首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inflation patterns based on water-tube tiltmeter and levelling observation show different features for Krafla Volcano in Iceland and Kilauea Volcano in Hawaii. Monotonous sawtooth shape inflation is observed at Krafla, while inflation curves at Kileauea are more or less complicated. The difference was attributed to differences in the system of magma reservoir for the two volcanoes. By using the electrical equivalent of a magma reservoir and volcanic conduit as a capacitor and a resistor, an electrical oseillator was considered to be a possible model for a magma reservoir system. In the case of Krafla, the magma reservoir system is replaced with one electric oscillator called «Single system» or «Icelandic type» system. The complicated inflation pattern of Kilauea was interpreted as the assembly of a main magma reservoir and the group of surrounding small reservoirs. The equivalent electric analogue is the composite parallel and serial connection of a single oscillator which generates irregular output voltage during a charging process. The proposed magma reservoir system of Kilauea is called «Multi-coupled system» or «Hawaiian type system» which also help in interpreting the wondering of the uplift center and tidal phenomena of the Halemaumau lava lake.  相似文献   

2.
Caldera morphology on the six historically active shield volcanoes that comprise Isabela and Fernandina islands, the two westernmost islands in the Galapagos archipelago, is linked to the dynamics of magma supply to, and withdrawal from, the magma chamber beneath each volcano. Caldera size (e.g., volumes 2–9 times that of the caldera of Kilauea, Hawai'i), the absence of well-developed rift zones and the inability to sustain prolonged low-volumetric-flow-rate flank eruptions suggest that magma storage occurs predominantly within centrally located chambers (at the expense of storage within the flanks). The calderas play an important role in the formation of distinctive arcuate fissures in the central part of the volcano: repeated inward collapse of the caldera walls along with floor subsidence provide mechanisms for sustaining radially oriented least-compressive stresses that favor the formation of arcuate fissures within 1–2 km outboard of the caldera rim. Variations in caldera shape, depth-to-diameter ratio, intra-caldera bench location and the extent of talus slope development provide insight into the most recent events of caldera modification, which may be modulated by the episodic supply of magma to each volcano. A lack of correlation between the volume of the single historical collapse event and its associated volume of erupted lava precludes a model of caldera formation linked directly to magma withdrawal. Rather, caldera collapse is probably the result of accumulated loss from the central storage system without sufficient recharge and (as has been suggested for Kilauea) may be aided by the downward drag of dense cumulates and intrusives.  相似文献   

3.
In recent years (1970–72 and 1982–84) two inflation episodes took place in the Campi Flegrei caldera (Italy), characterized by significant ground uplift and gravity variations. An elastic half-space model with vertical density stratification is employed to compute the displacement field and the gravity variations produced by the deformation of buried layers, following the inflation of a spherically symmetric deformation source. Contributions to gravity variations are produced by dilation/contraction of the medium, by the displacements of density interfaces (the free surface and subsurface layers) and of source boundaries and, possibly, by new mass input from remote distances into the source volume. Three cases were examined in detail: In case I, the magma chamber is identified as the deformation source and volume and pressure increase in the magma chamber is due to input of new magma from remote distances; in case II deformation is due to magma differentiation within the magma chamber (deformation source with constant mass); in case III the geothermal system is identified as the deformation source and a pressure increase, possibly driven by the exsolution of high temperature and high pressure volatiles in the magma chamber, is assumed to play a dominant role. From the comparison between measured and computed gravity residuals (free-air-corrected gravity variations) we can assess that, in case I, an inflation source with constant density would predict gravity residuals compatible with observations, whereas an expansion at constant mass (case II) would predict gravity residuals much lower than observed. The resolving power of gravity data however prevents accurate assessment of the density of the emplaced material. In case III, the pervasive density increase of the geothermal fluids induced by pressure increase is assumed to be the main source of gravity variations. The average porosity value required for this model to match both the ground deformation and the gravity residuals is found to be ˜10%, a value which is compatible with measured porosity values at Campi Flegrei in deep wells. The subsidence phases following both inflation episodes and the gravity residuals during subsidence lead us to consider case III as more plausible, even if a suitable combination of cases I and III cannot be discarded.  相似文献   

