首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent theories of the solar cycle and of coronal heating strongly suggest that solar cycle variations of different quantities (i.e. sunspots, coronal green line, etc.) ought not to be expected to be in phase with one another. In agreement with this notion we note that the shape of the corona typical of a maximum eclipse occurs 1.5yr before sunspot maximum, compared with 2 yr as might be expected from Leighton's standard model. Further, we argue that the phase of the solar wind cycle can be determined from geomagnetic observations. Using this phase, a solar cycle variation of 100 km s–1 in the solar wind velocity and 1 in the magnetic field intensity becomes apparent. In general, the solar wind cycle lags the coronal-eclipse-form cycle by 3 yr, compared with the 2 yr that might be expected from model calculations.  相似文献   

2.
From high precision computer controlled tracings of bright Ca+-mottles we investigated differential rotation, meridional and random motions of these chromospheric fine structures. The equatorial angular velocity of the Ca+-mottles agrees well with that of sunspots (14°.50 per day, sidereal) and is 5 % higher than for the photosphere. The slowing down with increasing latitude is larger than for sunspots. Hence in higher latitudes Ca+-mottles rotate as fast as the photospheric plasma. A systematic meridional motion of about 0.1 km s–1 for latitudes around 10° was found. The Ca+-mottles show horizontal random motions due to the supergranular flow pattern with an rms velocity of about 0.15 km s–1. We finally investigated the correctness of the solar rotation elements i and derived by Carrington (1863).  相似文献   

3.
The question is studied whether the one-year solar oscillation found by V. F. Chistyakov for the years 1965–1973 can be traced in the observations of sunspots of 1874–1971 published by Greenwich Observatory. The result is negative. But the study leads to the following two conclusions: (1) The average observable centres of gravity of spot groups are variably displaced towards the central meridian or towards the limb, the time scale of this variability being of the order of 70 years. Thus the angular velocity should be determined from recurrent groups in transit of the central meridian only. (2) The angular velocity will be smaller when determined from older spots.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

4.
Statistical behavior of sunspot groups on the solar disk   总被引:1,自引:0,他引:1  
K.J. Li  H.F. Liang  H.S. Yun  X.M. Gu 《Solar physics》2002,205(2):361-370
In the present study we have produced a diagram of the latitude distribution of sunspot groups from the year 1874 through 1999 and examined statistical characteristics of the mean latitude of sunspot groups. The reliability of the observed data set prior to solar cycle 19 is found quite low as compared with that of the data set observed after cycle 19. A correlation is found between maximum latitude at which first sunspot groups of a new cycle appear and the maximum solar activity of the cycle. It is inferred that solar magnetic activity during the early part of an extended solar cycle may contain some information about the strength of forthcoming solar cycle. A formula is given to describe latitude change of sunspot groups with time during an extended solar cycle. The latitude-migration velocity is found to be largest at the beginning of solar cycle and decreases with time as the cycle progresses with a mean migration velocity of about 1.61° per year.  相似文献   

5.
A. Böhme 《Solar physics》1989,122(1):13-27
The flux density of a noise storm continuum is known to depend on importance parameters of the associated sunspot group, e.g., its total area A. A study of the continua at 287, 234, 113, and 64 MHz, however, reveals in case of the two cycles Nos. 20 and 21 that the radiation signatures of sunspot groups, with a value of A kept fixed, vary systematically with time indicating regular changes of relevant parameters of the overlying loop systems with the phase of the solar cycle. A trend of intense continua at high frequencies (for definition, cf. Figures 1, 2(b)) to occur preferably during the first activity maximum of a solar cycle has been obtained in either case suggesting a decrease of the emissivity of sunspot groups with time. Vice versa, intense continua at lower frequencies (for definition, cf. Figures 1, 2(b)) were mainly observed during the later phase of both cycles. The latter effect is shown to be attributed rather to a long-term variation of the spectral characteristics of the type-I continua than to an enhanced number of intense type-III continua. From the result obtained it follows that non-potential loops extending to great heights into the corona or developing at least conditions favourable for the generation of an intense type-I continuum even at the frequencies < 100 MHz tend to occur more frequently above sunspot groups during the later phase of a solar cycle than above the comparable groups of its first activity maximum.Furthermore, characteristic periods have been found for both cycles during which the emissivity, especially of the very large sunspot groups, was significantly diminished with reference to the comparable groups of the adjacent time intervals.  相似文献   

