首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Horizontal well combined with volume fracturing technology has been extensively employed in the development of tight gas reservoirs. The disordered distribution of the induced and natural fractures in the reservoirs leads to the existence of the anomalous diffusion, so the conventional Darcy law has some limitations in describing the fluid flow under this circumstance. This paper introduces the fractional Darcy law to take into account the effect of the anomalous diffusion and then extends the conventional model of the multi-stage fractured horizontal (MSFH) well with the presence of the stimulated reservoir volume (SRV). The generated point source model for dual-porosity composite system includes the fractional calculus and its solution in Laplace space is derived. The superposition principle and the numerical discrete method are applied to obtain the solution for the MSFH well with SRV. Stehfest inversion method is used to transform the pseudo-pressure and production rate from Laplace space to real space. Type curves for pseudo-pressure and production rate are presented and analyzed. The influence of the relevant parameters on pseudo-pressure behavior and production rate decline is discussed in detail. The proposed model enriches the flow models of the MSFH well with SRV and can be used to more accurately interpret and forecast the transient pressure and transient rate.  相似文献   

2.
A three-dimensional model for non-reactive solute transport in physically homogeneous subsurface porous media is presented. The model involves solution of the advection-dispersion equation, which additionally considered temporally dependent dispersion. The model also account for a uniform flow field, first-order decay which is inversely proportional to the dispersion coefficient and retardation factor. Porous media with semi-infinite domain is considered. Initially, the space domain is not solute free. Analytical solutions are obtained for uniform and varying pulse-type input source conditions. The governing solute transport equation is solved analytically by employing Laplace transformation technique (LTT). The solutions are illustrated and the behavior of solute transport may be observed for different values of retardation factor, for which simpler models that account for solute adsorption through a retardation factor may yield a misleading assessment of solute transport in ‘‘hydrologically sensitive’’ subsurface environments.  相似文献   

3.
项彦勇  郭家奇 《岩土力学》2011,32(2):333-340
以裂隙岩体高放射性核废物地下处置库性能评估为目标,提出了分布热源作用下单裂隙岩体渗流-传热的简化概念模型、控制微分方程和拉氏变换-格林函数半解析法,为进一步采用半解析法计算分布热源作用下多裂隙岩体的渗流-传热问题奠定了基础。针对单裂隙岩体的渗流-传热问题,建立考虑岩石内热源和二维热传导的控制微分方程,利用拉氏变换域微分方程的基本解建立格林函数积分方程,采用解析法处理其中的奇点,通过数值积分和拉氏数值逆变换求解,计算任意时刻裂隙水和岩石的温度分布。通过算例,与基于岩石一维热传导假定的解析解进行了对比,并计算分析了分布热源作用下单裂隙岩体的渗流-传热特征及其对裂隙开度、岩石热传导系数和热流集度的敏感度。算例表明,(1)就裂隙水温度而言,由于考虑了岩石的二维热传导,拉氏变换-格林函数半解析解小于基于岩石一维热传导假定的解析解;(2)裂隙水温度和岩石温度对裂隙开度和热流集度的敏感度较大,对岩石热传导系数的敏感度较小。  相似文献   

4.
The equation of heat conduction is solved for a horizontally stratified medium initially at constant temperature and subject to a step-function surface temperature change. The problem is solved by Laplace transformation and by applying a concept of further stratifications of the medium into unitary layers of constant ratio of thickness to the square root of thermal diffusivity. The solution takes the form of an infinite sum of complementary error functions, with coefficients given by recursion relations, is suitable for numerical applications and offers an attractive alternative to harmonic and quasi transient approaches in calculating the penetration of transient surface temperature variations into a layered medium. Use of the theorem of superposition yields a general expression for an arbitrary surface temperature function. The utility of the theory is illustrated by modelling examples of palaeoclimatically induced subsurface temperature and heat flow perturbations.  相似文献   

5.
Ai  Zhi Yong  Ye  Zi  Song  Xiaoyu  Wang  Lu Jun 《Acta Geotechnica》2019,14(4):1143-1160

We develop a new numerical model based on a precise integration method to investigate the coupled thermo-mechanical performance of layered transversely isotropic media around a cylindrical/tubular heat source. To obtain the relational matrices of the extended precise integration method, we first convert the governing equations of the problem into ordinary differential matrix equations through the Laplace–Hankel transform. Then, the cylindrical heat source is divided into a series of plane heat sources, and the plane temperature load term is added to the state vector between layer elements. By combining the layer elements, we build a layered transversely isotropic numerical model containing a cylindrical heat source in the transformed domain. Finally, we solve the model in the transformed domain and obtain the solution of the problem in the real domain through the Laplace–Hankel transform inversion. The accuracy of this method is verified by comparing the solutions with the results of the analytical method and the finite element method. Then, we study the influence of the anisotropy of thermal parameters, the embedded depth, the length/radius ratio, the type of heat source and the stratification of the medium on the thermo-mechanical coupled performance.

