each cell. An automated procedure is used to establish the cell-to-cell connectivity scheme, which is used to order the computations within each time step. Infiltration is computed using the Green-Ampt equation, while runoff rates are computed using a coupling of the continuity equation and Manning's equation for turbulent flow. Storm sewer flows are routed using time-shift routing. The model is capable of simulating flow through streets and offers the possibility of predicting the downstream movement of sewer system overflows. In preliminary testing on a small residential watershed, the model was able to reproduce measured hydrographs.  相似文献   

6.
Accuracy of the Copernicus snow water equivalent (SWE) product and the impact of SWE calibration and assimilation on modelled SWE and streamflow was evaluated. Daily snowpack measurements were made at 12 locations from 2016 to 2019 across a 4104 km2 mixed-forest basin in the Great Lakes region of central Ontario, Canada. Sub-basin daily SWE calculated from these sites, observed discharge, and lake levels were used to calibrate a hydrologic model developed using the Raven modelling framework. Copernicus SWE was bias corrected during the melt period using mean bias subtraction and was compared to daily basin average SWE calculated from the measured data. Bias corrected Copernicus SWE was assimilated into the models using a range of parameters and the parameterizations from the model calibration. The bias corrected Copernicus product agreed well with measured data and provided a good estimate of mean basin SWE demonstrating that the product shows promise for hydrology applications within the study region. Calibration to spatially distributed SWE substantially improved the basin scale SWE estimate while only slightly degrading the flow simulation demonstrating the value of including SWE in a multi-objective calibration formulation. The particle filter experiments yielded the best SWE estimation but moderately degraded the flow simulation. The particle filter experiments constrained by the calibrated snow parameters produced similar results to the experiments using the upper and lower bounds indicating that, in this study, model calibration prior to assimilation was not valuable. The calibrated models exhibited varying levels of skill in estimating SWE but demonstrated similar streamflow performance. This indicates that basin outlet streamflow can be accurately estimated using a model with a poor representation of distributed SWE. This may be sufficient for applications where estimating flow is the primary water management objective. However, in applications where understanding the physical processes of snow accumulation, melt and streamflow generation are important, such as assessing the impact of climate change on water resources, accurate representations of SWE are required and can be improved via multi-objective calibration or data assimilation, as demonstrated in this study.  相似文献   

7.
Snow is important for water management, and an important component of the terrestrial biosphere and climate system. In this study, the snow models included in the Biome‐BGC and Terrestrial Observation and Prediction System (TOPS) terrestrial biosphere models are compared against ground and satellite observations over the Columbia River Basin in the US and Canada and the impacts of differences in snow models on simulated terrestrial ecosystem processes are analysed. First, a point‐based comparison of ground observations against model and satellite estimates of snow dynamics are conducted. Next, model and satellite snow estimates for the entire Columbia River Basin are compared. Then, using two different TOPS simulations, the default TOPS model (TOPS with TOPS snow model) and the TOPS model with the Biome‐BGC snow model, the impacts of snow model selection on runoff and gross primary production (GPP) are investigated. TOPS snow model predictions were consistent with ground and satellite estimates of seasonal and interannual variations in snow cover, snow water equivalent, and snow season length; however, in the Biome‐BGC snow model, the snow pack melted too early, leading to extensive underpredictions of snow season length and snow covered area. These biases led to earlier simulated peak runoff and reductions in summer GPP, underscoring the need for accurate snow models within terrestrial ecosystem models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Heyin Chen 《水文科学杂志》2013,58(10):1739-1758
Abstract

Changes in climate and land cover are among the principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic impacts of climate and land-cover changes in the semi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevada, USA. The cell-based model is developed by considering direct runoff based on the Soil Conservation Service - Curve Number (SCS-CN) method and surplus runoff based on the Thornthwaite water balance theory. After calibration and validation, the model is used to predict LVR discharge under future climate and land-cover changes. The hydrologic simulation results reveal climate change as the dominant factor and land-cover change as a secondary factor in regulating future river discharge. The combined effects of climate and land-cover changes will slightly increase river discharge in summer but substantially decrease discharge in winter. This impact on water resources deserves attention in climate change adaptation planning.
Editor Z.W. Kundzewicz  相似文献   

