首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During reservoir characterization all the geological uncertainties affecting the quantity and distribution of hydrocarbons should be captured to assess the risks affecting final recovery.In a typical modeling workflow the geological uncertainties are accounted for through the construction of a sufficiently large set of 3-D static models. Out of this set, a few representative models are selected and dynamically simulated so as to correlate the geological characteristics of the reservoir with its dynamic performance and to propagate the uncertainty onto the final recovery factors, yet maintaining the computational run time acceptable. In channelized depositional environments, which are strongly heterogeneous, the selection approach must also account for channel connectivity, which plays a key role in the possibility of efficiently draining the reservoir for a reasonable number of wells.This study can be seen as a step forward in the assessment of the risks associated to the development of channelized reservoirs under the assumption that a way to express the concept of channel connectivity is channel amalgamation. Channel amalgamation is here defined through amalgamation curves which are numerically described using a set of indexes whose combination provide spatial information of channel intersections. These indexes were calculated for a full set of 3-D geological models and used to steer the selection of a representative model sub-set for subsequent fluid flow simulations.The validity of the index-based selection was verified on different sets of synthetic reservoir models through the evaluation of the representativeness of the model sub-set in reproducing the uncertainty of the original dataset. Eventually, the existence of a strong correlation between channel amalgamation and production performance was proved. From a practical perspective, the possibility to include channel amalgamation in the assessment of the geological models can considerably improve the representativeness of the selected models for uncertainty propagation thus reducing significantly the number of geological models to be considered.  相似文献   

2.
3.
This work focuses on the 3D modeling and structural analysis of the Monte Testo syn-sedimentary structure, developed in the Early Jurassic Calcari Grigi Group of the Trento carbonate platform (Southern Alps, Italy). Significant changes in the facies architecture of the platform sedimentary units, occurred across a global perturbation of the Carbon cycle at the Sinemurian-Pliensbachian boundary, are associated with evidences of syn-sedimentary tectonics. In particular, an early cemented oolitic sedimentary body with a high initial porosity (Loppio Oolitic Limestone) was broken-up and tilted by a pulse of rifting and overlain by tight marls and marly limestones (lower Rotzo Formation) that display sharp changes in thickness across the syn-sedimentary faults. This complex setting creates conditions potentially favorable to hydrocarbon accumulation. In this work, the Monte Testo structure is presented as a conceptual analogue of a hydrocarbon reservoir that may develop thanks to the overlap of the effects of extensional tectonics and climate change-induced modifications in the carbonate platform facies. A 3D geo-model was realized to obtain information about the genesis and tectonic evolution of the structure. Hence, a potential porosity distribution in the 3D model was evaluated showing that such extensional structure, which has a vertical extent of 500 m and covers an area of 15 km2, could have been associated to a total pore volume of 2.24 × 107 m3 at the time of its formation. Results suggest that in rifting contexts the combined effect of syn-sedimentary faulting and facies variations related to perturbations in the global carbon cycle could generate potential reservoirs in carbonate platforms.  相似文献   

4.
A vertically integrated two‐dimensional (2‐D) and a five‐layer three‐dimensional (3‐D) numerical models were developed to compute the tides in the Gulf of Suez, Egypt. The computational grid used to schematize the Gulf has a horizontal resolution of 3 × 3 km and consists of a lattice of 23 × 100 points in the 2‐D model and five such lattices in the 3‐D model. Both 2‐D and 3‐D simulations clearly revealed the Kelvin wave nature of the tide with partial reflection. The M2 simulations also showed a strong tidal signature in the southern sector as compared to the northern part. For the 3‐D simulations, the horizontal and vertical eddy viscosity coefficients and the coefficient of bottom friction were respectively set to 3 × 106 cm2/s, 200 cm2/s, and 0.001. The tidal range decreases from the entrance of the Gulf of Suez toward the Bank of Tor where it reaches a small value and then increases again to about 1.5 m at Suez. A difference of six hours exists between the times of high water at the southern and northern ends of the Gulf. Quantitatively the agreement between the observed and computed tide is better in the 2‐D simulation than in the 3‐D simulation. However, the counterclockwise gyres in the top three layers of the 3‐D model (upper 30 m) during slack water following the flood tide do not appear in the 2‐D simulation.  相似文献   