  相似文献   

6.
Solutions are presented for the behaviour of a layered porous space which contains a decaying heat source. Such a problem arises when high-level nuclear waste is placed in deep underground depositories in deep clayey formations of sedimentary basins. The geometry of the problem is one dimensional and the porous space is constituted by two layers: a deep low permeability layer which contains the nuclear waste disposal and a superficial layer. The solution is used to examine the effects of contrasts of permeability, thermal conductivity and specific heat capacities between the two layers on the large-scale behaviour of the porous space. Results are presented, using realistic data, for the pore pressure and temperature evolution at the heat source centre, and for the vertical displacement of the ground level. The superficial layer has no significant effects on pore pressure, temperature and stress evolution near the heat source centre. The vertical displacement of the ground level is mainly due to the thermal dilatation of the pore water, so it decreases with an increasing of permeability of the superficial layer. The solution of the time-dependent problem is carried out by applying Laplace transforms to the field variables, obtaining solutions and then using numerical methods to invert the transformed solutions. Comparisons with numerical simulations taking into account the non-linear and non-reversible behaviour of the rock mass are presented. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
浅层地温场中热对流数值模拟   总被引:1,自引:0,他引:1  
吴志伟  宋汉周 《岩土力学》2010,31(4):1303-1308
温度示踪的研究区域大多在地表浅层,浅层地温场主要受气象和水文影响。气温波动可用傅立叶级数精确表示,由此建立了在表层气温和垂向水流共同影响下的浅层地温场瞬态分析模型,用Laplace变换的方法得到其解析解,并用有限元模拟了垂向水流对浅层地温的影响。模拟结果表明:浅层地温有季节波动,在地下水补给区,气温波动振幅衰减速率明显减缓,表现为表层气温波动可以影响到更深的深度;在排泄区,温度波振幅衰减很快。另外,还模拟了水平集中渗漏带附近的瞬态温度场,发现由于热对流的传热能力远大于热传导,强渗漏带温度迅速与补给源温度相一致,温深剖面出现异常,温度异常带形成后,继而通过热传导改变较大范围内地质体热量分布。离低温补给源越近,地质体降温越快,温度改变越多;反之则越慢,温度改变越少。因此,由温深剖面的温度异常,可精确探查渗漏带位置。  相似文献   

8.
An analytical solution of the plane strain problem of the deformation of a homogeneous, isotropic, poroelastic layer of uniform thickness overlying a homogeneous, isotropic, elastic half‐space due to two‐dimensional seismic sources buried in the elastic half‐space has been obtained. The integral expressions for the displacements, stresses and pore pressure have been obtained using the stress function approach by applying suitable boundary conditions at the free surface and the interface. The solution obtained is in the Laplace–Fourier transform domain. The case of a vertical dip‐slip line dislocation for the oceanic crust model of Earth is studied in detail. Schapery's formula is used for the Laplace inversion and the extended Simpson's formula for the Fourier inversion. Diffusion of pore pressure in the layer is studied numerically. Contour maps showing the pore pressure in the poroelastic layer have been plotted. The effect of the compressibility of the solid and fluid constituents on pore pressure has also been studied. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
斜阶跃波层状介质航空瞬变电磁响应数值计算   总被引:1,自引:0,他引:1  
目前,航空瞬变电磁方法数据解释主要采用阶跃波均匀半空间模型计算视电导率值,而实际航空电磁系统发射波形的下降沿多为斜阶跃,导致解释时计算的视电导率值存在较大偏差。为此,笔者研究了航空瞬变电磁系统发射电流为斜阶跃时的电磁响应数值计算,将发射波形进行拉氏变换,利用G-S逆拉氏变换与241点汉克尔变换相结合的方法,实现斜阶跃波关断后的层状大地模型航空瞬变电磁响应计算;并对均匀半空间和层状大地模型下,不同关断时间和不同飞行高度对电磁响应的影响进行分析。得出结论:不同关断时间,关断后取样延时2 ms时,均匀半空间电磁响应的平均偏差为27.78%,三层模型的平均偏差为32.16%;当飞行高度从20 m增加到60 m时,均匀半空间和三层模型的感应电动势分别减小了43.6%和83.2%。  相似文献   