6.
7.
G. Lustig  H. Wöhl 《Solar physics》1994,152(1):221-226
Greenwich data (1874–1976) are used for a time-dependent analysis of meridional motions of sunspot groups. We obtain the latitude-dependence of meridional motions of sunspot groups with respect to a mean latitude determined for half-year intervals. The daily meridional motions of groups are also given separately for growing and decaying sunspot groups. The development is determined from changes of sunspot areas. Our results are compared with the reductions performed by Howard (1991b) using the Mt. Wilson sunspot data from 1917 until 1985: Although we have smaller errors, we do not find any significant drift. We also do not find different trends in the meridional motions of growing as compared to decreasing sunspots.  相似文献   

8.
Cluster analysis (a Bayesian iteration procedure) was used to study the space-time distribution of sunspot groups in the time interval from 1965 to 1977. (Data were taken from the Greenwich and Debrecen Heliographic Results.) The distribution proved to be significantly non-random for the 8–10 groups cluster–1 (gr cl–1) level of clustering. Convincing evidence also favours non-random behaviour for other levels of clustering from the lowest (3–4 gr cl–1) up to the highest ( 150 gr cl–1) level. The rotation rate of the non-random pattern is generally slightly lower than the Carrington rate.The 8–10 gr cl–1 level, crudely corresponding to the sunspot nests investigated earlier, was studied in more detail. The cycle- and latitude-averaged rotational rate of the nests is slightly ( 1%) but significantly lower than the Carrington rate. Their differential rotation is strongly reduced: the cycle-averaged rotational rate varies only by 2–3% within the sunspot belt. A slight but significant bimodality is seen in the differential rotation curve: the intermediate latitudes ( 10°–20°) show a somewhat slower rotation than both the equatorial and the higher latitude regions. This might be explained by a time-dependence of the rotation rate coupled with the butterfly diagram.  相似文献   

9.
New observations of the umbral limb-darkening are presented. We find a real and significant decrease in the umbra/photosphere intensity ratio towards the limb. This result contrasts the findings of previous authors and we believe this to be the first time such a decrease is reported. Our conclusion is based on broad band pinhole photometer intensity observations of 22 large sunspots covering the spectral region 0.387–2.35 m. The data are selected from measurements on approximately 600 days during the last 15.5 yr. The application of the limb-darkening data to the study of the temperature stratification in the umbra is briefly discussed. The observations confirm the suggestion that the umbra/photosphere intensity ratio seems to be a linear function of the phase in the solar cycle.  相似文献   

10.
The N-S drift of sunspot groups has been studied in a different way than previously, using positions of recurrent groups of the years 1874–1976. The existence of the meridional motions, the general shape of the drift curves, and the dissimilarity between these curves around sunspot maxima and minima, are all confirmed. In addition, also for the angular velocity of the Sun the same material gives differences around the times of sunspot maxima and minima.  相似文献   

11.
If fluctuations in the density are neglected, the large-scale, axisymmetric azimuthal momentum equation for the solar convection zone (SCZ) contains only the velocity correlations and where u are the turbulent convective velocities and the brackets denote a large-scale average. The angular velocity, , and meridional motions are expanded in Legendre polynomials and in these expansions only the two leading terms are retained (for example, where is the polar angle). Per hemisphere, the meridional circulation is, in consequence, the superposition of two flows, characterized by one, and two cells in latitude respectively. Two equations can be derived from the azimuthal momentum equation. The first one expresses the conservation of angular momentum and essentially determines the stream function of the one-cell flow in terms of : the convective motions feed angular momentum to the inner regions of the SCZ and in the steady state a meridional flow must be present to remove this angular momentum. The second equation contains also the integral indicative of a transport of angular momentum towards the equator.With the help of a formalism developed earlier we evaluate, for solid body rotation, the velocity correlations and for several values of an arbitrary parameter, D, left unspecified by the theory. The most striking result of these calculations is the increase of with D. Next we calculate the turbulent viscosity coefficients defined by whereC ro 0 and C o 0 are the velocity correlations for solid body rotation. In these calculations it was assumed that 2 was a linear function of r. The arbitrary parameter D was chosen so that the meridional flow vanishes at the surface for the rotation laws specified below. The coefficients v ro i and v 0o i that allow for the calculation of C ro and C 0o for any specified rotation law (with the proviso that 2 be linear) are the turbulent viscosity coefficients. These coefficients comply well with intuitive expectations: v ro 1 and –v 0o 3 are the largest in each group, and v 0o 3 is negative.The equations for the meridional flow were first solved with 0 and 2 two linear functions of r ( 0 1 = – 2 × 10 –12 cm –1) and ( 2 1 = – 6 × 10 12 cm –1). The corresponding angular velocity increases slightly inwards at the poles and decreases at the equator in broad agreement with heliosismic observations. The computed meridional motions are far too large ( 150m s–1). Reasonable values for the meridional motions can only be obtained if o (and in consequence ), increase sharply with depth below the surface. The calculated meridional motion at the surface consists of a weak equatorward flow for gq < 29° and of a stronger poleward flow for > 29°.In the Sun, the Taylor-Proudman balance (the Coriolis force is balanced by the pressure gradient), must be altered to include the buoyancy force. The consequences of this modification are far reaching: is not required, now, to be constant along cylinders. Instead, the latitudinal dependence of the superadiabatic gradient is determined by the rotation law. For the above rotation laws, the corresponding latitudinal variations of the convective flux are of the order of 7% in the lower SCZ.  相似文献   

