首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The relationship between the maximum cumulative displacement on a fault (D) and the maximum linear dimension of the fault surface (W) is given by the expression D = cWn, where the value of c is determined by rock properties; proposed values for n range from 1.0 to 2.0. Published datasets of D vs W measurements, together with new data, are presented in a common format. Most datasets are derived from maps and so the measurements of displacement and length do not represent maximum values for each fault. This factor, together with more than an order of magnitude range of c, causes regression on D vs W plots to be unsafe unless the range of W values plotted is ca 5 orders of magnitude. This restriction means that individual datasets must be combined to achieve the required range of fault size. Data analysis shows that the value of n must exceed 1.0 but discrimination between values of 1.5 and 2.0 cannot be made on the basis of data analysis alone. A modified fault growth model in which the increase in dimension of a fault with each slip event is proportional to W0.5 gives rise to a value for n of 1.5. As this model has a sound mechanical basis 1.5 is the preferred value for n. The value of n influences other aspects of fault geometry, including the displacement profile on a fault surface, the spacing of depth contours on faulted horizons and the displacement populations of single fault surfaces.  相似文献   

2.
Structural geometries and kinematics based on two sets of joints, pinnate joints and fault striations, reveal that some mesoscale faults at Split Mountain, Utah, originated as joints. Unlike many other types of faults, displacements (D) across faulted joints do not scale with lengths (L) and therefore do not adhere to published fault scaling laws. Rather, fault size corresponds initially to original joint length, which in turn is controlled by bed thickness for bed-confined joints. Although faulted joints will grow in length with increasing slip, the total change in length is negligible compared to the original length, leading to an independence of D from L during early stages of joint reactivation. Therefore, attempts to predict fault length, gouge thickness, or hydrologic properties based solely upon D–L scaling laws could yield misleading results for faulted joints. Pinnate joints, distinguishable from wing cracks, developed within the dilational quadrants along faulted joints and help to constrain the kinematics of joint reactivation.  相似文献   

3.
Scaling properties of earthquake populations bear the major information on the physics of the source process of an earthquake. To determine scaling properties, source spectra of more than 400 earthquakes of Kamchatka were determined in a frequency range 0.1–30 Hz using materials of digital registration of PET station, and characteristic frequencies of earthquakes were estimated. The range of magnitudes is 4–6.5, the range of distances is 80–220 km. To enable reduction of a spectrum to the source, attenuation properties of the medium around PET were determined beforehand. It is revealed that source spectra show several corner (characteristic) frequencies: f c1, f c2 and f c3; where the spectral trend changes: from f 0 to f ?1, from f ?1 to f ?2, and from f ?2 to f ?3, respectively. Although in some cases f c1f c2 in agreement with the usual ω?2 spectral model, the main part of spectra has more complicated character. For a large part of the studied earthquakes a source-controlled upper cutoff of acceleration spectrum, or corner frequency f c3, is observed. This is an important fact, as the existence of f c3 (source-controlled f max) is not recognized in the bulk of the seismological literature. For f c1, the observed scaling agrees with the usual hypothesis of similarity of the earthquake sources of different size (magnitude); it is close to f c1M 0 ?1/3 , where M 0 is seismic moment. For f c2, scaling is close to f c2M 0 ?0.17 f c1 0.5 , that indicates an expressed violation of similarity. For f c3, scaling is close to f c2 ~ M 0 ?0.08 f c1 0.25 , so that similarity is broken even sharper in this case. Hypotheses about possible causes of the observed scaling are discussed.  相似文献   

