首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Soil salinization is a worldwide environmental problem with severe economic and social consequences. In this paper, estimating the soil salinity of Pingluo County, China by a partial least squares regression (PLSR) predictive model was carried out using QuickBird data and soil reflectance spectra. At first, a relationship between the sensitive bands of soil salinity acquired from measured reflectance spectra and the spectral coverage of seven commonly used optical sensors was analyzed. Secondly, the potentiality of QuickBird data in estimating soil salinity by analyzing the correlations between the measured reflectance spectra and reflectance spectra derived from QuickBird data and analyzing the contributions of each band of QuickBird data to soil salinity estimation Finally, a PLSR predictive model of soil salinity was developed using reflectance spectra from QuickBird data and eight spectral indices derived from QuickBird data. The results indicated that the sensitive bands covered several bands of each optical sensor and these sensors can be used for soil salinity estimation. The result of estimation model showed that an accurate prediction of soil salinity can be made based on the PLSR method (R2 = 0.992, RMSE = 0.195). The PLSR model's performance was better than that of the stepwise multiple regression (SMR) method. The results also indicated that using spectral indices such as intensity within spectral bands (Int1, Int2), soil salinity indices (SI1, SI2, SI3), the brightness index (BI), the normalized difference vegetation index (NDVI) and the ratio vegetation index (RVI) as independent model variables can help to increase the accuracy of soil salinity mapping. The NDVI and RVI can help to reduce the influences of vegetation cover and soil moisture on prediction accuracy. The method developed in this paper can be applied in other arid and semi-arid areas, such as western China.  相似文献   

2.
The influence of morphophysiological variation at different growth stages on the performance of vegetation indices for estimating plant N status has been confirmed. However, the underlying mechanisms explaining how this variation impacts hyperspectral measures and canopy N status are poorly understood. In this study, four field experiments involving different N rates were conducted to optimize the selection of sensitive bands and evaluate their performance for modeling canopy N status of rice at various growth stages in 2007 and 2008. The results indicate that growth stages negatively affect hyperspectral indices in different ways in modeling leaf N concentration (LNC), plant N concentration (PNC) and plant N uptake (PNU). Published hyperspectral indices showed serious limitations in estimating LNC, PNC and PNU. The newly proposed best 2-band indices significantly improved the accuracy for modeling PNU (R2 = 0.75–0.85) by using the lambda by lambda band-optimized algorithm. However, the newly proposed 2-band indices still have limitations in modeling LNC and PNC because the use of only 2-band indices is not fully adequate to provide the maximum N-related information. The optimum multiple narrow band reflectance (OMNBR) models significantly increase the accuracy for estimating the LNC (R2 = 0.67–0.71) and PNC (R2 = 0.57–0.78) with six bands. Results suggest the combinations of center of red-edge (735 nm) with longer red-edge bands (730–760 nm) are very efficient for estimating PNC after heading, whereas the combinations of blue with green bands are more efficient for modeling PNC across all stages. The center of red-edge (730–735 nm) paired with early NIR bands (775–808 nm) are predominant in estimating PNU before heading, whereas the longer red-edge (750 nm) paired with the center of “NIR shoulder” (840–850 nm) are dominant in estimating PNU after heading and across all stages. The OMNBR models have the advantage of modeling canopy N status for the entire growth period. However, the best 2-band indices are much easier to use. Alternatively, it is also possible to use the best 2-band indices to monitor PNU before heading and PNC after heading. This study systematically explains the influences of N dilution effect on hyperspectral band combinations in relating to the different N variables and further recommends the best band combinations which may provide an insight for developing new hyperspectral vegetation indices.  相似文献   

