首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on a plane-parallel isothermal model solar atmosphere permeated by a uniform magnetic field directed against the action of gravity, we investigate the parametric generation of acoustic-gravity disturbances by Alfvén waves propagating along the corresponding field lines. We established that for a weak linear coupling of Alfvén waves, the nonlinear interaction of Alfvén waves propagating in opposite directions (rather than in the same direction) is the predominant generation mechanism of acoustic-gravity disturbances at the difference frequency. In this case, no acoustic flow (wind) was found to emerge at a zero difference frequency in the acoustic-gravity field.  相似文献   

2.
Based on a plane-parallel isothermal solar model atmosphere permeated by a horizontal magnetic field whose strength is proportional to the square root of the plasma density and in the approximation of a specified field for vertically propagating and nonpropagating magnetoacoustic-gravity waves, we consider the nonlinear interaction between the corresponding disturbances, to within quantities of the second order of smallness. We investigate the efficiency of the nonlinear generation of waves at difference and sum frequencies and of an acoustic flow (wind) as a function of the magnetic-field strength and the excitation frequency of the initial disturbances at the lower atmospheric boundary.  相似文献   

3.
Based on a plane-parallel isothermal model solar atmosphere permeated by a uniform magnetic field directed against the action of gravity, we considered the nonlinear interaction between vertically propagating Alfvén and acoustic-gravity waves. We established that Alfvén waves are efficiently generated at the difference and sum frequencies. We ascertained that no acoustic-gravity waves are formed at the corresponding combination frequencies. A horizontal magnetohydrodynamic wind whose direction changes with height was found to be formed in the solar atmosphere at zero difference frequency.  相似文献   

4.
A nonlinear process for the resonant generation of low-frequency fast magnetosonic kink waves in coronal loops is discussed. The efficiency of the process is strongly enhanced due to the existence of a nonlinearly selected frequency produced by a constant frequency difference in the dispersion curves in the short wavelength limit. The kink wave with the selected frequency interacts with high-frequency kink and sausage waves. The efficiency of such interaction does not require coherence in the interactive waves. In a loop of width 2 × 103 km, field strength 50 G and number density 5 × 1015 m–3, the nonlinearly selected frequency is of order 46 mHz (period 21.8 s), but this may range through 11 mHz to 184 mHz (periods 86.5 s to 5.4 s) for typical coronal conditions.  相似文献   

5.
The expression for nonlinear shift of a wave number of a whistler wave propagating through the ionosphere has been derived and the results have been discussed. It is seen that nonlinear shift of a wave number of a whistler is significant in some physical situations. From numerical estimations it is observed that wave number shifts of a whistler for both the LCP and RCP waves become significant when the frequency of the waves are nearly equal to the ion-cyclotron frequency.  相似文献   

6.
A mechanism is proposed for the generation of zebra-patterns in solar radio bursts due to the excitation of nonlinear ion-sound waves in a nonisothermal plasma and their scattering on fast particles. The appearance of the ion sound at the fundamental frequency can take place in the interaction of two opposing Alfvén or whistler waves. The presence of quasi-equidistant stripes in electro-magnetic radiation is ultimately determined by weak ion-sound dispersion resulting in the formation of higher harmonics.  相似文献   

7.
The interaction between VLF waves propagating at an angle to the geomagnetic field and an electron beam in the presence of cold plasma is discussed. It is shown that the Cerenkov signal is amplified during the process of resonance interaction by three orders of magnitude. The variation of the amplification factor with frequency is studied and its application to the explanation of the observed VLF intensities is indicated.  相似文献   

8.
Based on a plane-parallel isothermal model solar atmosphere stratified in the field of gravity, we investigate the main patterns of vertical propagation of magnetoacoustic gravity waves (MAGWs) in the approximation of a horizontal potential magnetic field. We have established that the cutoff frequency for MAGWs below which they cannot propagate does not depend on the magnetic field strength and is equal to that for acoustic gravity waves, the Lamb frequency. The cutoff frequency is shown to be unaffected by the linear interaction between counterpropagating MAGWs that results from a nonuniform height distribution of the Alfvén velocity and that causes the reflection of propagating waves at relatively large heights.  相似文献   