4.
5.
Seismic source characteristics in the Kachchh rift basin and Saurashtra horst tectonic blocks in the stable continental region (SCR) of western peninsular India are studied using the earthquake catalog data for the period 2006–2011 recorded by a 52-station broadband seismic network known as Gujarat State Network (GSNet) running by Institute of Seismological Research (ISR), Gujarat. These data are mainly the aftershock sequences of three mainshocks, the 2001 Bhuj earthquake (M w 7.7) in the Kachchh rift basin, and the 2007 and 2011 Talala earthquakes (M w ≥ 5.0) in the Saurashtra horst. Two important seismological parameters, the frequency–magnitude relation (b-value) and the fractal correlation dimension (D c) of the hypocenters, are estimated. The b-value and the D c maps indicate a difference in seismic characteristics of these two tectonic regions. The average b-value in Kachchh region is 1.2 ± 0.05 and that in the Saurashtra region 0.7 ± 0.04. The average D c in Kachchh is 2.64 ± 0.01 and in Saurashtra 2.46 ± 0.01. The hypocenters in Kachchh rift basin cluster at a depth range 20–35 km and that in Saurashtra at 5–10 km. The b-value and D c cross sections image the seismogenic structures that shed new light on seismotectonics of these two tectonic regions. The mainshock sources at depth are identified as lower b-value or stressed zones at the fault end. Crustal heterogeneities are well reflected in the maps as well as in the cross sections. We also find a positive correlation between b- and D c-values in both the tectonic regions.  相似文献   

6.
High-quality three-dimensional (3D) seismic reflection and borehole data from the Egersund Basin, offshore Norway are used to characterise the structural style and determine the timing of growth of inversion-related anticlines adjacent to a segmented normal fault system. Two thick-skinned normal faults, which offset Permian clastics and evaporites, delineate the north-eastern margin of the basin. These faults strike NNW-SSE, have up to 1900 m of displacement and are separated by an ESE-dipping, c. 10 km wide relay ramp. Both of these faults display exclusively normal separation at all structural levels and tip out upwards into the upper part of the Lower Cretaceous succession. At relatively shallow structural levels in the hangingwalls of these faults, a series of open, low-amplitude, fault-parallel anticlines are developed. These anticlines, which are asymmetric and verge towards the footwalls of the adjacent faults, are interpreted to have formed in response to mild inversion of the Egersund Basin. The amplitude of and apparent shortening associated with the anticlines vary along strike, and these variations mimic the along-strike variations in throw observed on the adjacent fault segments. We suggest that this relationship can be explained by along-strike changes in the propensity of the normal faults to reactivate during shortening; wider damage zones and lower angles of internal friction, coupled with higher pore fluids pressures at the fault centre, mean that reactivation is easier at this location than at the fault tips or in the undeformed country rock. Seismic-stratigraphic analysis of growth strata indicate that the folds initiated in the latest Turonian-to-earliest Coniacian (c. 88.6 Ma) and Santonian (c. 82.6 Ma); the control on this c. 6 Myr diachroneity in the initiation of fold growth is not clear, but it may be related to strain partitioning during the early stages of shortening. Anticline growth ceased in the Maastrichtian and the inversion event is therefore interpreted to have lasted at least c. 20 Myr. This study indicates that 3D seismic reflection data is a key tool to investigate the role that normal fault segmentation can play in controlling the structural style and timing of inversion in sedimentary basins. Furthermore, our results highlight the impact that this structural style variability may have on the development of structural and stratigraphic hydrocarbon traps in weakly-inverted rifts.  相似文献   

7.
The scaling relationships for stress drop and corner frequency with respect to magnitude have been worked out using 159 accelerograms from 34 small earthquakes (M w 3.3–4.9) in the Kachchh region of Gujarat. The 318 spectra of P and S waves have been analyzed for this purpose. The average ratio of P- to S-wave corner frequency is found to be 1.19 suggestive of higher corner frequency for P wave as compared to that for S wave. The seismic moments estimated from P waves, M 0(P), range from 1.98 × 1014 N m to 1.60 × 1016 N m and those from S waves, M 0(S), range from 1.02 × 1014 N m to 3.4 × 1016 N m with an average ratio, M 0(P)/M 0(S), of 1.11. The total seismic energy varies from 1.83 × 1010 J to 2.84 × 1013 J. The estimated stress drop values do not depend on earthquake size significantly and lie in the range 30–120 bars for most of the events. A linear regression analysis between the estimated seismic moment (M 0) and corner frequency (f c) gives the scaling relation M 0 f c 3  = 7.6 × 1016 N m/s3. The proposed scaling laws are found to be consistent with similar scaling relations obtained in other seismically active regions of the world. Such an investigation should prove useful in seismic hazard and risk-related studies of the region. The relations developed in this study may be useful for the seismic hazard studies in the region.  相似文献   

