首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Photospheric motion shears or twists solar magnetic fields to increase magnetic energy in the corona, because this process may change a current-free state of a coronal field to force-free states which carry electric current. This paper analyzes both linear and nonlinear two-dimensional force-free magnetic field models and derives relations of magnetic energy buildup with photospheric velocity field. When realistic data of solar magnetic field (B 0 103 G) and photospheric velocity field (v max 1 km s–1) are used, it is found that 3–4 hours are needed to create an amount of free magnetic energy which is of the order of the current-free field energy. Furthermore, the paper studies situations in which finite magnetic diffusivities in photospheric plasma are introduced. The shearing motion increases coronal magnetic energy, while the photospheric diffusion reduces the energy. The variation of magnetic energy in the coronal region, then, depends on which process dominates.  相似文献   

2.
The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) provides photospheric vector magnetograms with a high spatial and temporal resolution. Our intention is to model the coronal magnetic field above active regions with the help of a nonlinear force-free extrapolation code. Our code is based on an optimization principle and has been tested extensively with semianalytic and numeric equilibria and applied to vector magnetograms from Hinode and ground-based observations. Recently we implemented a new version which takes into account measurement errors in photospheric vector magnetograms. Photospheric field measurements are often affected by measurement errors and finite nonmagnetic forces inconsistent for use as a boundary for a force-free field in the corona. To deal with these uncertainties, we developed two improvements: i) preprocessing of the surface measurements to make them compatible with a force-free field, and ii) new code which keeps a balance between the force-free constraint and deviation from the photospheric field measurements. Both methods contain free parameters, which must be optimized for use with data from SDO/HMI. In this work we describe the corresponding analysis method and evaluate the force-free equilibria by how well force-freeness and solenoidal conditions are fulfilled, by the angle between magnetic field and electric current, and by comparing projections of magnetic field lines with coronal images from the Atmospheric Imaging Assembly (SDO/AIA). We also compute the available free magnetic energy and discuss the potential influence of control parameters.  相似文献   

3.
Nonlinear force-free magnetic field(NLFFF) extrapolation based on the observed photospheric magnetic field is the most important method to obtain the coronal magnetic field nowadays.However, raw photospheric magnetograms contain magnetic forces and small-scale noises, and fail to be consistent with the force-free assumption of NLFFF models. The procedure for removing the forces and noises in observed data is called preprocessing. In this paper, we extend the preprocessing code of Jiang Feng to spherical coordinates for a full sphere. We first smooth the observed data with Gaussian smoothing, and then split the smoothed magnetic field into a potential field and a non-potential field.The potential part is computed by a numerical potential field model, and the non-potential part is preprocessed using an optimization method to minimize the magnetic forces and magnetic torques. Applying the code to synoptic charts of the vector magnetic field from SDO/HMI, we find it can effectively reduce the noises and forces, and improve the quality of data for a better input which will be used for NLFFF extrapolations applied to the global corona.  相似文献   

4.
Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superphotospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Measurements of magnetic fields and electric currents in the pre-eruptive corona are crucial to the study of solar eruptive phenomena, like flares and coronal mass ejections (CMEs). However, spectro-polarimetric measurements of certain photospheric lines permit a determination of the vector magnetic field only at the photosphere. Therefore, there is considerable interest in accurate modeling of the solar coronal magnetic field using photospheric vector magnetograms as boundary data. In this work, we model the coronal magnetic field above multiple active regions with the help of a potential field and a nonlinear force-free field (NLFFF) extrapolation code over the full solar disk using Helioseismic and Magnetic Imager (SDO/HMI) data as boundary conditions. We compare projections of the resulting magnetic field lines with full-disk coronal images from the Atmospheric Imaging Assembly (SDO/AIA) for both models. This study has found that the NLFFF model reconstructs the magnetic configuration closer to observation than the potential field model for full-disk magnetic field extrapolation. We conclude that many of the trans-equatorial loops connecting the two solar hemispheres are current-free.  相似文献   