9.
L. Mollwo  K. Sauer 《Solar physics》1977,51(2):435-458
The investigated model supposes Bernstein waves emerging from Harris instabilities at a definite coronal level. The nonlinear process is considered for a higher region, where the quasimonochromatic waves forming the primary spectrum are reflected. Spatial dispersion takes place corresponding to the decreasing magnetic field. Thus each quasimonochromatic wave can be treated separately. According to the nonlinear resonance condition there result electromagnetic waves of twice the primary frequency, the power density of which is calculated. Assuming a coherence time of 480 periods and an oscillation velocity of the electrons of 10-3 times the thermal velocity the effective radiation temperature 1011 K of a type IVmA-burst is obtained at about 180 MHz, if the range of the nonlinear interaction is about 3.9 km long. In the discussion the interpretation of occurring zebra patterns is treated.  相似文献   

10.
Chian  Abraham C.-L.  Abalde  José R. 《Solar physics》1999,184(2):403-419
Close temporal correlation between high-frequency Langmuir waves and low-frequency electromagnetic whistler waves has been observed recently within magnetic holes of the solar wind. In order to account for these observations, a theory is formulated to describe the nonlinear coupling of Langmuir waves and whistler waves. It is shown that a Langmuir wave can interact nonlinearly with a whistler wave to produce either right-hand or left-hand circularly polarized electromagnetic waves. Nonlinear coupling of Langmuir waves and whistler waves may lead to the formation of modulated Langmuir wave packets as well as the generation of circularly polarized radio waves at the plasma frequency in the solar wind. Numerical examples of whistler frequency, nonlinear growth rate and modulation frequency for solar wind parameters are calculated.  相似文献   

11.
According to a widespread point of view, intensive electrostatic structures in the E‐region of the auroral ionosphere can be a consequence of the excitation of the modified two‐stream or Farley‐Buneman (FB) plasma turbulence. But in spite of the successes of the theoretical and experimental research of the auroral radar scattering, it is impossible to explain the existence of auroral echoes with large aspect angles (> 2 deg.), the wave propagation perpendicular to the electron drift velocity and wave scales less than 1 m. In this paper the coherent nonlinear interactions of three and four electrostatic FB‐waves are considered analytically and numerically. The evolution of the nonlinear waves is described by a system of magnetohydrodynamic equations. 1) It is shown that the interaction of three and four coherent waves is the main physical mechanism which leads to the saturation of the FB‐instability. 2) If no dissipative and dispersive effects occur, an explosive instability may be excited. 3) The main result of the interaction of coherent waves is the generation of nonlinear waves and nonlinear structures when the waves are damped linearly and propagate perpendicular to the electron drift velocity. This region corresponds to large aspect angles of the small‐scale waves. 4) Further, the wave interaction causes a nonlinear stabilization of the growth of the high‐frequency waves and a formation of local density structures of the charged particles. The results of the numerical models allow to analyse the possibility of scenarios of the two‐stream plasma instability in the collisional auroral E‐region.  相似文献   

12.
Where spatial gradients in the amplitude of an Alfvén wave are non-zero, a nonlinear magnetic-pressure gradient acts upon the medium (commonly referred to as the ponderomotive force). We investigate the nature of such a force in inhomogeneous 2.5D MHD plasmas by analysing source terms in the nonlinear wave equations for the general case of inhomogeneous B and ρ, and consider supporting nonlinear numerical simulations. Our equations indicate that there are two distinct classes of ponderomotive effect induced by Alfvén waves in general 2.5D MHD, each with both a longitudinal and transverse manifestation. i) Geometric effects: Gradients in the pulse geometry relative to the background magnetic field cause the wave to sustain cospatial disturbances, the longitudinal and transverse daughter disturbances – where we report on the transverse disturbance for the first time. ii) ?(c A) effects: Where a pulse propagates through an inhomogeneous region (where the gradients in the Alfvén-speed profile c A are non-zero), the nonlinear magnetic-pressure gradient acts to accelerate the plasma. Transverse gradients (phase mixing regions) excite independently propagating fast magnetoacoustic waves (generalising the result of Nakariakov, Roberts, and Murawski (Solar Phys. 175, 93, 1997)) and longitudinal gradients (longitudinally dispersive regions) perturb along the field (thus creating static disturbances in β=0, and slow waves in β≠0). We additionally demonstrate that mode conversion due the nonlinear Lorentz force is a one-way process, and does not act as a mechanism to nonlinearly generate Alfvén waves due to propagating magnetoacoustic waves. We conclude that these ponderomotive effects are induced by an Alfvén wave propagating in any MHD medium, and have the potential to have significant consequences on the dynamics of energy transport and aspects of dissipation provided the system is sufficiently nonlinear and inhomogeneous.  相似文献   

