首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lower Yellow River channel was maintained by artificial levees between 1580 and 1849. During this period, 280 levee breaches occurred. To estimate sediment storage on the floodplains outside the levees, a regression model with a decadal time step was developed to calculate the outflow ratio for the years when levee breaching occurred. Uncertainty analysis was used to identify the likely outflow ratio. Key variables of the model include annual water discharge, a proxy for levee conditions, and potential bankfull discharge of the channel before flood season. Uncertainty analysis reveals an outflow ratio of 0.35–0.56. We estimate that during this period, 18.8–30.1% of the total ~312 Gt of sediment load was deposited on the floodplains outside the levees. Human-accelerated erosion in the Loess Plateau caused a 4-fold increase in sediment delivery to the lower Yellow River, which could not be accommodated by channel morphodynamic changes. As a result, 21.2–27.5% of the total sediment load was deposited within the levees, creating a super-elevated channel bed that facilitated an uncommonly high breach outflow ratio. Hence, the factor of a large super-elevation relative to the mean main channel depth should be considered when designing diversions to restore floodplains. © 2018 John Wiley & Sons, Ltd.  相似文献   

2.
A series of experiments were done to reveal the overtopping breaching process of non-cohesive and cohesive levees in a U-bend flume. The flood hydrograph and breaching geometry were measured and analyzed in detail. The results show that the levee breaching processes can be briefly divided into four stages: slope erosion, longitudinal headward gully-cutting, lateral erosion, and relative stabilization. For non-cohesive levees, non-symmetrical lateral development of the breach occurs throughout the four stages, and the final non-symmetrical coefficient is approximately 2.2–2.6. Larger flow discharge or higher water level can accelerate the breaching process, while coarser sands tend to accelerate the process initially but depress the process at the end. The fluvial erosion rate of a non-cohesive breach shows a power-function relation with the excess wall shear stress. For cohesive levees, a plateau forms in the breach partially blocking the flow in the first two stages. The breach flow is approximately perpendicular to the levee body, and, thus, the erosion rates of the two breach sides are almost the same. Non-symmetrical lateral development mainly occurs in the third stage when the deep gully forms. The final non-symmetrical coefficient is approximately 2.7–3.3. It is expected that these findings can provide a valuable experimental dataset and a theoretical basis for breach closure and flood alleviation.  相似文献   

3.
The reliability of a levee system is a crucial factor in flood risk management. In this study we present a probabilistic methodology to assess the effects of levee cover strength on levee failure probability, triggering time, flood propagation and consequent impacts on population and assets. A method for determining fragility curves is used in combination with the results of a one-dimensional hydrodynamic model to estimate the conditional probability of levee failure in each river section. Then, a levee breach model is applied to calculate the possible flood hydrographs, and for each breach scenario a two-dimensional hydrodynamic model is used to estimate flood hazard (flood extent and timing, maximum water depths) and flood impacts (economic damage and affected population) in the areas at risk along the river reach. We show an application for levee overtopping and different flood scenarios for a 98 km reach of the lower Po River in Italy. The results show how different design solutions for the levee cover can influence the probability of levee failure and the consequent flood scenarios. In particular, good grass cover strength can significantly delay levee failure and reduce maximum flood depths in the flood-prone areas, thus helping the implementation of flood risk management actions.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Viglione  相似文献   