9.
The spatial variability of snow water equivalent (SWE) can exert a strong influence on the timing and magnitude of snowmelt delivery to a watershed. Therefore, the representation of sub-grid or sub-watershed snow variability in hydrologic models is important for accurately simulating snowmelt dynamics and runoff response. The U.S. Geological Survey National Hydrologic Model infrastructure with the precipitation-runoff modelling system (NHM-PRMS) represents the sub-grid variability of SWE with snow depletion curves (SDCs), which relate snow-covered area to watershed-mean SWE during the snowmelt period. The main objective of this research was to evaluate the sensitivity of simulated runoff to SDC representation within the NHM-PRMS across the continental United States (CONUS). SDCs for the model experiment were derived assuming a range of SWE coefficient of variation values and a lognormal probability distribution function. The NHM-PRMS was simulated at a daily time step for each SDC over a 14-year period. Results highlight that increasing the sub-grid snow variability (by changing the SDC) resulted in a consistently slower snowmelt rate and longer snowmelt duration when averaged across the hydrologic response unit scale. Simulated runoff was also found to be sensitive to SDC representation, as decreases in simulated snowmelt rate by 1 mm day−1 resulted in decreases in runoff ratio by 1.8% on average in snow-dominated regions of the CONUS. Simulated decreases in runoff associated with slower snowmelt rates were approximately inversely proportional to increases in simulated evapotranspiration. High snow persistence and peak SWE:annual precipitation combined with a water-limited dryness index was associated with the greatest runoff sensitivity to changing snowmelt. Results from this study highlight the importance of carefully parameterizing SDCs for hydrologic modelling. Furthermore, improving model representation of snowmelt input variability and its relation to runoff generation processes is shown to be an important consideration for future modelling applications.  相似文献   

10.
This paper investigates the effect of adjusting the mean field bias (MFB) in radar-based precipitation data on analysis and prediction of streamflow and soil moisture in assimilating streamflow or streamflow and in situ soil moisture data into distributed hydrologic models. To evaluate the effect of adjusting the MFB under realistic as well as idealized conditions, both real-world and synthetic experiments are carried out for the Eldon Catchment on the border of Oklahoma and Arkansas in the US. In the synthetic experiment, the MFB is modeled as a stationary Markov chain process. The synthetic experiment showed that adjusting the MFB in the assimilation process significantly improves streamflow analysis when the initial conditions are known with reasonable certainty, and that assimilating soil moisture in addition to streamflow improves analysis of streamflow as well as soil moisture if the initial conditions are largely uncertain. Adjusting the MFB during the assimilation process noticeably improved streamflow analysis over ranges of the MFB and random noise in the precipitation data. On the other hand, increasing the MFB and random noise in the precipitation data tended to degrade soil moisture analysis due possibly to over-adjusting soil moisture to mitigate the precipitation error. The real-world experiment with one-year dataset showed that adjusting the MFB during the assimilation process helped capture the peak as well as volume of outlet flow analysis as well as prediction, and that additionally assimilating interior flow observations was necessary to improve analysis and prediction of peak flows at interior locations.  相似文献   