3.
In this study we combined selected vegetation indices (VIs) and plant height information to estimate biomass in a summer barley experiment. The VIs were calculated from ground-based hyperspectral data and unmanned aerial vehicle (UAV)-based red green blue (RGB) imaging. In addition, the plant height information was obtained from UAV-based multi-temporal crop surface models (CSMs). The test site is a summer barley experiment comprising 18 cultivars and two nitrogen treatments located in Western Germany. We calculated five VIs from hyperspectral data. The normalised ratio index (NRI)-based index GnyLi (Gnyp et al., 2014) showed the highest correlation (R2 = 0.83) with dry biomass. In addition, we calculated three visible band VIs: the green red vegetation index (GRVI), the modified GRVI (MGRVI) and the red green blue VI (RGBVI), where the MGRVI and the RGBVI are newly developed VI. We found that the visible band VIs have potential for biomass prediction prior to heading stage. A robust estimate for biomass was obtained from the plant height models (R2 = 0.80–0.82). In a cross validation test, we compared plant height, selected VIs and their combination with plant height information. Combining VIs and plant height information by using multiple linear regression or multiple non-linear regression models performed better than the VIs alone. The visible band GRVI and the newly developed RGBVI are promising but need further investigation. However, the relationship between plant height and biomass produced the most robust results. In summary, the results indicate that plant height is competitive with VIs for biomass estimation in summer barley. Moreover, visible band VIs might be a useful addition to biomass estimation. The main limitation is that the visible band VIs work for early growing stages only.  相似文献   

4.
This study evaluates the feasibility of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields located in the southwest of Iran. For this purpose a Hyperion image acquired on September 2, 2010 and a Landsat7 ETM+ image acquired on September 7, 2010 were used as hyperspectral and multispectral satellite imagery. Field data including soil salinity in the sugarcane root zone was collected at 191 locations in 25 fields during September 2010. In the first section of the paper, based on the yield potential of sugarcane as influenced by different soil salinity levels provided by FAO, soil salinity was classified into three classes, low salinity (1.7–3.4 dS/m), moderate salinity (3.5–5.9 dS/m) and high salinity (6–9.5) by applying different classification methods including Support Vector Machine (SVM), Spectral Angle Mapper (SAM), Minimum Distance (MD) and Maximum Likelihood (ML) on Hyperion and Landsat images. In the second part of the paper the performance of nine vegetation indices (eight indices from literature and a new developed index in this study) extracted from Hyperion and Landsat data was evaluated for quantitative mapping of salinity stress. The experimental results indicated that for categorical classification of salinity stress, Landsat data resulted in a higher overall accuracy (OA) and Kappa coefficient (KC) than Hyperion, of which the MD classifier using all bands or PCA (1–5) as an input performed best with an overall accuracy and kappa coefficient of 84.84% and 0.77 respectively. Vice versa for the quantitative estimation of salinity stress, Hyperion outperformed Landsat. In this case, the salinity and water stress index (SWSI) has the best prediction of salinity stress with an R2 of 0.68 and RMSE of 1.15 dS/m for Hyperion followed by Landsat data with an R2 and RMSE of 0.56 and 1.75 dS/m respectively. It was concluded that categorical mapping of salinity stress is the best option for monitoring agricultural fields and for this purpose Landsat data are most suitable.  相似文献   

5.
There is growing evidence that imaging spectroscopy could improve the accuracy of satellite-based retrievals of vegetation attributes, such as leaf area index (LAI) and biomass. In this study, we evaluated narrowband vegetation indices (VIs) for estimating overstory effective LAI (LAIeff) in a southern boreal forest area for the period between the end of snowmelt and maximum LAI using three Hyperion images and concurrent field measurements. We compared the performance of narrowband VIs with two SPOT HRVIR images, which closely corresponded to the imaging dates of the Hyperion data, and with synthetic broadband VIs computed from Hyperion images. According to the results, narrowband VIs based on near infrared (NIR) bands, and NIR and shortwave infrared (SWIR) bands showed the strongest linear relationships with LAIeff over its typical range of variation and for the studied period of the snow-free season. The relationships were not dependent on dominant tree species (coniferous vs. broadleaved), which is an advantage in heterogeneous boreal forest landscapes. The best VIs, particularly those based on NIR spectral bands close to the 1200 nm liquid water absorption feature, provided a clear improvement over the best broadband VIs.  相似文献   