4.
Natural levees control the exchange of water between an alluvial channel and its floodplain, but little is known about the spatial distribution and evolution of levee heights. The summer 2005 flood of the Saskatchewan River (Cumberland Marshes, east‐central Saskatchewan) inundated large areas of floodplain for up to seven weeks, forming prominent new deposits on natural levees along main‐stem channels. Measurements of flood‐deposit thickness and crest heights of 61 levee pairs show that the thickest deposits occur on the lower pre‐flood levee in 80% of the sites, though no clear relationship exists between deposit thickness and magnitude of height difference. Only 16% of the pairs displayed thicker deposits on the higher levee, half of which occurred at sites where relatively clear floodbasin waters re‐entered turbid channels during general flooding. Difference in crest elevation (ΔE) between paired levees is approximately log‐normally distributed, both before and after the flood, though with different mean values. Supplemental observations from tank experiments indicate that during near‐bankfull flows, temporally and spatially variable deposition and erosion occur on levees due to backwater effects associated with nearby channel bars and irregular rises of the channel bed forced by channel extension. During floods, preferential deposition in lows tends to even out crest heights. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Sustainable urban drainage systems are built along roads and in urban areas to collect urban runoff and avoid flooding, and to filter water pollutants. Sediment collected by runoff is deposited in the stormwater basin and progressively reduces water infiltration efficiency, leading to the clogging of the basin. To help stormwater basin managers and stakeholders better understand and predict clogging rates in order to elaborate maintenance plans and schedules, water transport prediction models are necessary. However,because of the heterogeneous sediment hydrodynamic properties inside the stormwater basin, a twodimensional(2-D) water flow model is required to predict water levels and possible overflow as accurately as possible. Saturated hydraulic conductivity(Ks) and sediment water retention curves were measured in the overall sediment layer of the stormwater basin, in addition to sediment layer thickness and organic matter content(11 sampling points). Sediment depth was used to predict organic matter(OM) content, and the OM was used to predict Ks. Water height in the basin was modeled with the HYDRUS-2 D model by taking into account the sediment hydrodynamic properties distribution. The HYDRUS-2 D model gave a satisfactory representation of the measured data. Scenarios of the hydraulic properties of stormwater basin sediment were tested over time, and hydraulic resistance, R, was calculated to assess the stormwater basin performance. Presently, after 20 years of functioning, the stormwater basin still ensures efficient water infiltration, but the first outflow(Hydraulic resistance,R 24 h)) is expected to appear in the next 5 years, and clogging(R 47 h) in the next 13 years. This 2-D water balance model makes it possible to integrate the hydrodynamic heterogeneity of a stormwater basin. It gives interesting perspectives to better predict 2-D/3-D contaminant transport.  相似文献   

6.
Natural levees are common features in river, delta and tidal landscapes. They are elevated near-channel morphological features that determine the connection between channel and floodbasin, and consequently affect long-term evolution up to delta-scales. Despite their relevance in shaping fluvial-tidal systems, research on levees is sparse and often limited to fluvial or non-tidal case studies. There is also a general lack of understanding of the role of vegetation in shaping these geomorphic units, and how levee morphology and dimensions vary in the transition from fluvial to coastal environments, where tides are increasingly important. Our goal is to unravel the effects of fluvial-tidal boundary conditions, sediment supply and vegetation on levee characteristics and floodbasin evolution. These conditions were systematically explored by 60 large-scale idealized morphodynamic simulations in Delft3D which self-developed levees over the course of one century. We compared our results to a global levee dataset compilation of natural levee dimensions. We found that levee height is determined by the maximum water level, provided sufficient levee building sediments are available. Discharge fluctuations increased levee width and triggered more levee breaches, i.e. crevasses, that effectively filled the fluvio-tidal floodbasin. The presence of wood-type (sparse) vegetation further increased the number of crevasses in comparison with the non-vegetated scenarios. Conversely, reed-type (dense) vegetation strongly dampened tidal amplitude and reduced the accommodation space and sedimentation further into the floodbasin, resulting in narrower levees, no crevasses and limited floodbasin accretion. However, dense vegetation reduced tidal forces which allowed levee growth further downstream. Ultimately, the levees merged with the coastal barrier, eliminating the floodbasin tides entirely. Our results elucidate the mechanisms by which levee and crevasse formation, and vegetation may fill fluvio-tidal wetlands and affect estuary evolution. This brings new insights for geological reconstructions as well as for the future management of deltas and estuaries under sea-level rise. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