11.
Glacier mass balance simulation using SWAT distributed snow algorithm   总被引:2,自引:1,他引:1  
Application of a temperature-index melt model incorporated into the Soil and Water Assessment Tool (SWAT) is presented to simulate mass balance (MB) and equilibrium line altitude (ELA) of three glaciers. The snow accumulation/melt parameters were adjusted to glacierized and free glacier areas, respectively. The SWAT snow algorithm enabled us to consider spatial variation of snow parameters by elevation bands across the sub-basins, while in the previous studies using SWAT, the related parameters were constant for an entire basin. The results show slight improvement in runoff simulation and significant improvement in simulated MB when considering ELA in model calibration. The results showed that SWAT can be applied to simulate MB, vertical MB distribution and annual ELA, with light calibration efforts for data-scarce catchments. The accuracy of the results depends on the modelled area of ablation zone from which most of the meltwater is released.  相似文献   

12.
Transportation, sublimation and accumulation of snow dominate snow cover development in the Arctic and produce episodic high evaporative fluxes. Unfortunately, blowing snow processes are not presently incorporated in any hydrological or meteorological models. To demonstrate the application of simple algorithms that represent blowing snow processes, monthly snow accumulation, relocation and sublimation fluxes were calculated and applied in a spatially distributed manner to a 68-km2 catchment in the low Arctic of north-western Canada. The model uses a Landsat-derived vegetation classification and a digital elevation model to segregate the basin into snow ‘sources’ and ‘sinks’. The model then relocates snow from sources to sinks and calculates in-transit sublimation loss. The resulting annual snow accumulation in specific landscape types was compared with the result of intensive surveys of snow depth and density. On an annual basis, 28% of annual snowfall sublimated from tundra surfaces whilst 18% was transported to sink areas. Annual blowing snow transport to sink areas amounted to an additional 16% of annual snowfall to shrub–tundra and an additional 182% to drifts. For the catchment, 19·5% of annual snowfall sublimated from blowing snow, 5·8% was transported into the catchment and 86·5% accumulated on the ground. The model overestimated snow accumulation in the catchment by 6%. The application demonstrates that winter precipitation alone is insufficient to calculate snow accumulation and that blowing snow processes and landscape patterns govern the spatial distribution and total accumulation of snow water equivalent over the winter. These processes can be modelled by relatively simple algorithms, and, when distributed by landscape type over the catchment, produce reasonable estimates of snow accumulation and loss in wind-swept regions. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
Distributed hydrologic models based on triangulated irregular networks (TIN) provide a means for computational efficiency in small to large‐scale watershed modelling through an adaptive, multiple resolution representation of complex basin topography. Despite previous research with TIN‐based hydrology models, the effect of triangulated terrain resolution on basin hydrologic response has received surprisingly little attention. Evaluating the impact of adaptive gridding on hydrologic response is important for determining the level of detail required in a terrain model. In this study, we address the spatial sensitivity of the TIN‐based Real‐time Integrated Basin Simulator (tRIBS) in order to assess the variability in the basin‐averaged and distributed hydrologic response (water balance, runoff mechanisms, surface saturation, groundwater dynamics) with respect to changes in topographic resolution. Prior to hydrologic simulations, we describe the generation of TIN models that effectively capture topographic and hydrographic variability from grid digital elevation models. In addition, we discuss the sampling methods and performance metrics utilized in the spatial aggregation of triangulated terrain models. For a 64 km2 catchment in northeastern Oklahoma, we conduct a multiple resolution validation experiment by utilizing the tRIBS model over a wide range of spatial aggregation levels. Hydrologic performance is assessed as a function of the terrain resolution, with the variability in basin response attributed to variations in the coupled surface–subsurface dynamics. In particular, resolving the near‐stream, variable source area is found to be a key determinant of model behaviour as it controls the dynamic saturation pattern and its effect on rainfall partitioning. A relationship between the hydrologic sensitivity to resolution and the spatial aggregation of terrain attributes is presented as an effective means for selecting the model resolution. Finally, the study highlights the important effects of terrain resolution on distributed hydrologic model response and provides insight into the multiple resolution calibration and validation of TIN‐based hydrology models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