8.
The Experimental Tectonics Laboratory at Queen's University is equipped with a large-capacity centrifuge that is capable of subjecting tectonic models measuring 127 × 76 mm in plan and up to 51 mm in depth to accelerations as high as 20,000 g. This high capacity greatly extends the range of potential model materials and permits the use of relatively stiff and/or brittle substances.A number of new techniques of model construction have been devised, that permit internal and surface strain patterns and kinematic evolution to be monitored in detail. One particularly useful technique, which will find application in non-centrifuged experiments as well, allows the preparation of highly uniform anisotropic multilayers composed of alternating layers of Plasticine and silicone putty, with individual layer thicknesses as low as 20 μm and with controllable ratio between thicknesses of the relatively competent and incompetent units. Examples of models constructed using these new techniques are illustrated.One particular type of the commonly used model material, silicone putty, has been subjected to a series of rheological test. The results indicate that at strain rates in the range 10?6-10?3s?1 (applicable to the centrifuge experiments) the silicone putty exhibits power-law rheology with n = 7 ± 2. At higher strain rates the material appears to tend towards linear behaviour.Available rheological data and dimensional analysis using standard scaling laws and appropriate model ratios suggest that the microlaminated Plasticine-silicone putty multilayer is a suitable analogue, in centrifuged experiments, for interbedded sequences of indurate limestone and incompetent shale. The excellent degree of dynamic similitude attained is demonstrated by the realistic form of fold and fault structures developed in models constructed of this material.  相似文献   

9.
This paper describes the structural, petrophysical and hydromechanical properties relationships between a small fault zone and the porous layered carbonate series which host it. In a gallery located at 250-m depth, the deformation of a 22-m thick section of layered carbonates-, affected by a strike slip-fault have been characterized by means of structural (Q-value), acoustic velocities (Vp), porosity and uniaxial compressive strength (σc) measurements conducted in situ at the meter scale, and on laboratory samples at the infra-centimeter scale. A clear influence of the layers initial properties on fault architecture and properties evolution is underlined. In the porous layers with a low σc, there is an important accommodation of the deformation by micro-mechanisms resulting in a progressive decrease in the porosity toward the fault core. In the low-porosity layers with a high σc, deformations are accommodated toward the fault core by: an increase in the fracture porosity, in the micro-cracks porosity, and by displacements along pre-existing fractures resulting from a joint roughness decrease. The fault zone appears as relatively stiff and low permeable zones intercalated with low stiffness and high fracture permeability zones that extend one to tens of meters from the fault following the initial properties contrasts and geometry of the sedimentary layers.  相似文献   

10.
活动断裂带强烈复杂的构造运动会对地壳岩体产生不同程度的损伤,这些损伤能够显著影响地震破裂、地貌演化和地质灾害等地质过程,并对工程岩体稳定有较大影响,但目前鲜见对大型活动断裂地壳岩体构造损伤的深入研究.本文首次提出地壳岩体构造损伤的科学概念,揭示其具有不可逆性、累积性、非均匀性与愈合性.通过对青藏高原东缘鲜水河断裂带等6...  相似文献   

11.
Singh  A. P.  Roy  Indrajit G.  Kumar  Santosh  Kayal  J. R. 《Natural Hazards》2013,77(1):33-49

Seismic source characteristics in the Kachchh rift basin and Saurashtra horst tectonic blocks in the stable continental region (SCR) of western peninsular India are studied using the earthquake catalog data for the period 2006–2011 recorded by a 52-station broadband seismic network known as Gujarat State Network (GSNet) running by Institute of Seismological Research (ISR), Gujarat. These data are mainly the aftershock sequences of three mainshocks, the 2001 Bhuj earthquake (M w 7.7) in the Kachchh rift basin, and the 2007 and 2011 Talala earthquakes (M w ≥ 5.0) in the Saurashtra horst. Two important seismological parameters, the frequency–magnitude relation (b-value) and the fractal correlation dimension (D c) of the hypocenters, are estimated. The b-value and the D c maps indicate a difference in seismic characteristics of these two tectonic regions. The average b-value in Kachchh region is 1.2 ± 0.05 and that in the Saurashtra region 0.7 ± 0.04. The average D c in Kachchh is 2.64 ± 0.01 and in Saurashtra 2.46 ± 0.01. The hypocenters in Kachchh rift basin cluster at a depth range 20–35 km and that in Saurashtra at 5–10 km. The b-value and D c cross sections image the seismogenic structures that shed new light on seismotectonics of these two tectonic regions. The mainshock sources at depth are identified as lower b-value or stressed zones at the fault end. Crustal heterogeneities are well reflected in the maps as well as in the cross sections. We also find a positive correlation between b- and D c-values in both the tectonic regions.

