首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lattice Boltzmann simulations of the transient shallow water flows   总被引:1,自引:0,他引:1  
A two-dimensional lattice Boltzmann model (LBM) is presented for transient shallow water flows. The model is based on the shallow water equations coupled with the large eddy simulation model. In order to obtain accurate results efficiently, a multi-block lattice scheme is applied at the area where a local finer grid is needed for strong change in physical variables. The model is verified by applying to five cases with transient processes: (a) a tidal wave over steps; (b) a perturbation over a submerged hump; (c) partial dam break flow; (d) circular dam break flow; (e) interaction between a dam break surge and four square cylinders. The objectives of this study are to validate the two-dimensional LBM in transient flow simulation and provide the detailed transient processes in shallow water flows.  相似文献   

2.
The objective of this paper is to demonstrate the formulation of a numerical model for mass transport based on the Bhatnagar–Gross–Krook (BGK) Boltzmann equation. To this end, the classical chemical transport equation is derived as the zeroth moment of the BGK Boltzmann differential equation. The relationship between the mass transport equation and the BGK Boltzmann equation allows an alternative approach to numerical modeling of mass transport, wherein mass fluxes are formulated indirectly from the zeroth moment of a difference model for the BGK Boltzmann equation rather than directly from the transport equation. In particular, a second-order numerical solution for the transport equation based on the discrete BGK Boltzmann equation is developed. The numerical discretization of the first-order BGK Boltzmann differential equation is straightforward and leads to diffusion effects being accounted for algebraically rather than through a second-order Fickian term. The resultant model satisfies the entropy condition, thus preventing the emergence of non-physically realizable solutions including oscillations in the vicinity of the front. Integration of the BGK Boltzmann difference equation into the particle velocity space provides the mass fluxes from the control volume and thus the difference equation for mass concentration. The difference model is a local approximation and thus may be easily included in a parallel model or in accounting for complex geometry. Numerical tests for a range of advection–diffusion transport problems, including one- and two-dimensional pure advection transport and advection–diffusion transport show the accuracy of the proposed model in comparison to analytical solutions and solutions obtained by other schemes.  相似文献   

3.
We report a two-dimensional multi-block lattice Boltzmann model for solute transport in shallow water flows, which is developed based on the advection–diffusion equation for mass transport and the shallow water equations for the flows. A weighting factor is included in the centered scheme for improved accuracy. The model is firstly verified by simulating three benchmark tests: wind-driven circulation in a dish-shaped lake, jet-forced flow in a circular basin, and flow formed by two parallel streams containing different uniform concentrations at the same constant velocity; and then it is applied to a practical wind-induced flow, Baiyangdian Lake, which is characterized by irregular geometries and complex bathymetries. The numerical results have shown that the model is able to produce accurate and detailed results for both water flows and solute transport, which is attractive, especially for flows in narrow zones of practical terrains and certain areas with largely varying pollutant concentrations.  相似文献   

4.
This present paper proposes a two-dimensional lattice Boltzmann model coupled with a Large Eddy Simulation (LES) model and applies it to flows around a non-submerged groyne in a channel. The LES of shallow water equations is efficiently performed using the Lattice Boltzmann Method (LBM) and the turbulence can be taken into account in conjunction with the Smagorinsky Sub-Grid Stress (SGS) model. The bounce-back scheme of the non-equilibrium part of the distribution function is used to determine the unknown distribution functions at inflow boundary, the zero gradient of the distribution function is set normal to outflow boundary to obtain the unknown distribution functions here and the bounce-back scheme, which states that an incoming particle towards the boundary is bounced back into fluid, is applied to the solid wall to ensure non-slip boundary conditions. The initial flow field is defined firstly and then is used to calculate the local equilibrium distributions as initial conditions of the distribution functions. These coupled models successfully predict the flow characteristics, such as circulating flow, velocity and water depth distributions. The comparisons between the simulated results and the experimental data show that the model scheme has the capacity to solve the complex flows in shallow water with reasonable accuracy and reliability.  相似文献   

5.
This paper presents a well-balanced numerical scheme for simulating frictional shallow flows over complex domains involving wetting and drying. The proposed scheme solves, in a finite volume Godunov-type framework, a set of pre-balanced shallow water equations derived by considering pressure balancing. Non-negative reconstruction of Riemann states and compatible discretization of slope source term produce stable and well-balanced solutions to shallow flow hydrodynamics over complex topography. The friction source term is discretized using a splitting implicit scheme. Limiting value of the friction force is derived to ensure stability. This new numerical scheme is validated against four theoretical benchmark tests and then applied to reproduce a laboratory dam break over a domain with irregular bed profile.  相似文献   

