首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Hanford Reach of the Columbia River, a thin layer of recent alluvium overlies the sedimentary formations that comprise the unconfined groundwater aquifer. Experimental and modelling studies have demonstrated that this alluvial layer exerts significant control on the exchange of groundwater and surface water (hydrologic exchange flux), and is associated with elevated levels of biogeochemical activity. This layer is also observed to be strongly heterogeneous, and quantifying the spatial distribution of properties over the range of scales of interest is challenging. Facies are elements of a sediment classification scheme that groups complex geologic materials into a set of discrete classes according to distinguishing features. Facies classifications have been used as a framework for assigning heterogeneous material properties to grid cells of numerical models of flow and reactive transport in subsurface media. The usefulness of such an approach hinges on being able to relate facies to quantitative properties needed for flow and reactive transport modelling, and on being able to map facies over the domain of interest using readily available information. Although aquifer facies have been used in various modelling contexts, application of this concept to riverbed sediments is relatively new. Here, we describe an approach for categorizing and mapping recent alluvial (riverbed) sediments based on the integration of diverse observations with numerical simulations of river hydrodynamics. The facies have distinct distributions of sediment texture that correspond to variations in hydraulic properties, and therefore provide a useful framework for assigning heterogeneous properties in numerical simulations of hydrologic exchange flows and biogeochemical processes.  相似文献   

2.
Xunhong Chen 《水文研究》2011,25(2):278-287
Characterization of streambed hydraulic conductivity from the channel surface to a great depth below the channel surface can provide needed information for the determination of stream‐aquifer hydrologic connectedness, and it is also important to river restoration. However, knowledge on the streambed hydraulic conductivity for sediments 1 m below the channel surface is scarce. This study describes a method that was used to determine the distribution patterns of streambed hydraulic conductivity for sediments from channel surface to a depth of 15 m below. The method includes Geoprobe's direct‐push techniques and Permeameter tests. Direct‐push techniques were used to generate the electrical conductivity (EC) logs and to collect sequences of continuous sediment cores from river channels, as well as from the alluvial aquifer connected to the river. Permeameter tests on these sediment cores give the profiles of vertical hydraulic conductivity (Kv) of the channel sediments and the aquifer materials. This method was applied to produce Kv profiles for a streambed and an alluvial aquifer in the Platte River Valley of Nebraska, USA. Comparison and statistical analysis of the Kv profiles from the river channel and from the proximate alluvial aquifer indicates a special pattern of Kv in the channel sediments. This depth‐dependent pattern of Kv distribution for the channel sediments is considered to be produced by hyporheic processes. This Kv‐distribution pattern implied that the effect of hyporheic processes on streambed hydraulic conductivity can reach the sediments about 9 m below the channel surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Analytical solutions for the water table and lateral discharge in a heterogeneous unconfined aquifer with time-dependent source and fluctuating river stage were derived and compared with those in an equivalent homogeneous aquifer. The heterogeneous aquifer considered consists of a number of sections of different hydraulic conductivity values. The source term and river stage were assumed to be time-dependent but spatially uniform. The solutions derived is useful in studying various groundwater flow problems in a horizontally heterogeneous aquifer since the spatially piecewise-constant hydraulic conductivity and temporally piecewise-constant recharge and lateral discharge can be used to quantify variations in these processes commonly observed in reality. Applying the solutions derived to an aquifer of three sections of different hydraulic conductivity values shown that (1) the aquifer heterogeneity significantly increases the spatial variation of the water table and thus its gradient but it has little effect on lateral discharge in the case of temporally and spatially uniform recharge, (2) the time-dependent but spatially uniform recharge increases the temporal variation of groundwater table over the entire aquifer but its effect on lateral discharge is limited in the zone near the river, and (3) the effect of river stage fluctuation on the water table and lateral discharge is limited in the zone near the river and the effect of the heterogeneity is to increase lateral discharge to or recharge from the river.  相似文献   