12.
Analysis of long-term solar data from different observatories is required to compare and confirm the various level of solar activity in depth. In this paper, we study the north–south asymmetry of monthly mean sunspot area distribution during the cycle-23 and rising phase of cycle-24 using the data from Kodaikanal Observatory (KO), Michelson Doppler Imager (MDI) and Solar Optical Observing Network (SOON). Our analysis confirmed the double peak behavior of solar cycle-23 and the dominance of southern hemisphere in all the sunspot area data obtained from three different resources. The analysis also showed that there is a 5–6 months time delay in the activity levels of two hemispheres. Furthermore, the wavelet analysis carried on the same data sets showed several known periodicities (e.g., 170–180 days, 2.1 year) in the north–south difference of sunspot area data. The temporal occurrence of these periods is also the same in all the three data sets. These results could help in understanding the underlying mechanism of north–south asymmetry of solar activity.  相似文献   

13.
The statistics of extreme values is used to investigate the statistical properties of the largest areas of sunspots and photospheric faculae per solar cycle. The largest values of the synodic-solar-rotation mean areas of umbrae, whole spots and faculae, which have been recorded for nine solar cycles, are each shown to comply with the general form of the extreme value probability function. Empirical expressions are derived for the three extreme value populations from which the characteristic statistical parameters, namely the mode, median, mean and standard deviation, can be calculated for each population. These three extreme value populations are also used to find the expected ranges of the extreme areas in a group of solar cycles as a function of the number of cycles in the group. The extreme areas of umbrae and whole spots have a dispersion comparable to that found by Siscoe for the extreme values of sunspot number, whereas the extreme areas of faculae have a smaller dispersion which is comparable to that found by Siscoe for the largest geomagnetic storm per solar cycle. The expected range of the largest sunspot area per solar cycle for a group of one hundred cycles appears to be inconsistent with the existence of the prolonged periods of sunspot minima that have been inferred from the historical information on solar variability. This inconsistency supports the contention that there are temporal changes of solar-cycle statistics during protracted periods of sunspot minima (or maxima). Indeed, without such temporal changes, photospheric faculae should have been continually observable throughout the lifetime of the Sun.  相似文献   

14.
Vernova  E.S.  Mursula  K.  Tyasto  M.I.  Baranov  D.G. 《Solar physics》2004,221(1):151-165
We study the longitudinal distribution of sunspot activity in 1917–1995 using vector sums of sunspot areas. The vector sum of sunspots of one solar rotation gives a total vector whose amplitude characterizes the size of longitudinal asymmetry and whose phase describes the location of the momentarily dominating longitude. We find that when the phase distributions are calculated separately for the ascending phase and maximum (AM) on the one hand and for the declining phase and minimum (DM) on the other hand, they behave differently and depict broad maxima around roughly opposite longitudes. While the maximum of the phase distribution for the AM period is found around the Carrington longitude of 180°, the maximum for the DM period is at the longitude of about 0°. This difference can be seen in both solar hemispheres, but it is more pronounced in the southern hemisphere where the phase distribution has a particularly clear pattern. No other division of data into two intervals leads to similar systematic differences.  相似文献   