4.
A small explosive eruption of Kilauea Volcano, Hawaii, occurred in May 1924. The eruption was preceded by rapid draining of a lava lake and transfer of a large volume of magma from the summit reservoir to the east rift zone. This lowered the magma column, which reduced hydrostatic pressure beneath Halemaumau and allowed groundwater to flow rapidly into areas of hot rock, producing a phreatic eruption. A comparison with other events at Kilauea shows that the transfer of a large volume of magma out of the summit reservoir is not sufficient to produce a phreatic eruption. For example, the volume transferred at the beginning of explosive activity in May 1924 was less than the volumes transferred in March 1955 and January–February 1960, when no explosive activity occurred. Likewise, draining of a lava lake and deepening of the floor of Halemaumau, which occurred in May 1922 and August 1923, were not sufficient to produce explosive activity. A phreatic eruption of Kilauea requires both the transfer of a large volume of magma from the summit reservoir and the rapid removal of magma from near the surface, where the surrounding rocks have been heated to a sufficient temperature to produce steam explosions when suddenly contacted by groundwater.  相似文献   

5.
Shallow crustal magma reservoirs beneath the summit of Kilauea Volcano and within its rift zones are linked in such a way that the magma supply to each can be estimated from the rate of ground deformation at the volcano's summit. Our model builds on the well-documented pattern of summit inflation as magma accumulates in a shallow summit reservoir, followed by deflation as magma is discharged to the surface or into the rift zones. Magma supply to the summit reservoir is thus proportional to summit uplift, and supply to the rift zones is proportional to summit subsidence; the average proportionality constant is 0.33 × 106 m3/γrad. This model yields minimum supply estimates because it does not account for magma which escapes detection by moving passively through the summit reservoir or directly into the rift zones.Calculations suggest that magma was supplied to Kilauea during July 1956– April 1983 at a minimum average rate of 7.2 × 106 m3/month. Roughly 35% of the net supply was extruded; the rest remains stored within the volcano's east rift zone (55%) and southwest rift zone (10%). Periods of relatively rapid supply were associated with the large Kapoho eruption in 1960 and the sustained Mauna Ulu eruptions in 1969–1971 and 1972–1974. Bursts of harmonic tremor from the mantle beneath Kilauea were also unusually energetic during 1968–1975, suggesting a close link between Kilauea's deep magma supply region and shallow storage reservoirs. It remains unclear whether pulses in magma supply from depth give rise to corresponding increases in shallow supply, or if instead unloading of a delicately balanced magma transport system during large eruptions or intrusions triggers more rapid ascent from a relatively constant mantle source.  相似文献   

6.
The dynamics of the shallow magma reservoir at Krafla Volcano in NE Iceland have been analyzed with three types of elastic models based on over 70 surveys of tilt and displacement made from 1975 to 1985, a period of continuous volcano-tectonic activity. Modeling results are integrated with geophysical and geological information to estimate the position, geometry, and volume change of magma reservoir domains subjected to periodic inflation and deflation. Dominating influences on magma reservoir dynamics are examined in the context of activity in Krafla's associated rift system and the deformation of its caldera from 1975–1985. Rather than the fluid-filled cavity concept of Mogi (1958) and most recent workers, our models are idealized as strained regions with spherical, double-spherical, or general ellipsoidal symmetry. The models are mathematically generalized from that of Mogi (1958) and are derived by inversion of displacements. Model results from different displacement components are remarkably consistent, although models based on vertical displacements typically have errors-of-fit much closer to expected measurement errors than those based on tilt or horizontal displacements. About one half of the double-sphere and ellipsoid models have significantly better fits than single-sphere models. Double-sphere model results are consistent with a 2 to 3 km center-to-center separation of magma storage zones from at least 2 km to 4 km depth by portions of the fissure system, as implied by S-wave attenuation patterns for 1976–1977. However, all models suggest pressurization zones of more limited extent than possible domains of storage inferred from S-wave attenuation. Ellipsoid models typically implied unrealistically shallow depths of magma storage. Caldera inflation rates decreased after January 1978 when the caldera periodically reinflated to its level prior to the initial December 1975 deflation event. From 1975–1980 the volume and duration of inflation between deflation events was strongly correlated with the volume of the previous deflation. After 1980 there was a significant increase in the duration of inflation periods and a decrease in rates of caldera inflation and fissure system widening. Consistent with these results, the magma reservoir is conceptualized as a hot rock mass containing numerous magma chambers and pressure-sensitive conduits connecting the chambers and deep magma sources. Magma is injected into the fissure system at critical pressures determined by the confining stress and rock mass strength. The duration and volume of inflation required to reach a critical pressure threshold is largely dependent on the volume of magma released in the previous deflation. Reduction of the extension rate across the Krafla fissure system after 1980 suggests that extensional forces were also reduced. A resultant rise of confining pressure on the magma reservoir and a reduced capacity of the fissure system to accommodate dike injection in combination would have increased critical stress levels for reservoir deflation and reduced the pressure gradient driving magma supply from deep sources.  相似文献   