15.
End users face a range of subjective decisions when evaluating climate change impacts on hydrology, but the importance of these decisions is rarely assessed. In this paper, we evaluate the implications of hydrologic modelling choices on projected changes in the annual water balance, monthly simulated processes, and signature measures (i.e. metrics that quantify characteristics of the hydrologic catchment response) under a future climate scenario. To this end, we compare hydrologic changes computed with four different model structures – whose parameters have been obtained using a common calibration strategy – with hydrologic changes computed with a single model structure and parameter sets from multiple options for different calibration decisions (objective function, local optima, and calibration forcing dataset). Results show that both model structure selection and the parameter estimation strategy affect the direction and magnitude of projected changes in the annual water balance, and that the relative effects of these decisions are basin dependent. The analysis of monthly changes illustrates that parameter estimation strategies can provide similar or larger uncertainties in simulations of some hydrologic processes when compared with uncertainties coming from model choice. We found that the relative effects of modelling decisions on projected changes in catchment behaviour depend on the signature measure analysed. Furthermore, parameter sets with similar performance, but located in different regions of the parameter space, provide very different projections for future catchment behaviour. More generally, the results obtained in this study prompt the need to incorporate parametric uncertainty in multi‐model frameworks to avoid an over‐confident portrayal of climate change impacts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A continuous Soil Conservation Service (SCS) curve number (CN) method that considers time‐varied SCS CN values was developed based on the original SCS CN method with a revised soil moisture accounting approach to estimate run‐off depth for long‐term discontinuous storm events. The method was applied to spatially distributed long‐term hydrologic simulation of rainfall‐run‐off flow with an underlying assumption for its spatial variability using a geographic information systems‐based spatially distributed Clark's unit hydrograph method (Distributed‐Clark; hybrid hydrologic model), which is a simple few parameter run‐off routing method for input of spatiotemporally varied run‐off depth, incorporating conditional unit hydrograph adoption for different run‐off precipitation depth‐based direct run‐off flow convolution. Case studies of spatially distributed long‐term (total of 6 years) hydrologic simulation for four river basins using daily NEXRAD quantitative precipitation estimations demonstrate overall performances of Nash–Sutcliffe efficiency (ENS) 0.62, coefficient of determination (R2) 0.64, and percent bias 0.33% in direct run‐off and ENS 0.71, R2 0.72, and percent bias 0.15% in total streamflow for model result comparison against observed streamflow. These results show better fit (improvement in ENS of 42.0% and R2 of 33.3% for total streamflow) than the same model using spatially averaged gauged rainfall. Incorporation of logic for conditional initial abstraction in a continuous SCS CN method, which can accommodate initial run‐off loss amounts based on previous rainfall, slightly enhances model simulation performance; both ENS and R2 increased by 1.4% for total streamflow in a 4‐year calibration period. A continuous SCS CN method‐based hybrid hydrologic model presented in this study is, therefore, potentially significant to improved implementation of long‐term hydrologic applications for spatially distributed rainfall‐run‐off generation and routing, as a relatively simple hydrologic modelling approach for the use of more reliable gridded types of quantitative precipitation estimations.  相似文献   