4.
Despite the presence of gas in river beds being a well known phenomenon, its potential feedbacks on the hydraulic and thermal dynamics of the hyporheic zone has not been widely studied. This paper explores hypotheses that the presence of accumulated gas impacts the hydraulic and thermal dynamics of a river bed due to changes in specific storage, hydraulic conductivity, effective porosity, and thermal diffusivity. The hypotheses are tested using data analysis and modelling for a study site on the urban River Tame, Birmingham, UK. Gas, predominantly attributed to microbial denitrification, was observed in the river bed up to around 14% by volume, and to at least 0.8 m depth below river bed. Numerical modelling indicates that, by altering the relative hydraulic conductivity distribution, the gas in the river bed leads to an increase of groundwater discharge from the river banks (relative to river bed) by a factor of approximately 2 during river low flow periods. The increased compressible storage of the gas phase in the river bed leads to an increase in the simulated volume of river water invading the river bed within the centre of the channel during storm events. The exchange volume can be more than 30% greater in comparison to that for water saturated conditions. Furthermore, the presence of gas also reduces the water-filled porosity, and so the possible depth of such invading flows may also increase markedly, by more than a factor of 2 in the observed case. Observed diurnal temperature variations within the gaseous river bed at 0.1 and 0.5 m depth are, respectively, around 1.5 and 6 times larger than those predicted for saturated sediments. Annual temperature fluctuations are seen to be enhanced by around 4 to 20% compared to literature values for saturated sediments. The presence of gas may thus alter the bulk thermal properties to such a degree that the use of heat tracer techniques becomes subject to a much greater degree of uncertainty. Although the likely magnitude of thermal and hydraulic changes due to the presence of gas for this site have been demonstrated, further research is needed into the origins of the gas and its spatial and temporal variability to enable quantification of the significance of these changes for chemical attenuation and hyporheic zone biology.  相似文献   

5.
River-aquifer interactions, geologic heterogeneity, and low-flow management   总被引:4,自引:0,他引:4  
Low river flows are commonly controlled by river-aquifer exchange, the magnitude of which is governed by hydraulic properties of both aquifer and aquitard materials beneath the river. Low flows are often important ecologically. Numerical simulations were used to assess how textural heterogeneity of an alluvial system influences river seepage and low flows. The Cosumnes River in California was used as a test case. Declining fall flows in the Cosumnes River have threatened Chinook salmon runs. A ground water-surface water model for the lower river basin was developed, which incorporates detailed geostatistical simulations of aquifer heterogeneity. Six different realizations of heterogeneity and a homogenous model were run for a 3-year period. Net annual seepage from the river was found to be similar among the models. However, spatial distribution of seepage along the channel, water table configuration and the level of local connection, and disconnection between the river and aquifer showed strong variations among the different heterogeneous models. Most importantly, the heterogeneous models suggest that river seepage losses can be reduced by local reconnections, even when the regional water table remains well below the riverbed. The percentage of river channel responsible for 50% of total river seepage ranged from 10% to 26% in the heterogeneous models as opposed to 23% in the homogeneous model. Differences in seepage between the models resulted in up to 13 d difference in the number of days the river was open for salmon migration during the critical fall months in one given year.  相似文献   

6.
This paper builds on a recently published one-dimensional moving-boundary model of the coevolution of topset, foreset and bottomset in a reservoir that captures the dynamics of the internal muddy pond typical to reservoirs. This model was modified to account for different outlet locations at the reservoir's downstream end. This model considers a river carrying two sustained phases of sediments: coarse (sand) and fine (mud). The coarse phase deposits in the topset and delta foreset, while the fine phase forms a dilute suspension of wash load in the river. As the river enters the reservoir, the muddy water plunges on the foreset to form a Froude-supercritical (purely depositional) turbidity current. This turbidity current emplaces the bottomset. The modified numerical model was tested against five laboratory experiments previously reported by the author. The model successfully locates the muddy-water/clear-water interface. In addition, modeled and measured bed deposits are in good agreement. Results clearly indicate that the location of the internal hydraulic jump plays a key role in the final bed deposit.  相似文献   