7.
Throughout the history of China, the Yellow River has been associated with flood disasters and changes in the course of its lower reaches because of sedimentation. From 602 B.C. to 1949 the river experienced 1593 levee bursts, flooding vast areas, and claiming millions of human lives. The river shifted its main course by avulsion 26 times with the apex around Zhengzhou, resulting in devastating calamities and numerous old channels. Training of the Yellow River has a history of more than 3000 yr. Levee construction has been the major strategy for flood control. Two extremely different strategies has been proposed and practiced in the past 2000 yr, i.e. the "wide river and depositing sediment" strategy and the "narrow river and scouring sediment" strategy. This paper analyzes the levee breaches and flood disasters in the past 2000 yr and compares the results of the two extremely different strategies. The "narrow river and scouring sediment" strategy has only short term effects on levee breach control and flood mitigation. The "wide river and depositing sediment" strategy can essentially mitigate flood disasters and reduce levee breaches for a long term period of time. The "wide river and depositing sediment" strategy has been used and no levee breach has occurred in the past 67 yr, which has been the only periods of more than 50 yr with no levee breaches in the history of the Yellow River since 700 A.D.Modern flood and sedimentation management methods have also been introduced, and the strategy of applying the ' "widen the river and enhance the levees" approach for the upper and lower reaches management is proposed.  相似文献   

8.
The closure of third stage diversion channel for the Three Gorges Dam is characterized by large closure discharge, large drop in water surface, and high gap velocity. 1D and 2D flow mathematical models were used in this paper to simulate the hydraulic conditions during the closure. The variation of discharge in the diversion channel and the drops in water surface shared by the upstream and downstream cofferdams were computed using the ID model, and the detailed hydraulic patterns in the diversion channel were simulated using the 2D model. The computed results indicate that the designed closure scheme for discharge of 9,010 m^3/s was feasible for construction, while the designed closure scheme for discharge of 12,200 m^3/s was inapplicable.  相似文献   

9.
Levee effects upon flood levels: an empirical assessment   总被引:1,自引:0,他引:1  
This study used stream gauge records to assess the impact of levees on flood levels, providing an empirical test of theoretical and model predictions of the effects on local flood response. Focusing upon a study area in Illinois and Iowa for which levee records were available, we identified 203 gauges with ≥ 50 years hydrological record, including 15 gauges where a levee was constructed during the period of record. At these sites, step‐change analysis utilizing regression residuals tested levee‐related stage changes and levels of significance and quantified the magnitudes of stage changes. Despite large differences in stream sizes, levee alignments, and degree of floodplain constriction, the post‐levee rating‐curve adjustments showed consistent signatures. For all the study sites, stages for below bankfull (non‐flood) conditions were unaffected by levee construction. For above bankfull (flood) conditions, stages at sites downstream of their associated levees also were statistically indistinguishable before versus after levee construction. However, at all sites upstream of levees or within leveed reaches, stages increased for above bankfull conditions. These increases were abrupt, statistically significant, and generally large in magnitude – ranging up to 2.3 m (Wabash River at Mt. Carmel, IL). Stage increases began when discharge increased above bankfull flow and generally increased in magnitude with discharge until the associated levee(s) were overtopped. Detailed site assessments and supplementary data available from some sites helped document the dominant mechanisms by which levees can increase flood levels. Levee construction reduces the area of the floodplain open to storage of flood waters and reduces the width of the floodplain open to conveyance of flood flow. Floodplain conveyance often is underestimated or ignored, but Acoustic Doppler Current Profiler (ADCP) measurements analysed here confirm previous studies that up to 70% or more of the total discharge during large floods (~3% chance flood) can move over the floodplain. Upstream of levees and levee‐related floodplain constriction, backwater effects reduce flow velocities relative to pre‐levee conditions and, thus, increase stages for a given discharge. The empirical results here confirm a variety of theoretical predictions of levee effects but suggest that many one‐dimensional model‐based predictions of levee‐related stage changes may underestimate actual levee impacts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
During the last four decades, several numerical formulations and specialized software have been developed in response to studies about dam break (DB) wave propagation and its hydraulic and environmental impacts on downstream hydraulic structures and valleys. These methods cannot, however, be used to predict wave propagation within partially covered channels or reservoirs located upstream of hydraulic structures. In fact, such problems require the modelling of the complex transition from a free surface flow into a pressurized one. Because rivers or channels partially covered with ice sheets are typical examples commonly met in winter in northern climates, it is vitally important to assess ice-cover effects on the DB wave propagation and develop appropriate tools to predict resulting hydrodynamic loads on hydraulic structures downstream. This paper proposes an original numerical formulation to model wave propagation and hydrodynamic pressure in partially covered channels. The proposed formulation uses one-dimensional St. Venant equations to simulate open-water flow and water hammer equations to simulate pressure flow within the partially covered channel. To illustrate the use of the hydrodynamic pressures obtained, a case study is presented where a channel cover and a dam located downstream are modelled using finite elements to investigate their dynamic structural response.  相似文献   