6.
I. Contopoulos 《Solar physics》2013,282(2):419-426
We present a new improved version of our force-free electrodynamics (FFE) numerical code in spherical coordinates that extrapolates the magnetic field in the inner solar corona from a photospheric vector magnetogram. The code satisfies the photospheric boundary condition and the condition ??B=0 to machine accuracy. The performance of our method is evaluated with standard convergence parameters, and is found to be comparable to that of other nonlinear force-free extrapolations.  相似文献   

7.
Wiegelmann  T. 《Solar physics》2004,219(1):87-108
We developed a code for the reconstruction of nonlinear force-free and non-force-free coronal magnetic fields. The 3D magnetic field is computed numerically with the help of an optimization principle. The force-free and non-force-free codes are compiled in one program. The force-free approach needs photospheric vector magnetograms as input. The non-force-free code additionally requires the line-of-sight integrated coronal density distribution in combination with a tomographic inversion code. Previously the optimization approach has been used to compute magnetic fields using all six boundaries of a computational box. Here we extend this method and show how the coronal magnetic field can be reconstructed only from the bottom boundary, where the boundary conditions are measured with vector magnetographs. The program is planed for use within the Stereo mission.  相似文献   

8.
Solar eruptive phenomena, like flares and coronal mass ejections (CMEs), are governed by magnetic fields. To describe the structure of these phenomena one needs information on the magnetic flux density and the electric current density vector components in three dimensions throughout the atmosphere. However, current spectro-polarimetric measurements typically limit the determination of the vector magnetic field to only the photosphere. Therefore, there is considerable interest in accurate modeling of the solar coronal magnetic field using photospheric vector magnetograms as boundary data. In this work, we model the coronal magnetic field for global solar atmosphere using nonlinear force-free field (NLFFF) extrapolation codes implemented to a synoptic maps of photospheric vector magnetic field synthesized from the Vector Spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) as boundary condition. Using the resulting three-dimensional magnetic field, we calculate the three-dimensional electric current density and magnetic energy throughout the solar atmosphere for Carrington rotation 2124 using our global extrapolation code. We found that spatially, the low-lying, current-carrying core field demonstrates a strong concentration of free energy in the active-region core, from the photosphere to the lower corona (about 70 Mm). The free energy density appears largely co-spatial with the electric current distribution.  相似文献   

9.
T. Takakura 《Solar physics》1987,107(2):283-297
Numerical simulation for the dynamics of a coronal filamentary magnetic loop has been made under the assumption that the field is initially force-free and an electric resistivity suddenly increases at a given moment due to an appearance of ion sound waves, which can be excited due to a high current density if a characteristic radius r 0 of the magnetic loop is about 3 km or less in a magnetic field B 0 of 1000 G. During the resistive decay of the magnetic field a strong field-aligned electric field is created and maintained for a sufficient time to acceleratie both electrons and protons to a high energy, which is proportional to B 0/r 0 and can be 100 MeV if r 0 = 10 km and B 0 = 1000 G. If the coronal magnetic tube is composed of many such filamentary loops, the total number of accelerated electrons is consistent with the observations.  相似文献   

10.
Y. R. Chou  B. C. Low 《Solar physics》1994,153(1-2):255-285
Three-dimensional, quasi-static evolutions of coronal magnetic fields driven by photospheric flux emergence are modeled by a class of analytic force-free magnetic fields. Our models relate commonly observed photospheric magnetic phenomena, such as the formation and growth of sunspots, the emergence of an X-type separator, and the collision and merging of sunspots, to the three-dimensional magnetic fields in the corona above. By tracking the evolution in terms of a continuous sequence of force-free states, we show that flux emergence and submergence along magnetic neutral lines in the photosphere are essential processes in all these photospheric phenomena. The analytic solutions we present have a parametric regime within which the magnetic energy attained by an evolving force-free field may be of the order of 1030 ergs to several 1031 ergs, depending on the magnetic environment into which an emerging flux intrudes. The commonly used indicators of magnetic shear in magnetogram interpretation are discussed in terms of field connectivity in our models. It is demonstrated that the crossing angle of the photospheric transverse magnetic field with the neutral line may not be a reliable indicator of the magnetic shear in the coronal field above, due to the complexity of three-dimensionality. The poorly understood constraint of magnetic-helicity conservation on the availability of magnetic free energy for a flare is briefly discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