7.
Inflation along Kilauea's Southwest Rift Zone in 2006   总被引:1,自引:0,他引:1  
We report on InSAR and GPS results showing the first crustal inflation along the southwest rift zone at Kilauea volcano in over 20 years. Two independent interferograms (May 2–August 2, 2006 and June 22–Nov 7, 2006) from the ALOS PALSAR instrument reveal domal uplift located southwest of the main caldera. The uplift is bounded on the northeast by the caldera and follows the southwest rift zone for about 12 km. It is approximately 8 km wide. We use data derived from permanent GPS stations to calibrate the InSAR displacement data and estimate uplift of 7.7 cm during the first interferogram and 8.9 cm during the second with line-of-sight volumes of 2.8 × 106 m3 and 3.0 × 106 m3 respectively. The earthquake record for the periods before, during, and after inflation shows that a swarm of shallow earthquakes (z < 5 km) signaled the beginning of the uplift and that elevated levels of shallow seismicity along the rift zones occurred throughout the uplift period. GPS data indicate that the inflation occurred steadily over nine months between mid-January and mid-October, 2006 making injection of a sill unlikely. We attribute the inflation to recharge of a shallow ductile area under the SWRZ.  相似文献   

8.
This paper examines the role of the position and orientation of a regional fault in the roof of a magma chamber on stress distribution, mechanical failure, and dyking using 2D finite element numerical simulations. The study pertains to the magma chamber behavior in the relatively short time intervals of several hundreds to thousand of years. The magma chamber is represented as an elliptical inclusion (eccentricity, a/b = 0.12) at a relative depth, H/a, of 0.9. The fault has a 45° dip and is represented by a frictionless fracture. The temperature field in the host rock is calculated assuming a quasisteady-state thermal regime that develops through periodic episodes of magma supply. The rheology of the surrounding rocks is treated using viscoelasticity with temperature activated strain-rate dependent viscosity. Strain weakening of the rocks in the ductile zone is described within the frame of the Dynamic Power Law model . The magma pressure is coupled with the deformation of the rock mass hosting the chamber, including the fault. The variation of magma pressure in response to magma supply and chamber deformation is calculated in the elastic and viscoelastic regimes. The latter corresponds to slow filling, while the former represents a filling time much less than the viscous relaxation time scale. The resulting “equation of state” for the magma chamber couples the magma pressure with the chamber volume in the elastic regime, and with the filling rate for the viscoelastic regime. Analysis of stresses is used to predict dyke propagation conditions, and the mechanical failure of the chamber roof for different fault positions and magma overpressures. Results show that an outward dipping fault located on the periphery of the chamber roof hinders the propagation of dykes to the surface, causing magma to accumulate under the footwall of the fault. At high to moderate overpressures (30–40 MPa), the fault causes localized shear failure and chamber roof collapse that might lead to the first stage of a caldera-forming eruption.  相似文献   