6.
Grass nitrogen (N) and phosphorus (P) concentrations are direct indicators of rangeland quality and provide imperative information for sound management of wildlife and livestock. It is challenging to estimate grass N and P concentrations using remote sensing in the savanna ecosystems. These areas are diverse and heterogeneous in soil and plant moisture, soil nutrients, grazing pressures, and human activities. The objective of the study is to test the performance of non-linear partial least squares regression (PLSR) for predicting grass N and P concentrations through integrating in situ hyperspectral remote sensing and environmental variables (climatic, edaphic and topographic). Data were collected along a land use gradient in the greater Kruger National Park region. The data consisted of: (i) in situ-measured hyperspectral spectra, (ii) environmental variables and measured grass N and P concentrations. The hyperspectral variables included published starch, N and protein spectral absorption features, red edge position, narrow-band indices such as simple ratio (SR) and normalized difference vegetation index (NDVI). The results of the non-linear PLSR were compared to those of conventional linear PLSR. Using non-linear PLSR, integrating in situ hyperspectral and environmental variables yielded the highest grass N and P estimation accuracy (R2 = 0.81, root mean square error (RMSE) = 0.08, and R2 = 0.80, RMSE = 0.03, respectively) as compared to using remote sensing variables only, and conventional PLSR. The study demonstrates the importance of an integrated modeling approach for estimating grass quality which is a crucial effort towards effective management and planning of protected and communal savanna ecosystems.  相似文献   

7.
The accurate detection of heavy metal-induced stress on crop growth is important for food security and agricultural, ecological and environmental protection. Spectral sensing offers an efficient and undamaged observation tool to monitor soil and vegetation contamination. This study proposed a methodology for dynamically estimating the total cadmium (Cd) accumulation in rice tissues by assimilating spectral information into WOFOST (World Food Study) model. Based on the differences among ground hyperspectral data of rice in three experiments fields under different Cd concentration levels, the spectral indices MCARI1, NREP and RH were selected to reflect the rice stress condition and dry matter production of rice. With assimilating these sensitive spectral indices into the WOFOST + PROSPECT + SAIL model to optimize the Cd pollution stress factor fwi, the dynamic dry matter production processes of rice were adjusted. Based on the relation between dry matter production and Cd accumulation, we dynamically simulating the Cd accumulation in rice tissues. The results showed that the method performed well in dynamically estimating the total amount of Cd accumulation in rice tissues with R2 over 85%. This study suggests that the proposed method of integrating the spectral information and the crop growth model could successfully dynamically simulate the Cd accumulation in rice tissues.  相似文献   

8.
Leaf area index (LAI) and biomass are important indicators of crop development and the availability of this information during the growing season can support farmer decision making processes. This study demonstrates the applicability of RapidEye multi-spectral data for estimation of LAI and biomass of two crop types (corn and soybean) with different canopy structure, leaf structure and photosynthetic pathways. The advantages of Rapid Eye in terms of increased temporal resolution (∼daily), high spatial resolution (∼5 m) and enhanced spectral information (includes red-edge band) are explored as an individual sensor and as part of a multi-sensor constellation. Seven vegetation indices based on combinations of reflectance in green, red, red-edge and near infrared bands were derived from RapidEye imagery between 2011 and 2013. LAI and biomass data were collected during the same period for calibration and validation of the relationships between vegetation indices and LAI and dry above-ground biomass. Most indices showed sensitivity to LAI from emergence to 8 m2/m2. The normalized difference vegetation index (NDVI), the red-edge NDVI and the green NDVI were insensitive to crop type and had coefficients of variations (CV) ranging between 19 and 27%; and coefficients of determination ranging between 86 and 88%. The NDVI performed best for the estimation of dry leaf biomass (CV = 27% and r2 = 090) and was also insensitive to crop type. The red-edge indices did not show any significant improvement in LAI and biomass estimation over traditional multispectral indices. Cumulative vegetation indices showed strong performance for estimation of total dry above-ground biomass, especially for corn (CV  20%). This study demonstrated that continuous crop LAI monitoring over time and space at the field level can be achieved using a combination of RapidEye, Landsat and SPOT data and sensor-dependant best-fit functions. This approach eliminates/reduces the need for reflectance resampling, VIs inter-calibration and spatial resampling.  相似文献   