10.
A simple and efficient method for the solution of uncoupled transient thermoelastic problems using boundary integral techniques is presented. The method employs a Laplace transformation to remove temporarily the time dependence of the governing equations. Numerical analysis is then carried out in the transform space, and results in the time-position space are found by numerical inversion of the Laplace transform. The method has the advantage that it avoids time-stepping and the costly evaluation of domain integrals. Boundary element and analytic solutions are compared, and the effect of cooling on the stresses around a deep underground opening is examined.  相似文献   

11.
This paper presents an analytical layer element solution to axisymmetric thermal consolidation of multilayered porous thermoelastic media containing a deep buried heat source. By applying the Laplace–Hankel transform to the state variables involved in the basic governing equations of porous thermoelasticity, the analytical layer elements that describe the relationship between the transformed generalized stresses and displacements of a finite layer and a half‐space are derived. The global stiffness matrix equation is obtained by assembling the interrelated layer elements, and the real solutions in the physical domain are achieved by numerical inversion of the Laplace–Hankel transform after obtaining the solutions in the transformed domain. Finally, numerical calculations are performed to demonstrate the accuracy of this method and to investigate the influence of heat source's types, layering, and the porous thermoelastic material parameters on thermal consolidation behavior. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The local analysis of signals arising on the sphere is a common task in earth sciences. On the real line the analytic signal turned out to be an important representation in local one-dimensional signal processing. Its generalization to two dimensions is the monogenic signal, and the properties of the analytic and the monogenic signal in the Fourier domain are well known. A generalization to the sphere is given by the Hilbert transform on the sphere known from Clifford analysis. To obtain a spectral characterization, the transform has to be decomposed into spherical harmonic functions. In this paper, we derive the spherical harmonic coefficients of the Hilbert transform on the sphere and give a series expansion. This will show that it acts as a differential operator on the spherical harmonic basis functions of the Laplace equation solution, analogously to the Riesz transform in two dimensions. This allows an interpretation of the Hilbert transform suitable for signal processing of signals naturally arising on the two-sphere. We show that the scale space naturally arising is a Poisson scale space in the unit ball. In addition, the obtained interpretation of the Hilbert transform is used for orientation analysis of plane waves. This representation is justified as a novel signal model on the sphere which can be used to construct intensity and rotation-invariant operators for local signal analysis in a scale-space concept.  相似文献   

13.
SLUG试井污染检测乘积图版及其应用   总被引:2,自引:2,他引:0  
冯文光 《矿物岩石》1998,18(4):79-85
本研究获得了SLUG试井解与定产量试井解的数学关系式并制作出SLUG试井乘积图版。SLUG试井乘积图版分辨率高、灵敏度好、唯一性强,SLUG试井乘积曲线容易制作。SLUG试井乘积图版可用于一开、一开一关、二开二关、三开三关SLUG试井。  相似文献   

14.
周健  姚志雄  江建洪 《岩土力学》2006,27(Z2):55-60
讨论了柱坐标下不同介质有限区域内用分离变量法求解Laplace 方程的问题。通过一系列计算试验,给出了柱坐标下Laplace 方程在不同介质有限区域内用分离变量方法求的解,并用该解对渗透破坏现象进行了讨论和实例验证。认为渗透系数分布不均匀是发生渗透破坏的根本原因,渗透破坏朝着渗透系数差异较大的方向发展,并对管涌的复杂机理进行了引申阐述。该工作对于流土、管涌机理的更深入研究具有重要的意义。  相似文献   