7.
Man-induced regime shifts in small estuaries—I: theory   总被引:3,自引:2,他引:1  
This is Part I of two papers on man-induced regime shifts in small, narrow, and converging estuaries, with focus on the interaction between effective hydraulic drag, fine sediment import, and tidal amplification, induced by river engineering works, e.g., narrowing and deepening. In this part, a simple linear analytical model is derived, solving the linearized shallow water equations in exponentially converging tidal rivers. Distinguishing reflecting and non-reflecting conditions, a non-dimensional dispersion equation is derived which yields the real and imaginary wave numbers as a function of the estuarine convergence number and effective hydraulic drag. The estuarine convergence number describes the major geometrical features of a tidal river, e.g., intertidal area, convergence length, and water depth. This model is used in Part II analyzing the historical development of the tide in four rivers. Part I also presents a conceptual model on the response of tidal rivers to narrowing and deepening. It is argued that, upon the loss of intertidal area, flood-dominant conditions prevail, upon which fine sediments are pumped into the river, reducing its effective hydraulic drag. Then a snowball effect may be initiated, bringing the river into a hyper-turbid state. This state is self-maintaining because of entrainment processes, and favorable from an energetic point of view, and therefore highly stable. We may refer to an alternative steady state.  相似文献   

8.
Winterwerp  Johan C.  Wang  Zheng Bing 《Ocean Dynamics》2013,63(11):1279-1292

This is Part I of two papers on man-induced regime shifts in small, narrow, and converging estuaries, with focus on the interaction between effective hydraulic drag, fine sediment import, and tidal amplification, induced by river engineering works, e.g., narrowing and deepening. In this part, a simple linear analytical model is derived, solving the linearized shallow water equations in exponentially converging tidal rivers. Distinguishing reflecting and non-reflecting conditions, a non-dimensional dispersion equation is derived which yields the real and imaginary wave numbers as a function of the estuarine convergence number and effective hydraulic drag. The estuarine convergence number describes the major geometrical features of a tidal river, e.g., intertidal area, convergence length, and water depth. This model is used in Part II analyzing the historical development of the tide in four rivers. Part I also presents a conceptual model on the response of tidal rivers to narrowing and deepening. It is argued that, upon the loss of intertidal area, flood-dominant conditions prevail, upon which fine sediments are pumped into the river, reducing its effective hydraulic drag. Then a snowball effect may be initiated, bringing the river into a hyper-turbid state. This state is self-maintaining because of entrainment processes, and favorable from an energetic point of view, and therefore highly stable. We may refer to an alternative steady state.

  相似文献   

9.
This study investigates spatial patterns and temporal dynamics of aquifer–river exchange flow at a reach of the River Leith, UK. Observations of sub‐channel vertical hydraulic gradients at the field site indicate the dominance of groundwater up‐welling into the river and the absence of groundwater recharge from surface water. However, observed hydraulic heads do not provide information on potential surface water infiltration into the top 0–15 cm of the streambed as these depths are not covered by the existing experimental infrastructure. In order to evaluate whether surface water infiltration is likely to occur outside the ‘window of detection’, i.e. the shallow streambed, a numerical groundwater model is used to simulate hydrological exchanges between the aquifer and the river. Transient simulations of the successfully validated model (Nash and Sutcliff efficiency of 0·91) suggest that surface water infiltration is marginal and that the possibility of significant volumes of surface water infiltrating into non‐monitored shallow streambed sediments can be excluded for the simulation period. Furthermore, the simulation results show that with increasing head differences between river and aquifer towards the end of the simulation period, the impact of streambed topography and hydraulic conductivity on spatial patterns of exchange flow rates decreases. A set of peak flow scenarios with altered groundwater‐surface water head gradients is simulated in order to quantify the potential for surface water infiltration during characteristic winter flow conditions following the observation period. The results indicate that, particularly at the beginning of peak flow conditions, head gradients are likely to cause substantial increase in surface water infiltration into the streambed. The study highlights the potential for the improvement of process understanding of hyporheic exchange flow patterns at the stream reach scale by simulating aquifer‐river exchange fluxes with a standard numerical groundwater model and a simple but robust model structure and parameterization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a vertically averaged model for studying water and solute exchanges between a large river and its adjacent alluvial aquifer. The hydraulic model couples horizontal 2D Saint Venant equations for river flow and a 2D Dupuit equation for aquifer flow. The dynamic coupling between river and aquifer is provided by continuity of fluxes and water level elevation between the two domains. Equations are solved simultaneously by linking the two hydrological system matrices in a single global matrix in order to ensure the continuity conditions between river and aquifer and to accurately model two‐way coupling between these two domains. The model is applied to a large reach (about 36 km2) of the Garonne River (south‐western France) and its floodplain, including an instrumented site in a meander. Simulated hydraulic heads are compared with experimental measurements on the Garonne River and aquifer in the floodplain. Model verification includes comparisons for one point sampling date (27 piezometers, 30 March 2000) and for hydraulic heads variations measured continuously over 5 months (5 piezometers, 1 January to 1 June 2000). The model accurately reproduces the strong hydraulic connections between the Garonne River and its aquifer, which are confirmed by the simultaneous variation of the water level in the river and in piezometers located near the river bank. The simulations also confirmed that the model is able to reproduce groundwater flow dynamics during flood events. Given these results, the hydraulic model was coupled with a solute‐transport component, based on advection‐dispersion equations, to investigate the theoretical dynamics of a conservative tracer over 5 years throughout the 36 km2 reach studied. Meanders were shown to favour exchanges between river and aquifer, and although the tracer was diluted in the river, the contamination moved downstream from the injection plots and affected both river banks. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Over 400 unlithified sediment samples were collected from four different depositional environments in global locations and the grain‐size distribution, porosity, and hydraulic conductivity were measured using standard methods. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations (e.g., Hazen, Carman‐Kozeny) commonly used to estimate hydraulic conductivity from grain‐size distribution. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values with errors ranging to over 500%. To improve the empirical estimation methodology, the samples were grouped by depositional environment and subdivided into subgroups based on lithology and mud percentage. The empirical methods were then analyzed to assess which methods best estimated the measured values. Modifications of the empirical equations, including changes to special coefficients and addition of offsets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, offshore marine, and river sediments. Estimated hydraulic conductivity errors were reduced to 6 to 7.1 m/day for the beach subgroups, 3.4 to 7.1 m/day for dune subgroups, and 2.2 to 11 m/day for offshore sediments subgroups. Improvements were made for river environments, but still produced high errors between 13 and 23 m/day.  相似文献   