9.
When crops senescence, leaves remain until they fall off or are harvested. Hence, leaf area index (LAI) stays high even when chlorophyll content degrades to zero. Current LAI approaches from remote sensing techniques are not optimized for estimating LAI of senescent vegetation. In this paper a two-step approach has been proposed to realize simultaneous LAI mapping over green and senescent croplands. The first step separates green from brown LAI by means of a newly proposed index, ‘Green Brown Vegetation Index (GBVI)’. This index exploits two shortwave infrared (SWIR) spectral bands centred at 2100 and 2000 nm, which fall right in the dry matter absorption regions, thereby providing positive values for senescent vegetation and negative for green vegetation. The second step involves applying linear regression functions based on optimized vegetation indices to estimate green and brown LAI estimation respectively. While the green LAI index uses a band in the red and a band in the red-edge, the brown LAI index uses bands located in the same spectral region as GBVI, i.e. an absorption band located in the region of maximum absorption of cellulose and lignin at 2154 nm, and a reference band at 1635 nm where the absorption of both water and dry matter is low. The two-step approach was applied to a HyMap image acquired over an agroecosystem at the agricultural site Barrax, Spain.  相似文献   

10.
This study aims to develop and propose a methodological approach for montado ecosystem mapping using Landsat 8 multi-spectral data, vegetation indices, and the Stochastic Gradient Boosting (SGB) algorithm. Two Landsat 8 scenes (images from spring and summer 2014) of the same area in southern Portugal were acquired. Six vegetation indices were calculated for each scene: the Enhanced Vegetation Index (EVI), the Short-Wave Infrared Ratio (SWIR32), the Carotenoid Reflectance Index 1 (CRI1), the Green Chlorophyll Index (CIgreen), the Normalised Multi-band Drought Index (NMDI), and the Soil-Adjusted Total Vegetation Index (SATVI). Based on this information, two datasets were prepared: (i) Dataset I only included multi-temporal Landsat 8 spectral bands (LS8), and (ii) Dataset II included the same information as Dataset I plus vegetation indices (LS8 + VIs). The integration of the vegetation indices into the classification scheme resulted in a significant improvement in the accuracy of Dataset II’s classifications when compared to Dataset I (McNemar test: Z-value = 4.50), leading to a difference of 4.90% in overall accuracy and 0.06 in the Kappa value. For the montado ecosystem, adding vegetation indices in the classification process showed a relevant increment in producer and user accuracies of 3.64% and 6.26%, respectively. By using the variable importance function from the SGB algorithm, it was found that the six most prominent variables (from a total of 24 tested variables) were the following: EVI_summer; CRI1_spring; SWIR32_spring; B6_summer; B5_summer; and CIgreen_summer.  相似文献   

11.
Developing spectral models of soil properties is an important frontier in remote sensing and soil science. Several studies have focused on modeling soil properties such as total pools of soil organic matter and carbon in bare soils. We extended this effort to model soil parameters in areas densely covered with coastal vegetation. Moreover, we investigated soil properties indicative of soil functions such as nutrient and organic matter turnover and storage. These properties include the partitioning of mineral and organic soil between particulate (>53 μm) and fine size classes, and the partitioning of soil carbon and nitrogen pools between stable and labile fractions. Soil samples were obtained from Avicennia germinans mangrove forest and Juncus roemerianus salt marsh plots on the west coast of central Florida. Spectra corresponding to field plot locations from Hyperion hyperspectral image were extracted and analyzed. The spectral information was regressed against the soil variables to determine the best single bands and optimal band combinations for the simple ratio (SR) and normalized difference index (NDI) indices. The regression analysis yielded levels of correlation for soil variables with R2 values ranging from 0.21 to 0.47 for best individual bands, 0.28 to 0.81 for two-band indices, and 0.53 to 0.96 for partial least-squares (PLS) regressions for the Hyperion image data. Spectral models using Hyperion data adequately (RPD > 1.4) predicted particulate organic matter (POM), silt + clay, labile carbon (C), and labile nitrogen (N) (where RPD = ratio of standard deviation to root mean square error of cross-validation [RMSECV]). The SR (0.53 μm, 2.11 μm) model of labile N with R2 = 0.81, RMSECV= 0.28, and RPD = 1.94 produced the best results in this study. Our results provide optimism that remote-sensing spectral models can successfully predict soil properties indicative of ecosystem nutrient and organic matter turnover and storage, and do so in areas with dense canopy cover.  相似文献   