5.
Deep marine tight sandstone oil reservoirs are the subject of considerable research around the world. This type of reservoir is difficult to develop due to its low porosity, low permeability, strong heterogeneity and anisotropy. A marine tight sandstone oil reservoir is present in the Silurian strata in the northern Tazhong area of the Tarim Basin, NW China, at a depth of more than 5000 m. The porosity is between 6% and 8%, and the gas permeability is between 0.1 and 1 × 10−3 μm2. The features of this type of reservoir include the poor effects of conventional fracturing modifications and horizontal wells, which can lead to stable and low levels of production after staged fracturing. Here, we conduct a comprehensive evaluation of the mechanical properties of the rock and the in situ stress of the target tight sandstones by using numerous mechanical and acoustic property tests, conducing crustal stress analysis and using data from thin section observations. The dispersion correction technique is used to transform velocity at the experimental high frequency (1 MHz) to velocity at the logging frequency (20 kHz). The logging interpretation models of the transverse wave offset time, mechanical parameters and in situ stress are calculated, and each model represents a high precision prediction. Simulating the in situ stress field of the Silurian strata using a three-dimensional finite element method demonstrates that the average error between the simulation result and the measured value is less than 6%. The planar distribution of each principal stress is mainly controlled by the burial depth and fault distribution. By conducting in situ stress orientation analysis for the target layer via the analysis of paleomagnetism, borehole enlargement, fast shear wave orientation and stress field simulation, we show that the direction of the maximum horizontal stress is N45E. In this paper, a typical and successful comprehensive evaluation of the stress field of the deep tight sandstone oil reservoir is provided.  相似文献   

6.
Understanding diagenetic heterogeneity in tight sandstone reservoirs is vital for hydrocarbon exploration. As a typical tight sandstone reservoir, the seventh unit of the Upper Triassic Yanchang Formation in the Ordos Basin (Chang 7 unit), central China, is an important oil-producing interval. Results of helium porosity and permeability and petrographic assessment from thin sections, X-ray diffraction, scanning electron microscopy and cathodoluminescence analysis demonstrate that the sandstones have encountered various diagenetic processes encompassing mechanical and chemical compaction, cementation by carbonate, quartz, clay minerals, and dissolution of feldspar and lithic fragments. The sandstones comprise silt-to medium-grained lithic arkoses to feldspathic litharenites and litharenites, which have low porosity (0.5%–13.6%, with an average of 6.8%) and low permeability (0.009 × 10−3 μm2 to 1.818 × 10−3 μm2, with an average of 0.106 × 10−3 μm2).This study suggests that diagenetic facies identified from petrographic observations can be up-scaled by correlation with wire-line log responses, which can facilitate prediction of reservoir quality at a field-scale. Four diagenetic facies are determined based on petrographic features including intensity of compaction, cement types and amounts, and degree of dissolution. Unstable and labile components of sandstones can be identified by low bulk density and low gamma ray log values, and those sandstones show the highest reservoir quality. Tightly compacted sandstones/siltstones, which tend to have high gamma ray readings and relatively high bulk density values, show the poorest reservoir quality. A model based on principal component analysis (PCA) is built and show better prediction of diagenetic facies than biplots of well logs. The model is validated by blind testing log-predicted diagenetic facies against petrographic features from core samples of the Upper Triassic Yanchang Formation in the Ordos Basin, which indicates it is a helpful predictive model.  相似文献   

7.
In order to quantitatively estimate the volume and property transports between the South China Sea and Indonesian Seas via the Karimata Strait, two trawl-resistant bottom mounts, with ADCPs embedded, were deployed in the strait to measure the velocity profile as part of the South China Sea-Indonesian Seas transport/exchange (SITE) program. A pair of surface and bottom acoustic modems was employed to transfer the measured velocity without recovering the mooring. The advantage and problems of the instruments in this field work are reported and discussed. The field observations confirm the existence of the South China Sea branch of Indonesian throughflow via the Karimata Strait with a stronger southward flow in boreal winter and weaker southward bottom flow in boreal summer, beneath the upper layer northward (reversal) flow. The estimate of the averaged volume, heat and freshwater transports from December 2007 to March 2008 (winter) is (-2.7 ± 1.1) × 10 6 m3/s, (-0.30 ± 0.11) PW, (-0.18 ± 0.07) × 106m3/s and from May to September 2008 (summer) is (1.2 ± 0.6) × 106m3/s, (0.14 ± 0.03) PW, (0.12 ± 0.04) × 106m3/s and for the entire record from December 2007 to October 2008 is (-0.5 ± 1.9) × 10 6 m3/s, (-0.05 ± 0.22) PW, (-0.01 ± 0.15) × 106m3/s (negative/positive represents southward/northward transport), respectively. The existence of southward bottom flow in boreal summer implies that the downward sea surface slope from north to south as found by Fang et al. (2010) for winter is a year-round phenomenon.  相似文献   