17.
Climate change and anthropogenic impacts on hydrologic variables have received significant attention in recent years. We assessed stream flow and water level in the Zhengshui River basin, China, in the period 1960 to 2003 in response to precipitation variation and anthropogenic factors. Analyses of daily discharge and water level records, and derived annual, seasonal and monthly series, showed that Zhengshui River flows had a significant increasing trend, with an abrupt change point in 1990. There was a significant decreasing water level trend with an abrupt change point in 1995. Human activities and precipitation contributed 53 and 47%, respectively, to increase in stream flow during 1991–2003. Anthropogenic activities such as sand dredging, dominated the decrease in water level during 1994–2003. Human-induced land use change, soil erosion and sand excavation driven by rapid economic development have played a more important role than precipitation variation in hydrological changes in the Zhengshui River basin over the past 50 years.  相似文献   

18.
This study has applied evolutionary algorithm to address the data assimilation problem in a distributed hydrological model. The evolutionary data assimilation (EDA) method uses multi-objective evolutionary strategy to continuously evolve ensemble of model states and parameter sets where it adaptively determines the model error and the penalty function for different assimilation time steps. The assimilation was determined by applying the penalty function to merge background information (i.e., model forecast) with perturbed observation data. The assimilation was based on updated estimates of the model state and its parameterizations, and was complemented by a continuous evolution of competitive solutions.The EDA was illustrated in an integrated assimilation approach to estimate model state using soil moisture, which in turn was incorporated into the soil and water assessment tool (SWAT) to assimilate streamflow. Soil moisture was independently assimilated to allow estimation of its model error, where the estimated model state was integrated into SWAT to determine background streamflow information before they are merged with perturbed observation data. Application of the EDA in Spencer Creek watershed in southern Ontario, Canada generates a time series of soil moisture and streamflow. Evaluation of soil moisture and streamflow assimilation results demonstrates the capability of the EDA to simultaneously estimate model state and parameterizations for real-time forecasting operations. The results show improvement in both streamflow and soil moisture estimates when compared to open-loop simulation, and a close matching between the background and the assimilation illustrates the forecasting performance of the EDA approach.  相似文献   

19.
We formulate and solve an analytical model of seasonal snowpack dynamics, by assuming a simple temperature index model for the snowpack, driven by purely seasonal climate forcing. Three dimensionless variables control the modeled system: one to indicate the temperature regime, one for the seasonality of both temperature and precipitation, and one for the mean precipitation rate relative to a characteristic melt rate. The purpose of the model is to provide insight into the relative roles of the mean and seasonality of temperature, the mean and seasonality of precipitation, and the melt factor, in controlling snow climatology.  相似文献   

20.
We assess the potential of updating soil moisture states of a distributed hydrologic model by assimilating streamflow and in situ soil moisture data for high-resolution analysis and prediction of streamflow and soil moisture. The model used is the gridded Sacramento (SAC) and kinematic-wave routing models of the National Weather Service (NWS) Hydrology Laboratory’s Research Distributed Hydrologic Model (HL-RDHM) operating at an hourly time step. The data assimilation (DA) technique used is variational assimilation (VAR). Assimilating streamflow and soil moisture data into distributed hydrologic models is new and particularly challenging due to the large degrees of freedom associated with the inverse problem. This paper reports findings from the first phase of the research in which we assume, among others, perfectly known hydrometeorological forcing. The motivation for the simplification is to reduce the complexity of the problem in favour of improved understanding and easier interpretation even if it may compromise the goodness of the results. To assess the potential, two types of experiments, synthetic and real-world, were carried out for Eldon (ELDO2), a 795-km2 headwater catchment located near the Oklahoma (OK) and Arkansas (AR) border in the U.S. The synthetic experiment assesses the upper bound of the performance of the assimilation procedure under the idealized conditions of no structural or parametric errors in the models, a full dynamic range and no microscale variability in the in situ observations of soil moisture, and perfectly known univariate statistics of the observational errors. The results show that assimilating in situ soil moisture data in addition to streamflow data significantly improves analysis and prediction of soil moisture and streamflow, and that assimilating streamflow observations at interior locations in addition to those at the outlet improves analysis and prediction of soil moisture within the drainage areas of the interior stream gauges and of streamflow at downstream cells along the channel network. To assess performance under more realistic conditions, but still under the assumption of perfectly known hydrometeorological forcing to allow comparisons with the synthetic experiment, an exploratory real-world experiment was carried out in which all other assumptions were lifted. The results show that, expectedly, assimilating interior flows in addition to outlet flow improves analysis as well as prediction of streamflow at stream gauge locations, but that assimilating in situ soil moisture data in addition to streamflow data provides little improvement in streamflow analysis and prediction though it reduces systematic biases in soil moisture simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号