12.
The estimation of above ground biomass in forests is critical for carbon cycle modeling and climate change mitigation programs. Small footprint lidar provides accurate biomass estimates, but its application in tropical forests has been limited, particularly in Africa. Hyperspectral data record canopy spectral information that is potentially related to forest biomass. To assess lidar ability to retrieve biomass in an African forest and the usefulness of including hyperspectral information, we modeled biomass using small footprint lidar metrics as well as airborne hyperspectral bands and derived vegetation indexes. Partial Least Square Regression (PLSR) was adopted to cope with multiple inputs and multicollinearity issues; the Variable of Importance in the Projection was calculated to evaluate importance of individual predictors for biomass. Our findings showed that the integration of hyperspectral bands (R2 = 0.70) improved the model based on lidar alone (R2 = 0.64), this encouraging result call for additional research to clarify the possible role of hyperspectral data in tropical regions. Replacing the hyperspectral bands with vegetation indexes resulted in a smaller improvement (R2 = 0.67). Hyperspectral bands had limited predictive power (R2 = 0.36) when used alone. This analysis proves the efficiency of using PLSR with small-footprint lidar and high resolution hyperspectral data in tropical forests for biomass estimation. Results also suggest that high quality ground truth data is crucial for lidar-based AGB estimates in tropical African forests, especially if airborne lidar is used as an intermediate step of upscaling field-measured AGB to a larger area.  相似文献   

13.
Thaumastocoris peregrinus (T. peregrinus) is a sap sucking insect that feeds on Eucalyptus leaves. It poses a threat to the forest industry by reducing the photosynthetic ability of the tree, resulting in stunted growth and even death of severely infested trees. Remote sensing techniques offer the potential to detect and map T. peregrinus infestations in plantation forests using current operational hyperspectral scanners. This study resampled field spectral data measured from a field spectrometer to the band settings of the Hyperion sensor in order to assess its potential in predicting T. peregrinus damage. Normalized indices based on NDVI ratios were calculated using the resampled visible and near-infrared bands of the Hyperion sensor to assess its utility in predicting T. peregrinus damage using Partial Least Squares (PLS) regression. The top 20 normalized indices were based on specific biochemical absorption features that predicted T. peregrinus damage with a mean bootstrapped R2 value of 0.63 on an independent test dataset. The top 20 indices were located in the near-infrared region between 803.3 nm and 894.9 nm. Twenty three previously published hyperspectral indices which have been used to assess stress in vegetation were also used to predict T. peregrinus damage and resulted in a mean bootstrapped R2 value of 0.59 on an independent test dataset. The datasets were combined to assess its collective strength in predicting T. peregrinus damage and significant indices were chosen based on variable importance scores (VIP) and were then entered into a PLS model. The indices chosen by VIP predicted T. peregrinus damage with a mean bootstrapped R2 value of 0.71 on an independent test dataset. A greedy backward variable selection model was further tested on the VIP selected indices in order to find the best subset of indices with the best predictive accuracy. The greedy backward variable selection model identified 3 indices and performed the best by predicting damage with an R2 value of 0.74 with the lowest RMSE of 1.30% on an independent test dataset. The best three indices identified include the anthocyanin reflectance index, carotenoid reflectance index and the normalized index calculated at 864.4 and 884.7 nm. Individual relationships between these indices and T. peregrinus damage indicate that high correlations are obtained with the inclusion of a few severely infested trees in the sample size. When the severely infested trees were removed from the study, the normalized index (864.4 and 884.7 nm) and the anthocyanin reflectance index still yielded significant correlations at the 99% confidence interval. This study indicates the significance of normalized indices and spectral indices calculated from the visible and near-infrared bands in hyperspectral data for the prediction of T. peregrinus damage.  相似文献   

14.
The direct estimation of nitrogen (N) in fresh vegetation is challenging due to its weak influence on leaf reflectance and the overlaps with absorption features of other compounds. Different empirical models relate in this work leaf nitrogen concentration ([N]Leaf) on Holm oak to leaf reflectance as well as derived spectral indices such as normalized difference indices (NDIs), the three bands indices (TBIs) and indices previously used to predict leaf N and chlorophyll. The models were calibrated and assessed their accuracy, robustness and the strength of relationship when other biochemicals were considered. Red edge was the spectral region most strongly correlated with [N]Leaf, whereas most of the published spectral indexes did not provide accurate estimations. NDIs and TBIs based models could achieve robust and acceptable accuracies (TBI1310,1720,730: R2 = 0.76, [0.64,0.86]; RMSE (%) = 9.36, [7.04,12.83]). These models sometimes included indices with bands close to absorption features of N bonds or nitrogenous compounds, but also of other biochemicals. Models were independently and inter-annually validated using the bootstrap method, which allowed discarding those models non-robust across different years. Partial correlation analysis revealed that spectral estimators did not strongly respond to [N]Leaf but to other leaf variables such as chlorophyll and water, even if bands close to absorption features of N bonds or compounds were present in the models.  相似文献   