9.
 In volcanoes that store a significant quantity of magma within a subsurface summit reservoir, such as Kīlauea, bulk compression of stored magma is an important mode of deformation. Accumulation of magma is also accompanied by crustal deformation, usually manifested at the surface as uplift. These two modes of deformation – bulk compression of resident magma and deformation of the volcanic edifice – act in concert to accommodate the volume of newly added magma. During deflation, the processes reverse and reservoir magma undergoes bulk decompression, the chamber contracts, and the ground surface subsides. Because magma compression plays a role in creating subsurface volume to accommodate magma, magma budget estimates that are derived from surface uplift observations without consideration of magma compression will underestimate actual magma volume changes. Received: 30 September 1998 / Accepted: 27 July 1999  相似文献   

10.
The magmatic plumbing system of Kilauea Volcano consists of a broad region of magma generation in the upper mantle, a steeply inclined zone through which magma rises to an intravolcano reservoir located about 2 to 6 km beneath the summit of the volcano, and a network of conduits that carry magma from this reservoir to sites of eruption within the caldera and along east and southwest rift zones. The functioning of most parts of this system was illustrated by activity during 1971 and 1972. When a 29-month-long eruption at Mauna Ulu on the east rift zone began to wane in 1971, the summit region of the volcano began to inflate rapidly; apparently, blockage of the feeder conduit to Mauna Ulu diverted a continuing supply of mantle-derived magma to prolonged storage in the summit reservoir. Rapid inflation of the summit area persisted at a nearly constant rate from June 1971 to February 1972, when a conduit to Mauna Ulu was reopened. The cadence of inflation was twice interrupted briefly, first by a 10-hour eruption in Kilauea Caldera on 14 August, and later by an eruption that began in the caldera and migrated 12 km down the southwest rift zone between 24 and 29 September. The 14 August and 24–29 September eruptions added about 107 m3 and 8 × 106 m3, respectively, of new lava to the surface of Kilauea. These volumes, combined with the volume increase represented by inflation of the volcanic edifice itself, account for an approximately 6 × 106 m3/month rate of growth between June 1971 and January 1972, essentially the same rate at which mantle-derived magma was supplied to Kilauea between 1952 and the end of the Mauna Ulu eruption in 1971.The August and September 1971 lavas are tholeiitic basalts of similar major-element chemical composition. The compositions can be reproduced by mixing various proportions of chemically distinct variants of lava that erupted during the preceding activity at Mauna Ulu. Thus, part of the magma rising from the mantle to feed the Mauna Ulu eruption may have been stored within the summit reservoir from 4 to 20 months before it was erupted in the summit caldera and along the southwest rift zone in August and September.The September 1971 activity was only the fourth eruption on the southwest rift zone during Kilauea's 200 years of recorded history, in contrast to more than 20 eruptions on the east rift zone. Order-of-magnitude differences in topographic and geophysical expression indicate greatly disparate eruption rates for far more than historic time and thus suggest a considerably larger dike swarm within the east rift zone than within the southwest rift zone. Characteristics of the historic eruptions on the southwest rift zone suggest that magma may be fed directly from active lava lakes in Kilauea Caldera or from shallow cupolas at the top of the summit magma reservoir, through fissures that propagate down rift from the caldera itself at the onset of eruption. Moreover, emplacement of this magma into the southwest rift zone may be possible only when compressive stress across the rift is reduced by some unknown critical amount owing either to seaward displacement of the terrane south-southeast of the rift zone or to a deflated condition of Mauna Loa Volcano adjacent to the northwest, or both. The former condition arises when the forceful emplacement of dikes into the east rift zone wedges the south flank of Kilauea seaward. Such controls on the potential for eruption along the southwest rift zone may be related to the topographic and geophysical constrasts between the two rift zones.  相似文献   

11.
During the present tectonic activity in the volcanic rift zone in NE-Iceland it has become apparent that the attenuation of seismic waves is highly variable in the central region of the Krafla volcano. Earthquakes associated with the inflation of the volcano have been used to delineate two regions of high attenuation of S-waves within the caldera. These areas are located near the center of inflation have horizontal dimensions of 1–2 km and are interpreted as the expression of a magma chamber. The top of the chamber is constrained by hypocentral locations and ray paths to be at about 3 km depth. Small pockets of magma may exist at shallower levels. The bottom of the chamber is not well constrained, but appears to be above 7 km depth. Generally S-waves propagate without any anomalous aftenuation through laver 3 (vp=0.5 km sec?1) across the volcanic rift zone in NE-Iceland. The rift zone therefore does not appear to be underlain by an estensive magma chamber at crustal levels. The Krafla magma chamber is a localized feature of the Krafla central volcano.  相似文献   