12.
The distribution of particulate matter within river channels, including sediments, nutrients and pollutants, is fundamental to the survival of aquatic organisms. However, the interactions between flow and sediment transport at the patch scale of river systems represents an under‐researched component of physical habitat studies, particularly those concerning the characterization of ‘physical biotopes’ (riffles, runs, pools, glides). This paper describes a field methodology for exploring the transfer of particulate matter at small scales within river channels, which may be used to aid hydraulic habitat characterization. The field protocol combines field measurement of high frequency flow properties, to characterize hydraulic habitat units, and deployment of spatial arrays of turbidity probes, to detect the passage of artificially‐induced sediment plumes through different biotope units. Sediment plumes recorded by the probes are analysed quantitatively in the manner of the flood hydrograph, and qualitative inferences are made on the dominant mixing processes operating within different parts of the channel. Relationships between the nature of spatio‐temporal hydraulic variations within glide, riffle and pool biotopes, and the character and mixing behaviour of sediment plumes within these habitat units are identified. Results from these preliminary experiments suggest that investigating and characterizing the transfer and storage of sediments, nutrients and pollutants within and between different biotopes is a viable avenue for further research, with potential to contribute to improved physical habitat characterization for river management and habitat restoration. The experiments are also an illustration of the value of neglected synergies between process geomorphology, ecology and river hydraulics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The distribution and fate of polycyclic aromatic hydrocarbons (PAHs) were investigated in surface sediments (0...2 cm) and fluffy layer material of the internal and external coastal waters of the Odra river estuary (north-eastern Germany). The area includes the Odra Lagoon (Oderhaff), the Greifswalder Bodden, the Pomeranian Bight, and the Arkona Basin. Elevated concentrations were observed in the surface sediments of the internal coastal waters with highest concentrations in the Odra Lagoon. This indicates a significant contribution of river discharge to the contamination of sediments with PAHs. During the exceptional Odra flood in the summer of 1997 significantly higher concentrations of PAHs were found in the fluffy layer material of the Odra Estuary. The distribution of the individual PAH compounds varies widely depending on their structure and molecular weight. A concentration gradient of the lower molecular weight PAHs was found from the Odra Lagoon to the open sea areas. The concentrations decreased rapidly from the Oder Haff to the Arkona Basin. These results were found in both sediments and fluffy layer material. This is attributed to the degradation of the lower molecular weight PAHs during transport from the urban regions to the sedimentation basins. A decrease of this magnitude was not found for the higher molecular weight PAHs (i.e. benzo(a)pyrene) due to their higher persistence. An enrichment of these compounds was measured in the Arkona Basin.  相似文献   