15.
陈拉  黄敬峰  王秀珍 《遥感学报》2008,12(1):143-151
本研究利用水稻冠层高光谱数据,模拟NOAA-AVHRR,Terra-MODIS和Landsat-TM的可见光波段反射率数据,计算各传感器的多种植被指数(NDVI,RVI,EVI,GNDVI,GRVI和Red-edge RVI),比较植被指数模型对水稻LAI的估测精度,分析不同植被指数对LAI变化的敏感性.相对于红波段植被指数,红边比值植被指数(Red-edge RVI)和绿波段指数GRVI与LAI有更好的线性相关关系,而GNDVI和LAI呈现更好的对数相关关系.MODIS的Red-edge RVI指数不仅模型拟合的精度最高,还有独立数据验证的估测精度也最高,而且它的验证精度较拟合精度下降幅度最小;其次是绿波段构建的GNDVI和GRVI植被指数的估测精度,再次是NDVI和EVI的估测精度,而RVI的估测精度最差.敏感性分析发现,13个植被指数对水稻LAI的估测能力都随着LAI的增加而下降,但归一化类植被指数和比值类植被指数对LAI变化反应的差异明显,归一化类植被指数在LAI较低时(LAI<1.5)对LAI变化的反应开始非常敏感,但迅速下降,而比值类植被指数在LAI较低时,明显小于归一化类植被指数,之后随着LAI的增大(LAI>1.5)比值类植被指数对LAI的变化敏感性,则明显高于归一化类植被指数.Red-edge RVI和绿波段指数GRVI和LAI不仅表现了很好的线性相关关系,而且在LAI大于2.9左右保持较高的敏感性.  相似文献   

16.
Wetland biomass is essential for monitoring the stability and productivity of wetland ecosystems. Conventional field methods to measure or estimate wetland biomass are accurate and reliable, but expensive, time consuming and labor intensive. This research explored the potential for estimating wetland reed biomass using a combination of airborne discrete-return Light Detection and Ranging (LiDAR) and hyperspectral data. To derive the optimal predictor variables of reed biomass, a range of LiDAR and hyperspectral metrics at different spatial scales were regressed against the field-observed biomasses. The results showed that the LiDAR-derived H_p99 (99th percentile of the LiDAR height) and hyperspectral-calculated modified soil-adjusted vegetation index (MSAVI) were the best metrics for estimating reed biomass using the single regression model. Although the LiDAR data yielded a higher estimation accuracy compared to the hyperspectral data, the combination of LiDAR and hyperspectral data produced a more accurate prediction model for reed biomass (R2 = 0.648, RMSE = 167.546 g/m2, RMSEr = 20.71%) than LiDAR data alone. Thus, combining LiDAR data with hyperspectral data has a great potential for improving the accuracy of aboveground biomass estimation.  相似文献   

17.
The potential of the short-wave infrared (SWIR) bands to detect dry-season vegetation mass and cover fraction is investigated with ground radiometry and MODIS data, confronted to vegetation data collected in rangeland and cropland sites in the Sahel (Senegal, Niger, Mali). The ratio of the 1.6 and 2.1 μm bands (called STI) acquired with a ground radiometer proved well suited for grassland mass estimation up to 2500 kg/ha with a linear relation (r2 = 0.89). A curvilinear regression is accurate for masses ranging up to 3500 kg/ha. STI proved also well suited to retrieve vegetation cover fraction in crop fields, fallows and rangelands. Such dry-season monitoring, with either ground or satellite data, has important applications for forage, erosion risk and fire risk assessment in semi-arid areas.  相似文献   