15.
We analysed the combined Greenwich (1874–1976) and Solar Optical Observatories Network (1977–2011) data on sunspot groups. The daily rate of change of the area of a spot group is computed using the differences between the epochs of the spot group observation on any two consecutive days during its life-time and between the corrected whole spot areas of the spot group at these epochs. Positive/negative value of the daily rate of change of the area of a spot group represents the growth/decay rate of the spot group. We found that the total amounts of growth and decay of spot groups whose life times ≥2 days in a given time interval (say one-year) well correlate to the amount of activity in the same interval. We have also found that there exists a reasonably good correlation and an approximate linear relationship between the logarithmic values of the decay rate and area of the spot group at the first day of the corresponding consecutive days, largely suggesting that a large/small area (magnetic flux) decreases in a faster/slower rate. There exists a long-term variation (about 90-year) in the slope of the linear relationship. The solar cycle variation in the decay of spot groups may have a strong relationship with the corresponding variations in solar energetic phenomena such as solar flare activity. The decay of spot groups may also substantially contribute to the coherence relationship between the total solar irradiance and the solar activity variations.  相似文献   

16.
Solar proton flares are associated with sunspot groups which show an unusual distribution of magnetic polarities. Furthermore, the gradient of the magnetic field is very large before the onset of these flares. The importance of polar cap absorptions, which is proportional to the integral flux of solar cosmic rays, tends to increase as the gradient of the magnetic field becomes greater. It is shown that the formation of such gradients is associated with the rotating motion of sunspot groups. Hence, the sunspot groups which show a reversed polarity distribution are very effective for the production of solar proton flares.NASA Associate with University of Maryland.  相似文献   

17.
Guiqing  Zhang  Huaning  Wang 《Solar physics》1999,188(2):397-400
Instantaneous predictions of the maximum monthly smoothed sunspot number in solar cycle 23 have been made with a linear regressive model, which gives the predicted maximum value as a function of the smoothed sunspot numbers corresponding to a given month from the minimum in all preceding cycles. These predictions indicate that the intensity of solar activity in the current cycle will be at an average level.  相似文献   

18.
19.
We have extended our previous study of coronal holes, solar wind streams, and geomagnetic disturbances from the declining phase (1973–1975) of sunspot cycle 20 through sunspot minimum (1976) into the rising phase (1977) of cycle 21. Using daily He I 10830 Å spectroheliograms and photospheric magnetograms, we found the following results:
  1. As the magnetic field patterns changed, the solar atmosphere evolved from a structure having a few, large, long-lived, low-latitude coronal holes to one having numerous small, short-lived, high-latitude holes (in addition to the polar holes which persisted throughout this 5-year interval).
  2. The high-latitude holes recurred with a synodic rotation period of 28–29 days instead of the 27-day period already known to be characteristic of low-latitude holes.
  3. During 1976–1977 many coronal holes were intrinsically ‘weak’ in the sense that their average intensities did not differ greatly from the intensity of their surroundings. Such low-contrast holes were rare during 1973–1975.
An updated Bartels display of the occurrence of holes, wind speed, and geomagnetic activity summarizes the evolution of their characteristics and interrelations as the sunspot cycle has progressed. Long-lived, low-latitude holes have become rare but remain terrestrially effective. The more common high-latitude holes are effective only when the Earth lies at a relatively high heliographic latitude in the same solar hemisphere.  相似文献   

20.
Regarding new bipolar magnetic regions as sources of flux, we have simulated the evolution of the radial component of the solar photospheric magnetic field during 1976–1984 with a spatial resolution of about 34 000 km, and have derived the corresponding evolution of its absolute value averaged over the visible disk. For nominal values of the transport parameters, this simulated gross field is in close, though imperfect, agreement with the observed gross field and its associated indices of solar activity. By analyzing the response of the simulated gross field to variations in the transport parameters and the source properties, we find that the simulated field originates in newly erupted bipolar regions. The lifetimes of these regions are almost always less than 3 mo. Consequently, the strength of the simulated gross field is a measure of the current level of solar activity, and any recurrent patterns with lifetimes in excess of 6 mo must reflect the continuing eruption of new flux at active longitudes rather than the persistence of old flux in long-lived magnetic structures.E. O. Hulburt Center for Space Research.Laboratory for Computational Physics.Berkeley Research Associates, Springfield, VA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号