  相似文献   

12.
The systematic components of spatial variation in texture over a beach foreshore-backshore-dune complex are identified using trend surface analysis. Variability across the foreshore is a function of the vector of sediment movement and reflects both orthogonal and shore-parallel transport processes. In the dune zone, textural variability reflects local topographically controlled environments, source sediments and a temporal factor. The decreasing mean size, increased sorting and decreasing negative skewness from a low water to high water mark are correlated with changes in the linear segments of the cumulative size-frequency curve: a decrease in the coarse traction population is matched by an increase in the major saltation populations. The distinction between wave-laid and wind-laid deposits is also reflected in the segments of the cumulative curve: the latter lack the coarser component but have a distinctly fine tail. Greater spatial homogeneity of textural characteristics is present in the dune sediments but distinct trends in size frequency statistics reflect the variability in a dominant saltation population, the lack of a coarse traction population, and the presence of a fine suspension population dictated by localized transport mechanisms.  相似文献   

13.
Thermochronology has revolutionized our understanding of the establishment and evolution of lithospheric thermal structure. However, many potential benefits provided by the application of diffusion theory to thermochronology have yet to be fully exploited. This study uses apatite (Tc = 450-550 °C) and titanite (Tc = 550-650 °C) U-Pb ID-TIMS thermochronology at the single- to sub-grain scale to separate the variable effects of volume diffusion of Pb from metamorphic (over)growth above and below the Tc of a mineral. Data are presented from two ca. 3227 Ma tonalite samples from north and south of the Barberton Greenstone Belt (BGB), southern Africa. Two distinct populations of apatite from a sample north of the BGB record fast cooling followed by metamorphic growth ∼10 Myr later. Both apatite and titanite dates from south of the BGB show a strong correlation with the grain size and record 100 Myr of post-emplacement cooling. Complex core-rim zoning observed in cathodoluminescence images of apatite is interpreted to reflect metamorphic overgrowth above the Tc. The age and topology of grain size versus date curves from titanite and apatite are used in combination with a finite-difference numerical model to show that slow, non-linear, cooling and not thermal resetting is responsible for the observed distribution. The thermal histories from either side of the BGB are very different and provide unique insight into the BGB’s tectonic evolution: a ∼70 Myr period of apparent stability after ca. 3.2 Ga terrane assembly was followed by fast exhumation south of the BGB that led to lower-crustal melting and intrusion of granitic batholiths ca. 3.14-3.10 Ga.  相似文献   

14.
Displacement ratio (Dr) is the ratio between salt thickness (Tv) and sub-salt normal fault displacement (D) (Dr = Tv/D), and it is typically used to predict the degree of geometric and kinematic linkage between sub- and supra-salt fault populations, and the overall structural style in salt-influenced extensional settings. However, we currently lack natural examples of how Dr and the underlying geological controls vary, and how these may control the three-dimensional geometry and evolution of salt-influenced normal fault systems. Furthermore, it is currently unknown if kinematic coherence in salt-influenced extensional settings can be maintained over relatively long length-scales (101–103 m) and for relatively long timeframes, and how this may impact the growth and geometry of large-throw (>500 m), salt-influenced normal fault systems. In this paper we use a 3600 km2, high-quality 3D seismic reflection dataset and borehole data from the Stavanger Fault System (SFS), Egersund Basin, eastern North Sea Basin to investigate; (i) how pre-rift salt thickness (Tv) and sub-salt fault throw (T) control the structural style and evolution of a basin-bounding, salt-influenced normal fault system; and (ii) the role salt plays in maintaining kinematic coherence in normal fault systems. We demonstrate that; (i) pre-rift salt distribution (Tv), specifically its presence in the proto-footwall (i.e., when Tv > 0), is the primary control on partitioning of faulting and (forced) folding along the fault system, and the style of linkage (i.e., hard- or soft-linkage) between sub- and supra-salt fault populations; and (ii) sub- and supra-salt fault populations represent brittle elements of a single, geometrically and kinematically coherent structure, the geometry and evolution of which is related to the ductile translation of strain on a scale (up to 8 km) and duration (c. 65 Myr) that believe is significantly greater and longer than previously documented.  相似文献   