18.
The invasion by Striga in most cereal crop fields in Africa has posed a significant threat to food security and has caused substantial socioeconomic losses. Hyperspectral remote sensing is an effective means to discriminate plant species, providing possibilities to track such weed invasions and improve precision agriculture. However, essential baseline information using remotely sensed data is missing, specifically for the Striga weed in Africa. In this study, we investigated the spectral uniqueness of Striga compared to other co-occurring maize crops and weeds. We used the in-situ FieldSpec® Handheld 2™ analytical spectral device (ASD), hyperspectral data and their respective narrow-band indices in the visible and near infrared (VNIR) region of the electromagnetic spectrum (EMS) and four machine learning discriminant algorithms (i.e. random forest: RF, linear discriminant analysis: LDA, gradient boosting: GB and support vector machines: SVM) to discriminate among different levels of Striga (Striga hermonthica) infestations in maize fields in western Kenya. We also tested the utility of Sentinel-2 waveband configurations to map and discriminate Striga infestation in heterogenous cereal crop fields. The in-situ hyperspectral reflectance data were resampled to the spectral waveband configurations of Sentinel-2 using published spectral response functions. We sampled and detected seven Striga infestation classes based on three flowering Striga classes (low, moderate and high) against two background endmembers (soil and a mixture of maize and other co-occurring weeds). A guided regularized random forest (GRRF) algorithm was used to select the most relevant hyperspectral wavebands and vegetation indices (VIs) as well as for the resampled Sentinel-2 multispectral wavebands for Striga infestation discrimination. The performance of the four discriminant algorithms was compared using classification accuracy assessment metrics. We were able to positively discriminate Striga from the two background endmembers i.e. soil and co-occurring vegetation (maize and co-occurring weeds) based on the few GRRF selected hyperspectral vegetation indices and the GRRF selected resampled Sentinel-2 multispectral bands. RF outperformed all the other discriminant methods and produced the highest overall accuracy of 91% and 85%, using the hyperspectral and resampled Sentinel-2 multispectral wavebands, respectively, across the four different discriminant models tested in this study. The class with the highest detection accuracy across all the four discriminant algorithms, was the “exclusively maize and other co-occurring weeds” (>70%). The GRRF reduced the dimensionality of the hyperspectral data and selected only 9 most relevant wavebands out of 750 wavebands, 6 VIs out of 15 and 6 out of 10 resampled Sentinel-2 multispectral wavebands for discriminating among the Striga and co-occurring classes. Resampled Sentinel-2 multispectral wavebands 3 (green) and 4 (red) were the most crucial for Striga detection. The use of the most relevant hyperspectral features (i.e. wavebands and VIs) significantly (p ≤ 0.05) increased the overall classification accuracy and Kappa scores (±5% and ±0.2, respectively) in all the machine learning discriminant models. Our results show the potential of hyperspectral, resampled Sentinel-2 multispectral datasets and machine learning discriminant algorithms as a tool to accurately discern Striga in heterogenous maize agro-ecological systems.  相似文献   

19.
The spectral detection of vegetation pigment concentrations has a high potential value, but it is still underdeveloped, especially for pigments other than chlorophylls. In this study, the seasonal pigment dynamics of two Tecticornia species (samphires; halophytic shrubs) from north-western Australia were correlated with spectral indices that best document the pigment changes over time. Pigment dynamics were assessed by analysing betacyanin, chlorophyll and carotenoid concentrations at plant level and by measuring reflectance at contrasting seasonal dates. Plant reflectance was used to define a new reflectance index that was most sensitive to the seasonal shifts in Tecticornia pigment concentrations. The two Tecticornia species turned from green to red-pinkish for the period March–August 2012 when betacyanins increased almost nine times in both species. Chlorophyll levels showed the opposite pattern to that of betacyanins, whereas carotenoid levels were relatively stable. Normalised difference indices correlated well with betacyanin (r = 0.805, using bands at 600 and 620 nm) and chlorophyll (r = 0.809, using bands at 737 and 726 nm). Using knowledge of chlorophyll concentrations slightly improved the ability of the spectral index to predict betacyanin concentration (r = 0.822 at bands 606 and 620 nm, in the case of chemically determined chlorophyll, r = 0.809 when using remotely sensed chlorophyll). Our results suggest that this new spectral index can reliably detect changes in betacyanin concentrations in vegetation, with potential applications in ecological studies and environmental impact monitoring.  相似文献   

20.
Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012–2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号