11.
A flood emergency storage area (polder) is used to reduce the flood peak in the main river and hence, protect downstream areas from being inundated. In this study, the effectiveness of a proposed flood emergency storage area at the middle Elbe River, Germany in reducing the flood peaks is investigated using hydrodynamic modelling. The flow to the polders is controlled by adjustable gates. The extreme flood event of August 2002 is used for the study. A fully hydrodynamic 1D model and a coupled 1D–2D model are applied to simulate the flooding and emptying processes in the polders and flow in the Elbe River. The results obtained from the 1D and 1D–2D models are compared with respect to the peak water level reductions in the Elbe River and flow processes in the polders during their filling and emptying. The computational time, storage space requirements and modelling effort for the two models are also compared. It is concluded that a 1D model may be used to study the water level and discharge reductions in the main river while a 1D-2D model may be used when the study of flow dynamics in the polder is of particular interest. Further, a detailed sensitivity analysis of the 1D and 1D–2D models is carried out with respect to Manning's n values, DEMs of different resolutions, number of cross-sections used and the gate opening time as well as gate opening/closing duration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Studies of the effects of hydrodynamic model dimensionality on simulated flow properties and derived quantities such as aquatic habitat quality are limited. It is important to close this knowledge gap especially now that entire river networks can be mapped at the microhabitat scale due to the advent of point‐cloud techniques. This study compares flow properties, such as depth and velocity, and aquatic habitat quality predicted from pseudo‐2D and fully 2D hydrodynamic modeling. The models are supported by high‐resolution, point‐cloud derived bathymetries, from which close‐spaced cross‐sections were extracted for the 1D modeling, of three morphologically and hydraulically different river systems. These systems range from small low‐gradient meandering pool–riffle to large steep confined plane‐bed rivers. We test the effects of 1D and 2D models on predicted hydraulic variables at cross‐sections and over the full bathymetry to quantify the differences due to model dimensionality and those from interpolation. Results show that streambed features, whose size is smaller than cross‐sectional spacing, chiefly determine the different results of 1D and 2D modeling whereas flow discharge, stream size, morphological complexity and model grid sizes have secondary effects on flow properties and habitat quality for a given species and life stage predicted from 1D and 2D modeling. In general, the differences in hydraulic variables are larger in the bathymetric than in the cross‐sectional analysis, which suggests that some errors are introduced from interpolation of spatially disaggregated simulated variables with a 1D model, instead of model dimensionality 1D or 2D. Flow property differences are larger for velocity than for water surface elevation and depth. Differences in weighted usable area (WUA) derived from 1D and 2D modeling are relatively small for low‐gradient meandering pool–riffle systems, but the differences in the spatial distribution of microhabitats can be considerable although clusters of same habitat quality are spatially comparable. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Recent research modelling floodplain inundation processes has concentrated on issues surrounding the level of physical, topographical, and numerical solver complexity needed to represent floodplain flows adequately. However, during flooding episodes the channel typically still conveys the bulk of the flow. Despite this, the effect of channel physical processes and topographic complexity on model results has been largely unexplored. To address this, the impact of channel cross‐section geometry, channel long‐profile variability and the representation of hydraulic structures on floodplain inundation are explored using a coupled dynamic 1D‐2D hydraulic model (ESTRY‐TUFLOW) of the Carlisle floods of January 2005. These simulations are compared