12.
The relatively low rates of magma production in island arcs and continental extensional settings require that the volume of silicic magma involved in large catastrophic caldera-forming (CCF) eruptions must accumulate over periods of 10 5 to 10 6 years. We address the question of why buoyant and otherwise eruptible high-silica magma should accumulate for long times in shallow chambers rather than erupt more continuously as magma is supplied from greater depths. Our hypothesis is that the viscoelastic behavior of magma chamber wall rocks may prevent an accumulation of overpressure sufficient to generate rhyolite dikes that can propagate to the surface and cause an eruption. The critical overpressure required for eruption is based on the model of Rubin (1995a). An approximate analytical model is used to evaluate the controls on magma overpressure for a continuously or episodically replenished spherical magma chamber contained in wall rocks with a Maxwell viscoelastic rheology. The governing parameters are the long-term magma supply, the magma chamber volume, and the effective viscosity of the wall rocks. The long-term magma supply, a parameter that is not typically incorporated into dike formation models, can be constrained from observations and melt generation models. For effective wall-rock viscosities in the range 10 18 to 10 20 Pa s –1, dynamical regimes are identified that lead to the suppression of dikes capable of propagating to the surface. Frequent small eruptions that relieve magma chamber overpressure are favored when the chamber volume is small relative to the magma supply and when the wall rocks are cool. Magma storage, leading to conditions suitable for a CCF eruption, is favored for larger magma chambers (>10 2 km 3) with warm wall rocks that have a low effective viscosity. Magma storage is further enhanced by regional tectonic extension, high magma crystal contents, and if the effective wall-rock viscosity is lowered by microfracturing, fluid infiltration, or metamorphic reactions. The long-term magma supply rate and chamber volume are important controls on eruption frequency for all magma chamber sizes. The model can explain certain aspects of the frequency, volume, and spatial distribution of small-volume silicic eruptions in caldera systems, and helps account for the large size of granitic plutons, their association with extensional settings and high thermal gradients, and the fact that they usually post-date associated volcanic deposits.  相似文献   

13.
During the 1944 eruption of Vesuvius different types of xenoliths were ejected. They represent fragments of the walls of a low volume (<0.5 km3) shallow (3–4 km depth) magma chamber. The study of these xenoliths enables us to estimate the amount of contamination occurring at the boundary of a high-T alkaline magma chamber hosted in carbonate rocks. The process of contamination of the magma by carbonates can be modelled, using isotopic and chemical data, as a mixing between magma and marbles. Mass exchanges occur at the boundary between the crystallizing magma and marble wall rocks, where endoskarn forms. The contamination of the solidification front of the chamber is very limited. The solidification front and the skarn shell effectively isolate the interior of the magma chamber from new inputs of contaminants from the carbonate wall rocks. Therefore, the main volume of magma, hosted in the magma chamber, did not undergo any significant mass exchange with the wall rocks.  相似文献   

14.
Volcanological and petrological data suggest that the Phlegraean Fields volcanic activity has been fed, at least in the last 10,500 years, by a not-refilled magma chamber where trachytic residual liquids were produced by fractionation of a trachybasaltic magma. Using estimated volumes of the erupted products andP–T data obtained through petrological studies, a conductive thermal model of the chamber was built up in order to estimate its past and present size. Results suggest a volume decrease from approximately 14 to 1.4 km3 of the trachybasaltic magma in 10,500 years. Trachytic liquid would also be present in the chamber in a minimum amount of 0.4 km3. The model allowed some insights on the petrogenesis of the Phlegraean trachytes, suggesting that they were erupted as liquids because thermally buffered within the magma chamber.  相似文献   