15.
The Van earthquake (M W 7.1, 23 October 2011) in E-Anatolia is typical representative of intraplate earthquakes. Its thrust focal character and aftershock seismicity pattern indicate the most prominent type of compound earthquakes due to its multifractal dynamic complexity and uneven compressional nature, ever seen all over Turkey. Seismicity pattern of aftershocks appears to be invariably complex in its overall characteristics of aligned clustering events. The population and distribution of the aftershock events clearly exhibit spatial variability, clustering-declustering and intermittency, consistent with multifractal scaling. The sequential growth of events during time scale shows multifractal behavior of seismicity in the focal zone. The results indicate that the extensive heterogeneity and time-dependent strength are considered to generate distinct aftershock events. These factors have structural impacts on intraplate seismicity, suggesting multifractal and unstable nature of the Van event. Multifractal seismicity is controlled by complex evolution of crustal-scale faulting, mechanical heterogeneity and seismic deformation anisotropy. Overall seismicity pattern of aftershocks provides the mechanism for strain softening process to explain the principal thrusting event in the Van earthquake. Strain localization with fault weakening controls the seismic characterization of Van earthquake and contributes to explain the anomalous occurrence of aftershocks and intraplate nature of the Van earthquake.  相似文献   

16.
Stochastization in stellar systems is analyzed in the framework of the paradigm of Krylov and Gurzadyan-Savvidi. The use of a Holtsmark distribution for the random forces with a Rastorguev-Sementsov cutoff confirms that τ e /τ c N 1/5, where τ c is the crossing time, τ e is the effective stochastization time, and N is the number of stars. More oblate systems evolve more rapidly, and rotation slows stochastization. The need for a cutoff does not arise if a Petrovskaya distribution is adopted for the random forces (although applying a cutoff does not change the results). In this case, τ e /τ c varies with N approximately as N 0.3. It is found theoretically that τ e /τ c N 1/3/(lnN)1/2 for large N. Thus, the evolutionary scale found is close to that proposed earlier by Genkin.  相似文献   

17.
Cyclic triaxial test by means of the geotechnical digital system is conducted for the soil near the Guoquan Road Station of Metro Line 10 in Shanghai to analyze the strain characteristics and the variation law of saturated silty soil under subway loading. Orthogonal design method is used to arrange the experiment, considering the following factors: frequency ratio f R, cyclic stress ratio σ R, vibration time ratio N R, and the interaction function among them. Results show that the cyclic stress ratio σ R, the frequency ratio f R, the vibration time ratio N R, and the interaction between the cyclic stress ratio σ R and the vibration time ratio N R have a significant effect on the axial strain of the subway tunnel. The effect of the interaction between the cyclic stress ratio σ R and the vibration time ratio N R is also significant. From the analysis of variance and regression theory, the nonlinear regression equation of the cumulative plastic strain of silty soil under subway loading is established. Residual analysis proves that the equation is ideal and credible. The results have important value for the design of subway tunnels.  相似文献   