8.
《Oceanologica Acta》1998,21(2):271-278
Nutrient fluxes to the Bay of Biscay from the Cantabrian basin have been quantified for the first time. Data between 1981 and 1995 of the main 16 Cantabrian rivers from the COCA monitoring programme have been used. Values of water flow and dissolved inorganic nitrogen (DIN), phosphate and silicate concentrations have been taken. Equations are proposed to quantify the fluvial nutrient contributions to the Cantabrian Sea. The annual average of continental outputs to the Bay of Biscay from the Cantabrian basin is 16.1 × 109 m3 of freshwater, 1.0 × 109 mol of N in DIN, 0.062 × 109 mol of phosphate and 1.2 × 109 mol of silicate. In comparison with the French rivers, those of the Cantabrian have small fluxes and their outflow is very disperse, not forming large coastal plumes. From April to September, when the primary production is relatively important, the DIN contribution to the Cantabrian coastal reservoir is 10%. Coastal fertilisation due to continental waters could be considered as negligible and only influences areas very close to river mouths, except for the Nalón River. Its flux represents 33 % of nitrate, 39 % of phosphate and 15 % of silicate of the total continental inputs of nutrients to the Cantabrian Sea.  相似文献   

9.
10.
Some global estimates suggest that gas hydrates represent the largest reservoir of fossil fuel. However, only a few studies of the resource and economic potential of individual gas hydrate accumulations exist. Here we estimate the volume of hydrate-bound gas at GC (Green Canyon) blocks 184/185, GC 234/235, GB (Garden Banks) 388, MC (Mississippi Canyon) 798/842, GC 204, MC 852/853, and AT (Atwater Valley) 425/426 sites in the Gulf of Mexico at water depths ∼500–2000 m. The structural accumulations may contain from 4.7×108 to 1.3×1011 m3 of gas at standard temperature and pressure. The resources in individual gas hydrate accumulations are comparable (by volume) with the reserves in very small to major conventional gas fields. Various geologic, technologic, and economic factors affect the economic potential of studied accumulations. The MC 852/853 appears to be characterized by the most favorable combination of these factors, and thus is suggested to have the highest economic potential. The economic potential of gas hydrate accumulations at GC 204, GB 388, and AT 425/426 sites is ranked as ‘average’. Gas hydrate accumulations at GC 234/235, GC 184/185, and MC 798/842 sites contain only small volumes of hydrate-bound gas, and likely have no economic potential. Future gas hydrate research should focus on the detailed study of large structural gas hydrate accumulations from which gas may be profitably recovered (e.g. the MC 852/853 site).  相似文献   

11.
The hydrodynamic forces on the stationary partially submerged cylinder are investigated through towing test with Reynolds number ranging from 5 × 104 to 9 × 105. Three test groups of partially submerged cylinders with submerged depths of 0.25 D, 0.50 D, and 0.75 D and one validation group of fully submerged cylinders are conducted. During the experiments, the hydrodynamic forces on the cylinders are measured using force sensors. The test results show a considerable difference in the hydrodynamic coefficients for the partially submerged cylinders versus the fully submerged cylinders. A significant mean downward lift force is first observed for the partially submerged cylinders in a steady flow. The maximum of the mean lift coefficients can reach 1.5. Two distinct features are observed due to the effects of overtopping: random distributions in the mean drag coefficients and a clear quadratic relationship between the mean lift coefficients and the Froude number appear in the non-overtopping region. However, the novel phenomenon of a good linear relationship with the Froude number for the mean hydrodynamic coefficients is clearly shown in the overtopping region. In addition, fluctuating hydrodynamic coefficients are further proposed and investigated. These results are helpful to have a better understanding of the problem and to improve related structural designs.  相似文献   