with those from a simplified 1D‐2D model, LISFLOOD‐FP. In this case, the simpler model is sufficient to simulate the far‐field peak flood elevations. However, comparison of channel dynamics suggests that the full shallow water approximation used by ESTRY‐TUFLOW gives a more robust performance when models calibrated on maximum floodplain water elevations are used to predict channel water levels. Examination of the response of ESTRY‐TUFLOW to variations in channel geometric complexity shows that downstream variations in the channel long profile are more important than cross‐section variability for obtaining a dataset‐independent calibration. The results show, in general, that as model physical complexity is increased, calibrated parameters become less ‘effective’, and as a consequence, the values of performance measures reduce less rapidly away from the optimum value. This means that often more physically complex models are less likely to yield different optimum parameter values when calibrated on different datasets resulting in a more robust numerical model. Lastly, the inclusion of bridge structures can simulate substantial local backwatering effects, but the variability in observed water and wrack marks is such that it is not possible to discern the effect of the bridges at this site in the post‐event observational dataset. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Two‐dimensional (2D) hydrodynamic models have been increasingly used to quantify aquatic habitat and stream processes, such as sediment transport, streambed morphological evolution, and inundation extents. Because river topography has a strong influence on predicted hydraulic conditions, 2D models require accurate and detailed bathymetric data of the stream channel and surrounding floodplains. Besides collection of mass points to construct high‐resolution three‐dimensional surfaces, bathymetries may be interpolated from cross‐sections. However, limited information is available on the effects of cross‐section spacing and the derived interpolated bathymetry on 2D model results in large river systems. Here, we investigated the effects of cross‐section spacing on flow properties simulated with 2D modeling at low, medium and high discharges in two morphologically different reaches, a simple (almost featureless with low sinuosity) and a complex (presenting pools, riffles, runs, contractions and expansions) reach of the Snake River (Idaho, USA), the tenth largest river in the United States in terms of drainage area. We compared the results from 2D models developed with complete channel bathymetry acquired with multibeam sonar data and photogrammetry, with 2D model results that were developed using interpolated topography from uniformly distributed transects. Results indicate that cross‐sections spaced equal to or greater than 2 times the average channel width (W*) smooths the bathymetry and suppresses flow structures. Conversely, models generated with cross‐sections spaced at 0.5 and 1 W* have stream flow properties, sediment mobility and spatial habitat distribution similar to those of the complete bathymetry. Furthermore, differences in flow properties between interpolated and complete topography models generally increase with discharge and with channel complexity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Sang‐Hyeok Kang 《水文研究》2009,23(11):1642-1649
In urban areas with a high building density, features such as roads, buildings and river dykes significantly affect flow dynamics and flood propagation. This should therefore be accounted for in the model set‐up. While 2D hydraulic models of densely urban areas are at the forefront of current research into flood inundation mechanisms, these models are constrained by inadequate parameters of topography and insufficient data. In order to solve these problems, topographic information obtained from digital elevation model (DEM) is directly programmed into the urban inundation model for a densely urban area, without exchanging the input data. In this paper, the extraction of building area is described using a tight coupling approach within a GIS environment, and its influence on the extent of flood inundation with a high building density is estimated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.  相似文献   