11.
S. Régnier 《Solar physics》2012,277(1):131-151
In the last decades, force-free-field modelling has been used extensively to describe the coronal magnetic field and to better understand the physics of solar eruptions at different scales. Especially the evolution of active regions has been studied by successive equilibria in which each computed magnetic configuration is subject to an evolving photospheric distribution of magnetic field and/or electric-current density. This technique of successive equilibria has been successful in describing the rate of change of the energetics for observed active regions. Nevertheless the change in magnetic configuration due to the increase/decrease of electric current for different force-free models (potential, linear and nonlinear force-free fields) has never been studied in detail before. Here we focus especially on the evolution of the free magnetic energy, the location of the excess of energy, and the distribution of electric currents in the corona. For this purpose, we use an idealised active region characterised by four main polarities and a satellite polarity, allowing us to specify a complex topology and sheared arcades to the coronal magnetic field but no twisted flux bundles. We investigate the changes in the geometry and connectivity of field lines, the magnetic energy and current-density content as well as the evolution of null points. Increasing the photospheric current density in the magnetic configuration does not dramatically change the energy-storage processes within the active region even if the magnetic topology is slightly modified. We conclude that for reasonable values of the photospheric current density (the force-free parameter α<0.25 Mm−1), the magnetic configurations studied do change but not dramatically: i) the original null point stays nearly at the same location, ii) the field-line geometry and connectivity are slightly modified, iii) even if the free magnetic energy is significantly increased, the energy storage happens at the same location. This extensive study of different force-free models for a simple magnetic configuration shows that some topological elements of an observed active region, such as null points, can be reproduced with confidence only by considering the potential-field approximation. This study is a preliminary work aiming at understanding the effects of electric currents generated by characteristic photospheric motions on the structure and evolution of the coronal magnetic field.  相似文献   

12.
Jiao  Litao  McClymont  A. N.  MikiĆ  Z. 《Solar physics》1997,174(1-2):311-327
Studies of solar flares indicate that the mechanism of flares is magnetic in character and that the coronal magnetic field is a key to understanding solar high-energy phenomena. In our ongoing research we are conducting a systematic study of a large database of observations which includes both coronal structure (from the Soft X-ray Telescope on the Yohkoh spacecraft) and photospheric vector magnetic fields (from the Haleakala Stokes Polarimeter at Mees Solar Observatory). We compare the three-dimensional nonlinear force-free coronal magnetic field, computed from photospheric boundary data, to images of coronal structure. In this paper we outline our techniques and present results for active region AR 7220/7222. We show that the computed force-free coronal magnetic field agrees well with Yohkoh X-ray coronal loops, and we discuss the properties of the coronal magnetic field and the soft X-ray loops.  相似文献   

13.
Extrapolation codes for modelling the magnetic field in the corona in Cartesian geometry do not take the curvature of the Sun’s surface into account and can only be applied to relatively small areas, e.g., a single active region. We apply a method for nonlinear force-free coronal magnetic field modelling of photospheric vector magnetograms in spherical geometry which allows us to study the connectivity between multi-active regions. We use Vector Spectromagnetograph (VSM) data from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) survey to model the coronal magnetic field, where we study three neighbouring magnetically connected active regions (ARs 10987, 10988, 10989) observed on 28, 29, and 30 March 2008, respectively. We compare the magnetic field topologies and the magnetic energy densities and study the connectivities between the active regions. We have studied the time evolution of the magnetic field over the period of three days and found no major changes in topologies, as there was no major eruption event. From this study we have concluded that active regions are much more connected magnetically than the electric current.  相似文献   

14.
This paper analyzes the magnetic field structure of active regions at coronal heights determined by means of multi-wavelength observations of polarized radio emission in the microwave range, and compares it with the force-free magnetic field extrapolation into the corona from the photospheric magnetograms. Our method of one-dimensional radio stereoscopy indicates higher magnetic field strength compared with the field reconstructed from photospheric magnetograms. It is shown that the sense of inclinations of the field lines we obtained from the radio data matches the shape of the reconstructed magnetic field lines, although the degree of the inclinations is very different.  相似文献   