12.
春季黄海浮游植物生态分区:物种组成   总被引:3,自引:1,他引:2  
Phytoplanktonic ecological provinces of the Yellow Sea(31.20°–39.23°N, 121.00°–125.16°E) is derived in terms of species composition and hydrological factors(temperature and salinity). 173 samples were collected from 40 stations from April 28 to May 18, 2014, and a total of 185 phytoplanktonic algal species belonging to 81 genera of 7phyla were identified by Uterm?hl method. Phytoplankton abundance in surface waters is concentrated in the west coast of Korean Peninsula and Korea Bay, and communities in those areas are mainly composed of diatoms and cyanobacteria with dominant species of Cylindrotheca closterium, Synechocystis pevalekii, Chroomonas acuta,Paralia sulcata, Thalassiosira pacifica and Karenia mikimotoi, etc. The first ten dominant species of the investigation area are analyzed by multidimensional scaling(MDS) and cluster analysis, then the Yellow Sea is divided into five provinces from Province I(P-I) to Province V(P-V). P-I includes the coastal areas near southern Liaodong Peninsula, with phytoplankton abundance of 35 420×10~3–36 163×10~3 cells/L and an average of 35 791×10~3 cells/L, and 99.84% of biomass is contributed by cyanobacteria. P-II is from Shandong Peninsula to Subei coastal area. Phytoplankton abundance is in a range of 2×10~3–48×10~3 cells/L with an average of 24×10~3cells/L, and 63.69% of biomass is contributed by diatoms. P-III represents the Changjiang(Yangtze River) Diluted Water. Phytoplankton abundance is 10×10~3–37×10~3 cells/L with an average of 24×10~3 cells/L, and 73.14% of biomass is contributed by diatoms. P-IV represents the area affected by the Yellow Sea Warm Current.Phytoplankton abundance ranges from 6×10~3 to 82×10~3 cells/L with an average of 28×10~3 cells/L, and 64.17% of biomass is contributed by diatoms. P-V represents the cold water mass of northern Yellow Sea. Phytoplankton abundance is in a range of 41×10~3–8 912×10~3 cells/L with an average of 1 763×10~3 cells/L, and 89.96% of biomass is contributed by diatoms. Overall, structures of phytoplankton community in spring are quite heterogeneous in different provinces. Canonical correspondence analysis(CCA) result illustrates the relationship between dominant species and environmental factors, and demonstrates that the main environmental factors that affect phytoplankton distribution are nitrate, temperature and salinity.  相似文献   

13.
Growth rates of two halophilic phytoflagellates, Dunaliella euchlora Lerche and D. salina Teodoresco, were studied in mixed batch cultures grown in filtered, axenic brines from Lake Grassmere, New Zealand. Forty‐five combinations of temperature, salinity, and light intensity were used. A maximum growth rate of 1.50 doublings day‐1 was attained by D. salina at 26°C, 190 × 10‐3S at a light intensity of 126 μE m‐2 s‐1. D. euchlora showed maximum growth rate of 1.16 doublings day‐1 at 20°C, 120 × 10‐3S at a light intensity of 180 μE m‐2s‐1. Predicted maximum values of 1.41 and 1.14 doublings day‐1 respectively were obtained from regression models based on 45 replicate treatment combinations. In decreasing order of importance, temperature, salinity, and light intensity influence growth rates of brine algae. The optimum temperature for growth of both species increased as the salt concentration increased but decreased with increasing light intensity.  相似文献   

14.
为全面剖析淤泥质潮滩变化规律及演变特征,运用修改后的输沙公式建立了淤泥质潮滩演变数值模型。经2000,2007年野外实测数据验证,表明该模型各参数设置准确,较真实地反演了滩涂剖面变化过程,可用于淤泥质潮滩的模拟计算。根据数值模型计算结果得出如下结论:1987-2010年河北省沧州市淤泥质潮滩坡度不断增大,但增长速率变化不大,为0.002×10-3。0 m等深线上部坡度逐渐变缓,年均降低0.021×10-3;下部坡度不断变陡,年均增长0.022×10-3。研究区潮滩未达平衡状态,其坡度将进一步变陡。该输沙模型及研究结论对淤泥质潮滩的保护具有重要的理论指导意义,为其科学开发管理提供实际参考依据。  相似文献   