14.
Sediments are an essential habitat compartment in rivers, which is a subject to dynamic transport processes. In many rivers, the fine deposited sediments are contaminated with heavy metals and organic compounds. Contaminated deposits are considered as potential hot spots because of the risk of the mobilization under erosive hydraulic conditions. Numerical models for particulate contaminant transport are then necessary and can be applied to estimate and predict the potential impact of mobilized contaminants as an important contribution to sediment management. This paper focuses on the quantification of the amount of contaminated sediments resuspended during the extreme flood event in 1999 and the prediction of deposition one year after the flood event. To assess such erosive flood event, a 2D numerical transport model was developed to analyse the dynamics of erosion and sedimentation processes in the headwater of a cross dam at the Upper Rhine River. The dam consists of a weir, a hydropower plant, and a navigation lock. As the weir is operating only for flood management, a huge amount of sediment highly contaminated with the hexachlorobenzene (HCB) was deposited in the weir zone. Therefore, numerical simulations were performed to determine the spatial and temporal distribution of deposited contaminated sediments as depending on the river discharge and its distribution to the hydraulic structures. The numerical investigation presented here is taken as a retrospective analysis of the contaminated sediment dynamics in the headwater to improve future sediment management.  相似文献   

15.
Many urban rivers receive significant inputs of metal‐contaminated sediments from their catchments. Restoration of urban rivers often creates increased slack water areas and in‐channel vegetation growth where these metal‐contaminated sediments may accumulate. Quantifying the accumulation and retention of these sediments by in‐channel vegetation in urban rivers is of importance in terms of the planning and management of urban river restoration schemes and compliance with the Water Framework Directive. This paper investigates sediment properties at four sites across three rivers within Greater London to assess the degree to which contaminated sediments are being retained. Within paired restored and unrestored reaches at each site, four different bed sediment patch types (exposed unvegetated gravel, sand, and silt/clay (termed ‘fine’) sediments, and in‐channel vegetated sediments) were sampled and analysed for a range of metals and sediment characteristics. Many samples were found to exceed Environment Agency guidelines for copper (Cu), lead (Pb) and zinc (Zn) and Dutch Intervention Values for Cu and Zn. At all sites, sediments accumulating around in‐channel vegetation were similar in calibre and composition to exposed unvegetated fine sediments. Both bed sediment types contained high concentrations of pseudo‐total and acetic acid extractable metal concentrations, potentially due to elevated organic matter and silt/clay content, as these are important sorbtion phases for metals. This implies that the changed sediment supply and hydraulic conditions associated with river restoration may lead to enhanced retention of contaminated fine sediments, particularly around emergent plants, frequently leading to the development of submerged and emergent landforms and potential river channel adjustments. High pseudo‐total metal concentrations were also found in gravel bed sediments, probably associated with iron (Fe) and manganese (Mn) oxyhydroxides and discrete anthropogenic metal‐rich particles. These results highlight the importance of understanding the potential effects of urban river restoration upon sediment availability and channel hydraulics and consequent impacts upon sediment contaminant dynamics and storage. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Artesian springs are localized aquifer outlets that originate when pressurized ground water is allowed to rise to the surface. Computing artesian discharge directly is often subject to practical difficulties such as restricted accessibility, abundant vegetation or slow flow rates. These circumstances call for indirect approaches to quantify flow. This paper presents a method to estimate ground water discharge through an upwelling spring by means of a three‐layer steady‐state groundwater flow model. Model inputs include on‐site measurements of vertical sediment permeability, sediment temperatures and hydraulic gradients. About 70 spring bed piezometers were used to carry out permeability tests within the spring sediments, as well as to quantify the hydraulic head at different depths below the discharge point. Sediment temperatures were measured at different depths and correlated to permeabilities in order to demonstrate the potential of temperature as a substitute for cumbersome slug tests. Results show that the spatial distribution of discharge through the spring bottom is highly heterogeneous, as sediment permeability varies by several orders of magnitude within centimetres. Sensitivity analyses imply that geostatistical interpolation is irrelevant to the results if field datasets come from a sufficiently high resolution of piezometric records. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A modelling framework for the quick estimate of flood inundation and the resultant damages is developed in this paper. The model, called the flood economic impact analysis system (FEIAS), can be applied to a river reach of any hydrogeological river basin. For the development of the integrated modelling framework, three models were employed: (1) a modelling scheme based on the Hydrological Simulation Program FORTRAN model that was developed for any geomorphological river basin, (2) a river flow/floodplain model, and (3) a flood loss estimation model. The first sub‐model of the flood economic impact analysis system simulates the hydrological processes for extended periods of time, and its output is used as input to a second component, the river/floodplain model. The hydraulic model MIKE 11 (quasi‐2D) is the river/floodplain model employed in this study. The simulated flood parameters from the hydraulic model MIKE 11 (quasi‐2D) are passed, at the end of each time step, to a third component, the flood loss model for the estimation of flood damage. In the present work, emphasis was given to the seasonal variation of Manning's coefficient (n), which is an important parameter for the determination of the flood inundation in hydraulic modelling. High values of Manning's coefficient for a channel indicate high flow resistance. The riparian vegetation can have a large impact on channel resistance. The modelling framework developed in this paper was used to investigate the role of riparian vegetation in reducing flood damage. Moreover, it was used to investigate the influence of cutting riparian vegetation scenarios on the flow characteristics. The proposed framework was applied to the downstream part of the Koiliaris River basin in Crete, Greece, and was tested and validated with historical data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Thinly stratified sedimentary deposits in a heterogeneous field were investigated to obtain basic physical data for the simulation of water flow. A procedure is described which translates a thinly stratified soil profile into a number of functional layers using functional hydrological properties. A functional layer is defined as a combination of one or more soil horizons and should (i) be recognizable during a soil survey using an auger and (ii) show significantly different functional hydrological properties when compared with another functional layer. This procedure gave three easily recognizable functional layers. Sets of hydrological characteristics of these three functional layers were obtained by physical measurements of the soil and by estimation, using textural data for classification into a standard Dutch series. The performance of several combinations of these sets was tested by comparing simulated and measured soil matric potentials for seven plots during one year. The best simulation results were obtained if measured soil hydraulic characteristics were used for relatively homogeneous functional layers and if the soil hydraulic characteristics were estimated at each location for the most heterogeneous layer.  相似文献   