6.
A two-dimensional (2D) numerical model has been developed to solve shallow water equations for simulation of dam-break flows. The spatial derivatives are discretized using a well-balanced explicit central upwind conservative scheme. The scheme is Riemann solver free and guarantees the positivity of the flow depth over complex topography if the Courant number is kept less than 0.25. The time integration is performed by Euler’s scheme. The model is verified against analytical results for water surface elevation and discharge for three benchmark test cases. A good agreement between analytical solutions and computed results is observed. The property of well-balancing in still water over an uneven bottom is also confirmed. The model is then validated by simulating a laboratory experiment in which a dam break flow propagates over a triangular obstacle. The model performance was found to be satisfactory. A dam break laboratory experimental test case on a frictionless horizontal bottom is also simulated for 2D validation of the model, and good agreement between simulation and the experimental data is observed. The suitability of the proposed model for real life applications is demonstrated by simulating the Malpasset dam-break event, which occurred in 1959 in France. The computed arrival time of the flood wave front and the maximum flow depths at various observation points matched well with the measurements on a 1/400 scale physical model. The overall performance indicates that this model can be applied for simulation of dam-break waves in real life cases.  相似文献   

7.
A two‐dimensional (2D) finite‐difference shallow water model based on a second‐order hybrid type of total variation diminishing (TVD) approximate solver with a MUSCL limiter function was developed to model flooding and inundation problems where the evolution of the drying and wetting interface is numerically challenging. Both a minimum positive depth (MPD) scheme and a non‐MPD scheme were employed to handle the advancement of drying and wetting fronts. We used several model problems to verify the model, including a dam break in a slope channel, a dam break flooding over a triangular obstacle, an idealized circular dam‐break, and a tide flow over a mound. Computed results agreed well with the experiment data and other numerical results available. The model was then applied to simulate the dam breaking and flooding of Hsindien Creek, Taiwan, with the detailed river basin topography. Computed flooding scenarios show reasonable flow characteristics. Though the average speed of flooding is 6–7 m s?1, which corresponds to the subcritical flow condition (Fr < 1), the local maximum speed of flooding is 14·12 m s?1, which corresponds to the supercritical flow condition (Fr ≈ 1·31). It is necessary to conduct some kind of comparison of the numerical results with measurements/experiments in further studies. Nevertheless, the model exhibits its capability to capture the essential features of dam‐break flows with drying and wetting fronts. It also exhibits the potential to provide the basis for computationally efficient flood routing and warning information. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The shallow water equations are used to model flows in rivers and coastal areas, and have wide applications in ocean, hydraulic engineering, and atmospheric modeling. These equations have still water steady state solutions in which the flux gradients are balanced by the source term. It is desirable to develop numerical methods which preserve exactly these steady state solutions. Another main difficulty usually arising from the simulation of dam breaks and flood waves flows is the appearance of dry areas where no water is present. If no special attention is paid, standard numerical methods may fail near dry/wet front and produce non-physical negative water height. A high-order accurate finite volume weighted essentially non-oscillatory (WENO) scheme is proposed in this paper to address these difficulties and to provide an efficient and robust method for solving the shallow water equations. A simple, easy-to-implement positivity-preserving limiter is introduced. One- and two-dimensional numerical examples are provided to verify the positivity-preserving property, well-balanced property, high-order accuracy, and good resolution for smooth and discontinuous solutions.  相似文献   

9.
Shallow-water flows with supercritical and subcritical subregions often exhibit numerical difficulties because of their associated hydraulic jumps (shock waves), steep layers, and fictitious oscillations. Analogous problems in gas dynamics have led to the recent development of a promising class of Petrov-Galerkin methods specifically designed for hyperbolic/incompletely parabolic systems, and are written in a symmetric conservation form. One of the major difficulties in the application of this class of methods to shallow water problems has been the unavailability of a suitable symmetric form of the governing equations. In the present work, this issue is addressed by introducing the total energy of the water column to motivate a change of variables which symmetrizes the shallow-water conservation system. Then, the one-dimensional case is considered and a time-accurate, streamline-upwind Petrov-Galerkin (SUPG) scheme is developed based on the proposed symmetric form. Numerical results illustrate the method and permit comparison with other schemes.  相似文献   