13.
Willes  A.J. 《Solar physics》1999,186(1-2):319-336
A model for the generation mechanism for multiple frequency bands in solar spike bursts is extended to predict the degree of circular polarization of the spike burst radiation in the source region. In this model, several adjacent electrostatic Bernstein modes are excited by the electron-cyclotron maser instability and subsequent nonlinear coalescence of Bernstein waves produces transverse magnetoionic waves which freely propagate out of the source region at the foot of a coronal loop to an observer. The emission rates for the coalescence processes between two Bernstein waves to produce transverse x-mode and o-mode waves are compared in order to predict the polarization state of the product radiation. Low degrees of circular polarization favouring the x-mode are predicted to occur over a wide range of parameter space. The range of emission angles is shown to vary between each frequency band, which further constrains the number of simultaneously observable anharmonic bands than predicted in the earlier model. The consistency of these predictions with currently available polarization observations is discussed.  相似文献   

14.
A nonlinear Schrödinger equation is obtained for linearly polarized electromagnetic waves propagating across the ambient magnetic field in an electron-positron plasma. The nonlinearities arising from wave intensity induced particle mass modulation, as well as harmonic generation are incorporated. Modulational instability and localization of pulsar radiation are investigated.  相似文献   

15.
In this paper a unique 2.3–4.2 GHz radio spectrum of the flare impulsive phase, showing fast positively drifting bursts superimposed on a slowly negatively drifting burst, is presented. Analyzing this radio spectrum it was found that the flare started somewhere near the transition region, where upward propagating MHD waves were generated during the whole impulsive phase. Moreover, it was found that behind a front of these ascending MHD waves the downward propagating electron beams, which bombarded dense layers of the solar atmosphere, were accelerated. It seems that, simultaneously with the increase of beam bombardment intensity, the intensity of MHD waves was increasing and thus the MHD shock wave generation and the electron beam acceleration and bombardment formed a self-consistently amplifying flare process. At higher coronal heights this process was followed by a type II radio burst, i.e. by the MHD flare shock. To verify this concept, the numerical modeling of the shock-wave generation and propagation in space from a flare site near the transition region up to 3 solar radii was made. Comparing the thermal and magnetic field disturbances, it was found that those of magnetic origin are more relevant in this case. Combining the results of interpretation and numerical simulation, a model of the February 27, 1992 flare is suggested and new aspects of this model are discussed.  相似文献   

16.
Large-amplitude Alfvén waves propagating along the guide magnetic field in a three-component plasma are shown to be spatially localized due to their nonlinear interaction with nonresonant electrostatic density fluctuations. A new class of subsonic Alfvén soliton solutions are found to exist in the three-component plasma. The Alfvén solitons can be relevant in explaining the properties of hydromagnetic turbulence near the comets.  相似文献   

17.
In the present article, the results of theoretical investigation of the dynamics of generation and propagation of planetary (with wavelength 103 km and more) ultra-low frequency (ULF) electromagnetic wave structures in the dissipative ionosphere are given. The physical mechanism of generation of the planetary electromagnetic waves is proposed. It is established, that the global factor, acting permanently in the ionosphere—inhomogeneity (latitude variation) of the geomagnetic field and angular velocity of the earth's rotation—generates the fast and slow planetary ULF electromagnetic waves. The waves propagate along the parallels to the east as well as to the west. In E-region the fast waves have phase velocities (2-20) km s−1and frequencies (10−1-10−4) s−1; the slow waves propagate with local winds velocities and have frequencies (10−4-10−6) s−1. In F-region the fast ULF electromagnetic waves propagate with phase velocities tens-hundreds km s−1 and their frequencies are in the range of (10-10−3) s−1. The slow mode is produced by the dynamoelectric field, it represents a generalization of the ordinary Rossby-type waves in the rotating ionosphere and is caused by the Hall effect in the E-layer. The fast disturbances are the new modes, which are associated with oscillations of the ionospheric electrons frozen in the geomagnetic field and are connected with the large-scale internal vortical electric field generation in the ionosphere. The large-scale waves are weakly damped. The features and the parameters of the theoretically investigated electromagnetic wave structures agree with those of large-scale ULF midlatitude long-period oscillations (MLO) and magnetoionospheric wave perturbations (MIWP), observed experimentally in the ionosphere. It is established, that because of relevance of Coriolis and electromagnetic forces, generation of slow planetary electromagnetic waves at the fixed latitude in the ionosphere can give rise to the reverse of local wind structures and to the direction change of general ionospheric circulation. It is considered one more class of the waves, called as the slow magnetohydrodinamic (MHD) waves, on which inhomogeneity of the Coriolis and Ampere forces do not influence. These waves appear as an admixture of the slow Alfven- and whistler-type perturbations. The waves generate the geomagnetic field from several tens to several hundreds nT and more. Nonlinear interaction of the considered waves with the local ionospheric zonal shear winds is studied. It is established, that planetary ULF electromagnetic waves, at their interaction with the local shear winds, can self-localize in the form of nonlinear solitary vortices, moving along the latitude circles westward as well as eastward with velocity, different from phase velocity of corresponding linear waves. The vortices are weakly damped and long lived. They cause the geomagnetic pulsations stronger than the linear waves by one order. The vortex structures transfer the trapped particles of medium and also energy and heat. That is why such nonlinear vortex structures can be the structural elements of strong macroturbulence of the ionosphere.  相似文献   