15.
A key question in volcanology is the driving mechanisms of resurgence at active, recently active, and ancient calderas. Valles caldera in New Mexico and Lake City caldera in Colorado are well-studied resurgent structures which provide three crucial clues for understanding the resurgence process. (1) Within the limits of 40Ar/39Ar dating techniques, resurgence and hydrothermal alteration at both calderas occurred very quickly after the caldera-forming eruptions (tens of thousands of years or less). (2) Immediately before and during resurgence, dacite magma was intruded and/or erupted into each system; this magma is chemically distinct from rhyolite magma which was resident in each system. (3) At least 1?km of structural uplift occurred along regional and subsidence faults which were closely associated with shallow intrusions or lava domes of dacite magma. These observations demonstrate that resurgence at these two volcanoes is temporally linked to caldera subsidence, with the upward migration of dacite magma as the driver of resurgence. Recharge of dacite magma occurs as a response to loss of lithostatic load during the caldera-forming eruption. Flow of dacite into the shallow magmatic system is facilitated by regional fault systems which provide pathways for magma ascent. Once the dacite enters the system, it is able to heat, remobilize, and mingle with residual crystal-rich rhyolite remaining in the shallow magma chamber. Dacite and remobilized rhyolite rise buoyantly to form laccoliths by lifting the chamber roof and producing surface resurgent uplift. The resurgent deformation caused by magma ascent fractures the chamber roof, increasing its structural permeability and allowing both rhyolite and dacite magmas to intrude and/or erupt together. This sequence of events also promotes the development of magmatic–hydrothermal systems and ore deposits. Injection of dacite magma into the shallow rhyolite magma chamber provides a source of heat and magmatic volatiles, while resurgent deformation and fracturing increase the permeability of the system. These changes allow magmatic volatiles to rise and meteoric fluids to percolate downward, favouring the development of hydrothermal convection cells which are driven by hot magma. The end result is a vigorous hydrothermal system which is driven by magma recharge.  相似文献   

16.
The Krafla rifting episode, which occurred in North Iceland in 1975–1984, was followed by inflation of a shallow magma chamber until 1989. At that time, gradual subsidence began above the magma chamber and has continued to the present at a declining rate. Pressure decrease in a shallow magma chamber is not the only source of deformation at Krafla, as other deformation processes are driven by exploitation of two geothermal fields, together with plate spreading. In addition, deep-seated magma accumulation appears to take place, with its centre ∼ 10 km north of the Krafla caldera. The relative strength of these sources has varied with time. New results from a levelling survey and GPS measurements in 2005 allow an updated view on the deformation field. Deformation rates spanning 2000–2005 are the lowest recorded in the 30-year history of geodetic studies at the volcano. The inferred rate of 2000–2005 subsidence related to processes in the shallow magma chamber is less than 0.3 cm/yr whereas it was ∼ 5 cm/yr in 1989–1992. Currently, the highest rate of subsidence takes place in the Leirbotnar area, within the Krafla caldera, and appears to be a result of geothermal exploitation.  相似文献   

17.
Magma mixing and magma plumbing systems in island arcs   总被引:3,自引:0,他引:3  
Petrographic features of mixed rocks in island arcs, especially those originating by the mixing of magmas with a large compositional and temperature difference, such as basalt and dacite, suggest that the whole mixing process from their first contact to the final cooling (= eruption) has occurred continuously and in a relatively short time period. This period is probably less than several months, considerably shorter than the whole volcanic history. There may also be a prolonged quiescent interval, lasting longer than several days, between the magmas' contact and the mechanical mixing. This interval will allow the basic magma to cool and produce a semi-solidified boundary which is later disrupted by flow movements to produce basic inclusions.Mixing of magmas of contrasting chemical composition need not be the inevitable consequence of the contact of the magmas. It is, however, made more probable by forced convection caused by motive force such as the injection of a basic magma into an acidic magma chamber. A short interval between their initial contact and the final eruption requires that the acid magma chamber has a small volume, of the same order or less than that the introduced basic magma.The volcanic activity of Myoko volcano, central Japan, of the last 100,000 years shows alternate eruptions of hybrid andesite by mixing of basaltic and dacitic magmas, and non-mixed basalt to basaltic andesite. There was a repose period of 20,000 to 30,000 years between eruptions. The acidic chamber, eventually producing the mixed andesite activity, is formed during the repose period by the « in situ » solidification of the original basic magma against its wall. The volume of the chamber is very small, probably about 10–2 km3. Basaltic magma with constant chemical composition is supplied to the shallow chamber from another deep seated basaltic chamber. The volume of the shallow magma chamber may be critical to the characteristics of volcanic activity and its products.  相似文献   