10.
Two-dimensional finite volume method for dam-break flow simulation   总被引:2,自引:0,他引:2  
A numerical model based upon a second-order upwind ceil-center f'mite volume method on unstructured triangular grids is developed for solving shallow water equations. The assumption of a small depth downstream instead of a dry bed situation changes the wave structure and the propagation speed of the front which leads to incorrect results. The use of Harten-Lax-vau Leer (HLL) allows handling of wet/dry treatment. By usage of the HLL approximate Riemann solver, also it make possible to handle discontinuous solutions. As the assumption of a very small depth downstream oftbe dam can change the nature of the dam break flow problem which leads to incorrect results, the HLL approximate Riemann solver is used for the computation of inviscid flux functions, which makes it possible to handle discontinuous solutions. A multidimensional slope-limiting technique is applied to achieve second-order spatial accuracy and to prevent spurious oscillations. To alleviate the problems associated with numerical instabilities due to small water depths near a wet/dry boundary, the friction source terms are treated in a fully implicit way. A third-order Runge-Kutta method is used for the time integration of semi-discrete equations. The developed numerical model has been applied to several test cases as well as to real flows. The tests are tested in two cases: oblique hydraulic jump and experimental dam break in converging-diverging flume. Numerical tests proved the robustness and accuracy of the model. The model has been applied for simulation of dam break analysis of Torogh in Iran. And finally the results have been used in preparing EAP (Emergency Action Plan).  相似文献   

11.
This paper concerns the development of high-order accurate centred schemes for the numerical solution of one-dimensional hyperbolic systems containing non-conservative products and source terms. Combining the PRICE-T method developed in [Toro E, Siviglia A. PRICE: primitive centred schemes for hyperbolic system of equations. Int J Numer Methods Fluids 2003;42:1263–91] with the theoretical insights gained by the recently developed path-conservative schemes [Castro M, Gallardo J, Parés C. High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products applications to shallow-water systems. Math Comput 2006;75:1103–34; Parés C. Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J Numer Anal 2006;44:300–21], we propose the new PRICE-C scheme that automatically reduces to a modified conservative FORCE scheme if the underlying PDE system is a conservation law. The resulting first-order accurate centred method is then extended to high order of accuracy in space and time via the ADER approach together with a WENO reconstruction technique. The well-balanced properties of the PRICE-C method are investigated for the shallow water equations. Finally, we apply the new scheme to the shallow water equations with fix bottom topography and with variable bottom solving an additional sediment transport equation.  相似文献   

12.
This paper describes the application of the Smoothed Particle Hydrodynamics(SPH) method for modeling two dimensional waves caused by dam break over a movable bed in two dimensions.The two phase SPH method is developed to solve the Navier-Stokes equations.Both fluid and sediment phases are described by particles as weakly compressible fluids and the incompressibility is achieved by the equation of state.The sediment phase is modeled as a non-Newtonian fluid using three alternative approaches of artificial viscosity and Bingham Model.In this paper,the new formulations for two-phase flows are proposed.The numerical results obtained from the developed SPH model show acceptable accuracy with comparison to experimental data.  相似文献   

13.
A numerical solution of the dam failure problem as described by the one-dimensional shallow water equations is presented. The construction of the solution is based on the random choice method consisting in the superposition of locally theoretical solutions and sampling techniques. The search of the optimal sampling is performed through the application of the random choice method to the scalar wave equation. The dam failure problem is then solved and a comparison with the theoretical solution is presented. It is shown that the random choice method computes the bore with almost infinite resolution, represents exactly the constant state behind it and calculates the depression wave with great accuracy.  相似文献   

14.
Details are given of the development and application of a numerical model for predicting free-surface flows in estuarine and coastal basins using the finite volume method. Both second- and third-order accurate and oscillation free explicit numerical schemes have been used to solve the shallow water equations. The model deploys an unstructured triangular mesh and incorporates two types of mesh layouts, namely the ‘cell centred’ and ‘mesh vertex’ layouts, and provides a powerful mesh generator in which a user can adjust the mesh-size distribution interactively to create a desirable mesh. The quality of mesh has been shown to have a major impact on the overall performance of the numerical model.The model has been applied to simulate two-dimensional dam break flows for which transient water level distributions measured within a laboratory flume were available. In total 12 model runs were undertaken to test the model for various flow conditions. These conditions include: (1) different bed slopes (ranging from zero to 0.8%), (2) different upstream and downstream water level conditions, and (3) initially wet and dry bed conditions, downstream of the dam. Detailed comparisons have been made between model predicted and measured water levels and good agreement achieved between both sets of results. The model was then used to predict water level and velocity distributions in a real estuary, i.e. the Ribble Estuary, where the bed level varies rapidly at certain locations. In order to model the whole estuary, a 1-D numerical model has also been used to model the upper part of the estuary and this model was linked dynamically to the 2-D model. Findings from this application are given in detail.  相似文献   