18.
Linear and nonlinear analysis of low frequency magnetoacoustic waves propagating at an angle θ with the ambient magnetic field are investigated in dense electron-positron-ion (e-p-i) plasmas using the quantum magnetohydrodynamic (QMHD) model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived in the small amplitude limit. The stability of KPB equation is also presented. The variation of the nonlinear fast and slow magnetoacoustic shock waves with the positron concentration, kinematic viscosity, obliqueness parameter θ, and the magnetic field, are also investigated. It is observed that the aforementioned plasma parameters significantly modify the propagation characteristics of two dimensional nonlinear magnetoacoustic shock waves in dissipative quantum magnetoplasmas. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.  相似文献   

19.
In the present work, the generation of large-scale zonal flows and magnetic field by short-scale collision-less electron skin depth order drift-Alfven turbulence in the ionosphere is investigated. The self-consistent system of two model nonlinear equations, describing the dynamics of wave structures with characteristic scales till to the skin value, is obtained. Evolution equations for the shear flows and the magnetic field is obtained by means of the averaging of model equations for the fast-high-frequency and small-scale fluctuations. It is shown that the large-scale disturbances of plasma motion and magnetic field are spontaneously generated by small-scale drift-Alfven wave turbulence through the nonlinear action of the stresses of Reynolds and Maxwell. Positive feedback in the system is achieved via modulation of the skin size drift-Alfven waves by the large-scale zonal flow and/or by the excited large-scale magnetic field. As a result, the propagation of small-scale wave packets in the ionospheric medium is accompanied by low-frequency, long-wave disturbances generated by parametric instability. Two regimes of this instability, resonance kinetic and hydrodynamic ones, are studied. The increments of the corresponding instabilities are also found. The conditions for the instability development and possibility of the generation of large-scale structures are determined. The nonlinear increment of this interaction substantially depends on the wave vector of Alfven pumping and on the characteristic scale of the generated zonal structures. This means that the instability pumps the energy of primarily small-scale Alfven waves into that of the large-scale zonal structures which is typical for an inverse turbulent cascade. The increment of energy pumping into the large-scale region noticeably depends also on the width of the pumping wave spectrum and with an increase of the width of the initial wave spectrum the instability can be suppressed. It is assumed that the investigated mechanism can refer directly to the generation of mean flow in the atmosphere of the rotating planets and the magnetized plasma.  相似文献   

20.
Propagating disturbances are often observed in active region fan-like coronal loops. They were thought to be due to slow mode magnetohydrodynamic waves based on some of the observed properties. However, recent studies involving spectroscopy indicate that they could be due to high speed quasi-periodic upflows which are difficult to distinguish from upward propagating slow waves. In this context, we have studied a fan loop structure in the active region AR 11465 using simultaneous spectroscopic and imaging observations from the Extreme Ultraviolet Imaging Spectrometer onboard Hinode and Atmospheric Imaging Assembly onboard Solar Dynamics Observatory. Analysis of the data shows significant oscillations at different locations. We explore the variations in different line parameters to determine whether the waves or flows could cause these oscillations to improve the current understanding of the nature of these disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号