17.
Backward erosion piping involves the gradual removal of granular material under the action of water flow from the foundation of a dam or levee, whereby shallow pipes are formed that grow in the direction opposite to the flow. This pipe-forming process can ultimately lead to failure of a water-retaining structure and is considered one of the most important failure mechanisms for dikes and levees in the Netherlands and the United States. Modeling of this mechanism requires the assessment of hydraulic conditions in the pipe, which are controlled by the particle equilibrium at the pipe wall. Since the pipe's dimensions are controlled by the inflow to the pipe from the porous medium, the flow through the pipe is thought to be laminar for fine- to medium-grained sands. The literature provides data for incipient motion in laminar flow, which is reviewed here and complemented with data from backward erosion experiments. The experiments illustrate the applicability of the laminar incipient motion data to determine the erosion pipe dimensions and corresponding pipe hydraulics for fine- to medium-grained sands, for the purpose of backward erosion piping modeling.  相似文献   

18.
For large‐scale sites, difficulties for applying coupled one‐dimensional (1D)/2D models for simulating floodplain inundation may be encountered related to data scarcity, complexity for establishing channel–floodplain connections, computational cost, long duration of floods and the need to represent precipitation and evapotranspiration processes. This paper presents a hydrologic simulation system, named SIRIPLAN, developed to accomplish this aim. This system is composed by a 1D hydrodynamic model coupled to a 2D raster‐based model, and by two modules to compute the vertical water balance over floodplain and the water exchanges between channel and floodplain. Results are presented for the Upper Paraguay River Basin (UPRB), including the Pantanal, one of the world's largest wetlands. A total of 3965 km of river channels and 140 000 km2 of floodplains are simulated for a period of 11 years. Comparison of observed and calculated hydrographs at 15 gauging stations showed that the model was capable to simulate distinct, complex flow regimes along main channels, including channel‐floodplain interactions. The proposed system was also able to reproduce the Pantanal seasonal flood pulse, with estimated inundated areas ranging from 35 000 km2 (dry period) to more than 120 000 km2 (wet period). Floodplain inundation maps obtained with SIRIPLAN were consistent with previous knowledge of Pantanal dynamics, but comparison with inundation extent provided by a previous satellite‐based study indicates that permanently flooded areas may have been underestimated. The results obtained are promising, and further work will focus on improving vertical processes representation over floodplains and analysing model sensitivity to floodplain parameters, time step and precipitation estimates uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Our proposed three-dimensional dam breach model is tested using one field test from the European Community funded IMPACT project. Results show that this three-dimensional model accurately predicts the peak breach discharge and final breach width for this case. It is shown that the three-dimensional model is capable of simulating the breaches that develop in different locations along a hypothetical long non-cohesive dam while accounting for variations in the natural valley topography, including symmetrical and asymmetrical settings. Our results show that both the breach location and reservoir shape have a significant effect on the peak breach discharge and the outflow hydrograph shape. Different inflow hydrographs were found not to significantly change the peak breach discharge rate for the hypothetical reservoir and spillway. Comparisons with laboratory and field dam breach tests and one historically breached dam show that the real shape of the breach channel during the breach process is successfully modeled.  相似文献   

20.
Recent high profile flood events have highlighted the need for hydraulic models capable of simulating pluvial flooding in urban areas. This paper presents a constant velocity rainfall routing scheme that provides this ability within the LISFLOOD‐FP hydraulic modelling code. The scheme operates in place of the shallow water equations within cells where the water depth is below a user‐defined threshold, enabling rainfall‐derived water to be moved from elevated features such as buildings or curbstones without causing instabilities in the solution whilst also yielding a reduction in the overall computational cost of the simulation. Benchmarking against commercial modelling packages using a pluvial and point‐source test case demonstrates that the scheme does not impede the ability of LISFLOOD‐FP to match both predicted depths and velocities of full shallow water models. The stability of the scheme in conditions unsuitable for traditional two‐dimensional hydraulic models is then demonstrated using a pluvial test case over a complex urban digital elevation model containing buildings. Deterministic single‐parameter sensitivity analyses undertaken using this test case show limited sensitivity of predicted water depths to both the chosen routing speed within a physically plausible range and values of the depth threshold parameter below 10 mm. Local instabilities can occur in the solution if the depth threshold is >10 mm, but such values are not required even when simulating extreme rainfall rates. The scheme yields a reduction in model runtime of ~25% due to the reduced number of cells for which the hydrodynamic equations have to be solved. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号