15.
J. J. Aly  N. Seehafer 《Solar physics》1993,144(2):243-254
Models of the magnetic field in the solar chromosphere and corona are still mainly based on theoretical extrapolations of photospheric measurements. For the practical calculation of the global field, the so-called source-surface model has been introduced, in which the influence of the solar wind is described by the requirement that the field be radial at some exterior (source) surface. Then the assumption that the field is current-free in the volume between the photosphere and this surface allows for its determination from the photospheric measurement. In the present paper a generalization of the source-surface model to force-free fields is proposed. In the generalized model the parameter( = ×B·B/B 2)must be non-constant (or vanish identically) and currents are restricted to regions with closed field lines. A mathematical algorithm for computing the field from boundary data is devised.  相似文献   

16.
Wiegelmann  T.  Neukirch  T. 《Solar physics》2002,208(2):233-251
We present a method to include stereoscopic information about the three-dimensional structure of flux tubes into the reconstruction of the coronal magnetic field. Due to the low plasma beta in the corona we can assume a force-free magnetic field, with the current density parallel to the magnetic field lines. Here we use linear force-free fields for simplicity. The method uses the line-of-sight magnetic field on the photosphere as observational input. The value of is determined iteratively by comparing the reconstructed magnetic field with the observed structures. The final configuration is the optimal linear force-free solution constrained by both the photospheric magnetogram and the observed plasma structures. As an example we apply our method to SOHO MDI/EIT data of an active region. In the future it is planned to apply the method to analyse data from the SECCHI instrument aboard the STEREO mission.  相似文献   

17.
Sýkora  J.  Badalyan  O.G.  Obridko  V.N. 《Solar physics》2003,212(2):301-318
Observations of ten solar eclipses (1973–1999) enabled us to reveal and describe mutual relations between the white-light corona structures (e.g., global coronal forms and most conspicuous coronal features, such as helmet streamers and coronal holes) and the coronal magnetic field strength and topology. The magnetic field strength and topology were extrapolated from the photospheric data under the current-free assumption. In spite of this simplification the found correspondence between the white-light corona structure and magnetic field organization strongly suggests a governing role of the field in the appearance and evolution of local and global structures. Our analysis shows that the study of white-light corona structures over a long period of time can provide valuable information on the magnetic field cyclic variations. This is particularly important for the epoch when the corresponding measurements of the photospheric magnetic field are absent.  相似文献   

18.
Based on a second-order approximation of nonlinear force-free magnetic field solutions in terms of uniformly twisted field lines derived in Paper I, we develop here a numeric code that is capable to forward-fit such analytical solutions to arbitrary magnetogram (or vector magnetograph) data combined with (stereoscopically triangulated) coronal loop 3D coordinates. We test the code here by forward-fitting to six potential field and six nonpotential field cases simulated with our analytical model, as well as by forward-fitting to an exactly force-free solution of the Low and Lou (Astrophys. J. 352, 343, 1990) model. The forward-fitting tests demonstrate: i) a satisfactory convergence behavior (with typical misalignment angles of μ≈1°?–?10°), ii) relatively fast computation times (from seconds to a few minutes), and iii) the high fidelity of retrieved force-free α-parameters (α fit/α model≈0.9?–?1.0 for simulations and α fit/α model≈0.7±0.3 for the Low and Lou model). The salient feature of this numeric code is the relatively fast computation of a quasi-force-free magnetic field, which closely matches the geometry of coronal loops in active regions, and complements the existing nonlinear force-free field (NLFFF) codes based on photospheric magnetograms without coronal constraints.  相似文献   

19.
20.
We derive an analytical approximation of nonlinear force-free magnetic field solutions (NLFFF) that can efficiently be used for fast forward-fitting to solar magnetic data, constrained either by observed line-of-sight magnetograms and stereoscopically triangulated coronal loops, or by 3D vector-magnetograph data. The derived NLFFF solutions provide the magnetic field components B x (x), B y (x), B z (x), the force-free parameter α(x), the electric current density j(x), and are accurate to second-order (of the nonlinear force-free α-parameter). The explicit expressions of a force-free field can easily be applied to modeling or forward-fitting of many coronal phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号