15.
Hydraulic fracturing involves the initiation and propagation of fractures in rock formations by the injection of pressurized fluid. The largest use of hydraulic fracturing is in enhancing oil and gas production. Tiltmeters are sometimes used in the process to monitor the generated fracture geometry by measuring the fracture‐induced deformations. Fracture growth parameters obtained from tiltmeter mapping can be used to study the effectiveness of such stimulations. In this work, we present a novel scheme that uses the ensemble Kalman Filter (EnKF) to assimilate tiltmeter data using a simple process model to describe the evolution of fracture growth parameters, and an observation model that maps the fracture geometry with the observed tilt. The forward observation model is based on the analytical solution for computing the displacements and tilts due to a point source displacement discontinuity in an elastic half‐space developed by Okada 1 . The displacement and tilts for any given fracture geometry are then obtained by numerical integration of this solution, by considering multiple point sources to be located at the quadrature points. The proposed method is validated using synthetic data sets generated from polygon and elliptical shaped fracture geometries. Finally, real data from a field site, where asymmetry was measured from the intersections of the hydraulic fracture with offset boreholes, have been analyzed. Preliminary results show that, in addition to extracting the fracture dip, orientation, and volume, the procedure is able to satisfactorily predict fracture growth parameters when the fracture is relatively close to the tiltmeter array and provides some insight into the development of asymmetry when the measurements are relatively far from the fracture plane. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A method is presented for obtaining the consolidation behaviour of a layered soil subjected to strip, circular, or rectangular surface loadings, or subjected to fluid withdrawal due to pumping. The solution method involves applying a Fourier or Hankel transform to the field quantities along with a Laplace transformation. The effect of the Fourier or Hankel transform is to reduce a two- or three-dimensional problem or one involving axial symmetry, to one involving only a single spatial dimension. In cases where the soil is horizontally layered, this has great advantages over conventional methods, such as finite element or finite difference methods, since very little computer storage and data preparation time is required. Solution of the time dependent problem is achieved by applying a Laplace transformation to the field variables, obtaining solutions in Laplace transform space, and then numerically inverting the transformed solutions to obtain the real time behaviour. This eliminates the need for ‘marching type’ schemes where a solution is found from one at a previous time. By direct inversion of the Laplace transform, a solution may be obtained directly at any given time.  相似文献   

17.
Biot's equations of wave propagation through fluid-saturated porous elastic media are discretized spatially using the finite element method in conjunction with Galerkin's procedure. Laplace transformation of the discretized equations is used to suppress the time variable. Introducing Laplace transforms of constituent velocities at nodal points as additional variables, the quadratic set of equations in the Laplace transform parameter is reduced to a linear form. The solution in the Laplace transform space is inverted, term by term, to get the complete time history of the solid and fluid displacements and velocities. Since the solution is exact in the time domain, the error in the calculated response is entirely due to the spatial approximation. The procedure is applied to one-dimensional wave propagation in a linear elastic material and in a fluid-saturated elastic soil layer with ‘weak’, ‘strong’ as well as ‘moderate’ coupling. With refinement of the spatial mesh, convergence to the exact solution is established. The procedure can provide a useful benchmark for validation of approximate temporal discretization schemes and estimation of errors due to spatial discretization.  相似文献   

18.
群桩桩间横观各向同性土体固结问题级数解   总被引:1,自引:0,他引:1  
高子坤 《岩土力学》2008,29(3):775-779
通过分析群桩成桩后桩间土体固结的边界条件和初始条件,建立了饱和黏土中群桩桩间横观各向同性土体的空间轴对称固结问题的定解条件,应用数学物理方法求得该问题的级数解。通过土体固结与桩承载力的时效性之间的关系,利用承载力的实测资料换算得到的等效固结度,验证了解的合理性和适用性。同样,应用级数解求得的桩间土体的固结度可用于群桩基础的承载力的时效分析。  相似文献   

19.
张文  王泽文  乐励华 《岩土力学》2010,31(2):553-558
探讨了孔隙与单裂隙双重介质中的一类核素迁移数学模型及其反演问题。该核素迁移模型是一个耦合的抛物型方程组定解问题。若已知排污点的核素浓度变化规律,利用Laplace变换及其逆变换方法,求得了核素迁移模型正问题的解析解;反之,由下游裂隙中某个点的实测核素浓度,利用偏微分方程的叠加原理和反问题的拟解法,反求出核素迁移模型反问题的解,即排污点的核素状态。最后,给出核素迁移模型的正问题和反问题的数值模拟。数值结果表明,正问题的解析解能够刻画核素的迁移规律,也显示出所提反问题方法能有效地反演核素污染源。  相似文献   

20.
The behaviour of an under-reamed anchor in a consolidating soil is examined by approximating the anchor as an impermeable circular plate embedded in a deep soil layer. Hankel and Laplace transforms are applied to the equations governing the consolidation process, and this greatly simplifies the equations, allowing a solution to be obtained for the transformed variables. Numerical inversion of both the Hankel and Laplace transforms is used to obtain the solution at any time. A particular feature of the solution method is that the unknown contact stress between the anchor and the soil and the unknown flows in the plane of the anchor are approximated as a series of simple functions with unknown coefficients. By determining the coefficients of the terms in the series, the complete solution may be found. Computations have been carried out using the method proposed, and results are presented for the time–settlement behaviour of an impermeable anchor. These results are compared with some published and some recomputed finite element data, and this highlights some of the difficulties encountered in using such numerical techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号