19.
建立包含震源、沉积盆地和表层低速沉积层的二维模型,采用交错网格有限差分/伪谱混合方法求解地震波传播,讨论沉积层厚度和速度对地震地面运动的作用。结果表明:沉积层内产生的地震波的多重反射以及转换会引起地面运动持续时间的延长,它们的相干叠加会造成地面运动峰值的放大;随着沉积层速度的增加,多重反射与转换波的能量减小,地面运动持续时间减小,但是不同速度或者不同厚度的低速层模型均显示出一致的地面运动峰值放大特征。结果说明,在包含震源、沉积盆地和沉积层的模型中,沉积层对地面运动的作用机理更复杂。在实际应用中有必要同时考虑这些因素的综合作用。  相似文献   

20.
A thin layer of fine‐grained sediment commonly is deposited at the sediment–water interface of streams and rivers during low‐flow conditions, and may hinder exchange at the sediment–water interface similar to that observed at many riverbank‐filtration (RBF) sites. Results from a numerical groundwater‐flow model indicate that a low‐permeability veneer reduces the contribution of river water to a pumping well in a riparian aquifer to various degrees, depending on simulated hydraulic gradients, hydrogeological properties, and pumping conditions. Seepage of river water is reduced by 5–10% when a 2‐cm thick, low‐permeability veneer is present on the bed surface. Increasing thickness of the low‐permeability layer to 0·1 m has little effect on distribution of seepage or percentage contribution from the river to the pumping well. A three‐orders‐of‐magnitude reduction in hydraulic conductivity of the veneer is required to reduce seepage from the river to the extent typically associated with clogging at RBF sites. This degree of reduction is much larger than field‐measured values that were on the order of a factor of 20–25. Over 90% of seepage occurs within 12 m of the shoreline closest to the pumping well for most simulations. Virtually no seepage occurs through the thalweg near the shoreline opposite the pumping well, although no low‐permeability sediment was simulated for the thalweg. These results are relevant to natural settings that favour formation of a substantial, low‐permeability sediment veneer, as well as central‐pivot irrigation systems, and municipal water supplies where river seepage is induced via pumping wells. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号