18.
In the shallow magma chambers of volcanoes, the CO2 content of most basaltic melts is above the solubility limit. This implies that the chamber contains gas bubbles, which rise through the magma and expand. Thus, the volume of the chamber, its gas volume fraction and the gas flux into the conduit change with time in a systematic manner as a function of the size and number of gas bubbles. Changes in gas flux and gas volume are calculated for a bubble size distribution and related to changes in eruption regimes. Fire fountain activity, only present during the first quarter of the eruption, requires that the bubbles are larger than a certain size, which depends on the gas flux and on the bubble content[1]. As the chamber degasses, it loses its largest gas bubbles and the gas flux decreases, eventually suppressing the fire fountaining activity. Ultimately, an eruption stops when the chamber contains only a few tiny bubbles. More generally, the evolution of basaltic eruptions is governed by a dimensionless number, τ * ≈ τgΔρaO2/(18μhc), where τ = a characteristic time for degassing; a0 = the initial bubble diameter; μ = the magma viscosity; and hc = the thickness of the degassing layer. Two eruptions of the Kilauea volcano, Mauna Ulu (1969–1971) and Puu O'o (1983—present), provide data on erupted gas volume and the inflation rate of the edifice, which help constrain the spatial distribution of bubbles in the magma chamber: bubbles come mainly from the bottom of the reservoir, either by in situ nucleation long before the eruption or within a vesiculated liquid. Although the gas flux at the roof of the chamber takes similar values for both eruptions, the duration of both the fire fountaining activity and the entire eruption was 6 times shorter at Mauna Ulu than during the Puu O'o eruption. The dimensionless analysis explains the difference by a degassing layer 6 times thinner in the former than the latter, due to a 2 year delay in starting the Mauna Ulu eruption compared to the Puu O'o eruption.  相似文献   

19.
The results of geological and geophysical studies are analyzed to throw light on the presence of an unsolidified magma chamber beneath El’brus Volcano in the Caucasus, as well as its depth and approximate dimensions. We provide an upper and a lower bound on the estimates of the heat stored by the chamber in the host rocks, which were heated by the volcano’s magma chamber from its origination until now, incorporating the variation in the dimensions of the magma chamber during its evolution and the heat storage in it. We examine the geological and geophysical conditions that favor the use of thermal energy in the hot rocks that surround the magma chamber of El’brus Volcano.  相似文献   

20.
Geochemical modeling of magma mixing allows for evaluation of volumes of magma storage reservoirs and magma plumbing configurations. A new analytical expression is derived for a simple two-component box-mixing model describing the proportions of mixing components in erupted lavas as a function of time. Four versions of this model are applied to a mixing trend spanning episodes 3–31 of Kilauea Volcano’s Puu Oo eruption, each testing different constraints on magma reservoir input and output fluxes. Unknown parameters (e.g., magma reservoir influx rate, initial reservoir volume) are optimized for each model using a non-linear least squares technique to fit model trends to geochemical time-series data. The modeled mixing trend closely reproduces the observed compositional trend. The two models that match measured lava effusion rates have constant magma input and output fluxes and suggest a large pre-mixing magma reservoir (46±2 and 49±1 million m3), with little or no volume change over time. This volume is much larger than a previous estimate for the shallow, dike-shaped magma reservoir under the Puu Oo vent, which grew from ∼3 to ∼10–12 million m3. These volumetric differences are interpreted as indicating that mixing occurred first in a larger, deeper reservoir before the magma was injected into the overlying smaller reservoir. Electronic Supplementary Material Supplementary material is available at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号