15.
IINTRODUCTIONNumericalmethodsasatooltosimulateflowsandpollutanttransportareincreasinglyimportantinhydraulicandenvironmentalengineering.AveryusefulapplicationofthenumericalmethodologyinengineeringproblemswouldbetosolvethesystemofZDdepth-integratedshallowwaterequations.ManysolutionsofthegoverningequationsarederivedusingtraditionalfinitedifferencemethodonCartesianregulargrids.ThedisadvantageofthismethodseemstobetheinflexibilityofCartesiangridstocomplywithirregularorcurvedperimeterswhichsur…  相似文献   

16.
A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.  相似文献   

17.
Piecewise heterogeneous media that the earth presents are composed of large-scale boundary structures and small-scale volume heterogeneities. Wave propagation in such piecewise heterogeneous media can be accurately superposed through the generalized Lippmann–Schwinger integral equation (GLSIE). Two different Born series modeling schemes are formulated for the boundary–volume integral equation with 2-D antiplane motion (SH waves). Both schemes decompose the resulting boundary–volume integral equation matrix into two parts: the self-interaction operator handled with a fully implicit manner, and the extrapolation operator approximated by a Born series. The first scheme associates the self-interaction operator with each boundary itself and the volume itself, and interprets the extrapolation operator as the cross-interaction between each boundary and other boundaries/volume scatterers in a subregion. The second scheme relates the self-interaction operator to each boundary itself and its cross-interaction with the volume scatterers on both sides, and expresses the extrapolation operator as both the direct and indirect (through the volume scatterers) cross-interactions between different boundaries in a subregion. By eliminating the displacement field from the volume scatterers, the second scheme reduces the dimension of the resulting boundary-volume integral equation matrix, leading to a faster convergence than the first scheme. Both the numerical schemes are validated by dimensionless frequency responses to a heterogeneous alluvial valley with the velocity perturbed randomly in the range of ca 5–20 %. The schemes are applied to wave propagation simulation in a heterogeneous multilayered model by calculating synthetic seismograms. Numerical experiments, compared with the full-waveform numerical solution, indicate that the Born series modeling schemes significantly improve computational efficiency, especially for high frequencies.  相似文献   

18.
The seismic response of a dam is strongly influenced by its interaction with the water reservoir and the foundation. The hydrodynamic forces in the reservoir are in turn affected by radiation of waves towards infinity, wave absorption at the reservoir bottom, and cross-coupling between the foundation below the dam and the reservoir bottom. The fluid–foundation interaction effect, i.e. the wave absorption along the reservoir bottom, can be accounted for by using either an approximate one-dimensional (1D) wave propagation model or a rigorous analysis of interaction between the flexible soil along the base and the water. The rigorous approach requires enormous computational effort because of (a) cross-coupling between the foundation of the dam and the soil below the reservoir and (b) frequency dependence of the boundary condition along the fluid-foundation interface. The analysis can be simplified by ignoring the cross-coupling and by using the approximate 1D wave propagation model. The effects of each of these two simplifications on the accuracy and computational efficiency of the procedure used for the seismic response analysis of a dam are examined. Analytical results are presented for the complex frequency-response functions as well as the time histories of the response of Pine Flat dam to Taft and E1 Centro ground motions.  相似文献   

19.
Uncertainty in bed roughness is a dominant factor in providing a sufficiently accurate simulation of floodplain flows. This study describes a method to compute the transition probability density distribution of time-varying water elevations where the evolutionary process is based on a conventional one-dimensional storage cell model with governing stochastic differential equation. By including the random inputs (or noise terms) of bed roughness and initial water depth, time-dependent and spatially varying probability density function of the water surface leads to a Fokker–Planck equation. The model’s performance is evaluated by applying it to shallow water flow with a horizontal bed. Sensitivity of model predictions to variations in the bed friction parameters is shown. By comparing the result of the proposed method with that of conventional Monte Carlo simulation, the advantage of the former as a method for density function prediction is confirmed.  相似文献   

20.
The unsteady free surface flow caused by sudden collapse of a dam produces discontinuities in the flow variables. As the flow surges downstream, it forms a moving bore front with steep gradients of water height and velocity. In the numerical simulation of this flow, proper grid distribution can play a crucial part in the prediction and resolution of the solutions. The use of presently available numerical schemes to solve this problem on a uniform course grid system fails to resolve the characteristic flow features and hence do a poor job in simulating this flow. In this paper, an adaptive grid which adjusts itself as the solution evolves is used for a better resolution of the flow properties. Rai and Anderson's12 method is used to determine the grid speed; however, a different partial differential equation based on the conservative principle of grid arc lengths for clustering grids in one-dimensional flow is used along with the St. Venant equations to numerically simulate the flow. Both the subcritical and the supercritical flows under extreme boundary conditions are solved using this technique. With a specified number of grid points, this provides better quality solutions as compared to those obtained with uniformly distributed grids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号