18.
A simple method is developed to determine seismic moments of earthquakes. The method is qualified through criteria such as simplicity of calculations, coverage of wide magnitude range, and insensitivity to detailed instrumental response. The method is applied to 163 major earthquakes which occurred underneath Japan and the Japan Sea in the time from 1926 to 1977. Magnitudes of these earthquakes, which have been determined by the Japan Meteorological Agency, (MJMA) cover the range from 4.3 to 7.5. At first, source spectra are analyzed through a very simple way introducing two new parameters: characteristic period Tc and seismic-moment factor Mc. The former is defined as an average value of apparent periods of seismic waves with the maximum trace amplitude at many stations. The latter is an average of products of maximum trace amplitude and its apparent period multiplied by epicentral distance. It is shown that Tc corresponds to the period of the corner frequency of an earthquake and Mc to the seismic-moment density at the period of Tc. A scaling model of earthquake source spectra is presented which satisfies the empirical relations between the surface-wave magnitude Ms and MJMA, and MJMA and the body-wave magnitude mb. Those relations are independent of the Gutenberg and Richter relation between Ms and mb, because MJMA is determined from maximum amplitudes of seismic waves with a period of about 4 sec. The static seismic moment of each earthquake can be estimated from calculated Mc using the source spectra of the scaling model. Seismic moments of 18 earthquakes determined by conventional analyses from near- and/or far-field observations are consistent with static seismic moments thus estimated over the range from 2 × 1023 to 3 × 1027 dyne cm. This shows the potential in practice of the present method, especially in the routine processing of seismic data.  相似文献   

19.
Displacement, length and linkage of deformation bands have been studied in Jurassic sandstones in southeastern Utah. Isolated deformation bands with lengths (L) that span more than three orders of magnitude show similar displacement (D) profiles with more or less centrally located maxima and gently increasing gradient toward the tips. Soft- and hard-linked examples exhibit steeper displacement gradients near overlap zones and immature hard links, similar to previously described fault populations. The deformation band population shows power-law length and displacement distributions, but with lower exponents than commonly observed for populations of larger faults or small faults with distinct slip surfaces. Similarly, the Dmax-L relationship of the deformation bands shows a well-defined exponent of ca 0.5, whereas the general disagreement for other fault populations is whether the exponent is 1 or 1.5. We suggest that this important difference in scaling law between deformation bands and other faults has to do with the lack of well-developed slip surfaces in deformation bands. During growth, deformation bands link to form zones of densely spaced bands, and a slip surface is eventually formed (when 100 m < L < 1 km). The growth and scaling relationship for the resulting populations of faults (slip surfaces) is expected to be similar to ‘ordinary’ fault populations. A change in the Dmax-L scaling relationship at the point when zones of deformation bands develop slip surfaces is expected to be a general feature in porous sandstones where faults with slip surfaces develop from deformation bands. Down-scaling of ordinary fault populations into the size domain of deformation bands in porous sandstones is therefore potentially dangerous.  相似文献   

20.
Gulf of Suez consists mainly of three tectonic provinces that are separated by two accommodation zones. The southern edge of the gulf is bordered by N–S faults which mark the transition between the shallow water, Suez Basin and the deep northern Red Sea Basin. The sensitivity of coda Q measurements with respect to geological differences in the crust is demonstrated in three regions with a large variety of tectonic and geologic properties. The estimation of coda Q (Qc) is performed for 370 local earthquakes recorded at 12 digital seismic stations during the period from 2000 to 2007. The magnitudes of the earthquakes between 1.5 and ~4.5 have been used at central frequencies 1.5, 3, 6, 9, 12, 15, 18, and 24 Hz through three lapse time windows 10, 20, 30 s starting at once and twice the time of the primary S wave from the origin time. The time domain coda decay method of the single isotropic scattering model is employed to calculate frequency-dependent values of coda Q. The Qc values are frequency dependent in the range 1–25 Hz, and are approximated by a least squares fit to the power law [Qc(f) = Qo(f/fo]. The observed coda Q indicates that the area is seismically and tectonically active with high heterogeneities. The variation of the quality factor Qc has been estimated at different regions to observe the effect of different tectonic province. The average frequency-dependent estimated relations of Qc vary from 65f1.1 to 96f0.9 at 10 to 30 s window length, respectively. The decreasing value of the frequency parameter with increasing lapse time shows that the crust acquires homogeneity with depth. The variation of Qc with the variations in the geologic and tectonic properties of the crust was investigated. The frequency exponent η might be larger in active tectonic areas and smaller in more stable regions. In the northern region of the Gulf of Suez, the obtained value of η?=?0.8?±?0.011, which might indicate a low level of tectonic activity compared with η?=?1.1?±?0.005 and 1.3?±?0.009 for the central and southern regions of the gulf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号