15.
In 2009, the Gulf of Mexico (GOM) Gas Hydrates Joint-Industry-Project (JIP) Leg II drilling program confirmed that gas hydrate occurs at high saturations within reservoir-quality sands in the GOM. A comprehensive logging-while-drilling dataset was collected from seven wells at three sites, including two wells at the Walker Ridge 313 site. By constraining the saturations and thicknesses of hydrate-bearing sands using logging-while-drilling data, two-dimensional (2D), cylindrical, r-z and three-dimensional (3D) reservoir models were simulated. The gas hydrate occurrences inferred from seismic analysis are used to delineate the areal extent of the 3D reservoir models. Numerical simulations of gas production from the Walker Ridge reservoirs were conducted using the depressurization method at a constant bottomhole pressure. Results of these simulations indicate that these hydrate deposits are readily produced, owing to high intrinsic reservoir-quality and their proximity to the base of hydrate stability. The elevated in situ reservoir temperatures contribute to high (5–40 MMscf/day) predicted production rates. The production rates obtained from the 2D and 3D models are in close agreement. To evaluate the effect of spatial dimensions, the 2D reservoir domains were simulated at two outer radii. The results showed increased potential for formation of secondary hydrate and appearance of lag time for production rates as reservoir size increases. Similar phenomena were observed in the 3D reservoir models. The results also suggest that interbedded gas hydrate accumulations might be preferable targets for gas production in comparison with massive deposits. Hydrate in such accumulations can be readily dissociated due to heat supply from surrounding hydrate-free zones. Special cases were considered to evaluate the effect of overburden and underburden permeability on production. The obtained data show that production can be significantly degraded in comparison with a case using impermeable boundaries. The main reason for the reduced productivity is water influx from the surrounding strata; a secondary cause is gas escape into the overburden. The results dictate that in order to reliably estimate production potential, permeability of the surroundings has to be included in a model.  相似文献   

16.
Because of its importance to many Earth science analyses, it is worth assessing whether gravity modelling can be simplified depending on the intended purpose and required precision. While it is obvious that large-scale gravity studies should account for the sphericity of the Earth, each case should be examined on its own merits. Demonstrations are useful for providing estimates of the errors in much simpler 2D modelling. The example of the Mid-Atlantic Ridge serves to compare “large” 2D and spherical 3D models. My model extends horizontally ±2,000 km (±18°) from the model profile across and along the straight ridge axis (along a great circle) and to a depth of 82 km across the axis. 3D modelling would generally be considered obligatory, but this is not clearly necessary from this study. The density structure is highly idealised, the asthenospheric uplift or lithosphere thinning is simplified. The Bouguer anomaly is fitted by least-squares for the density contrast, and the 2D–3D difference of the results is taken as the error. A lithosphere–asthenosphere density contrast of 86.56 kg/m3 was computed for the 2D model, and 84.14 kg/m3 for the spherical model. The difference is small, in the order of 3%, well within all the other uncertainties. My study shows that despite the significant sphericity of the structure, 2D models are well suited for such ridge studies, or generally for models with a laterally extended layered structure, and that spherical modelling can be applied discriminately.  相似文献   

17.
Oxy-anionic species of V, As, Se, Mo, Sb, Te and W were measured in solution and suspension in samples obtained during several cruises in the Dutch Wadden Sea, the offshore region of the Southern Bight (North Sea) and in the estuaries of the Rhine and Scheldt. Dissolved concentrations at salinities above 34·5 × 10?3 ( = 34·5%. S) agreed generally well with published open ocean values. It is suggested that Se speciation differs from the open ocean.In the Wadden Sea, concentrations of V, Se, Mo and Sb were linearly related to salinity (10–35 × 10?3). The good agreement between measured and extrapolated values at a salinity of 0·5 × 10?3 suggests conservative behaviour in the Rhine estuary (with residence time of freshwater in the order of a few days).Dissolved concentration vs. salinity plots in the Scheldt estuary (residence time 2–3 months) showed pronounced minima and maxima. These occurred in the low or medium salinity range for V, As and Sb. Linear behaviour was observed for Se and Mo (in some cases, relatively large differences between cruises were detected). Deviations from linearity in the plots are interpreted in terms of thermodynamic equilibrium conditions involving species with different solubilities (V), local input from land (As, Se, Sb, Te) and removal from solution (As), probably through coprecipitation with Fe(OH)3.In the offshore samples, the contributions of particulate forms to the total element concentrations were small (<15%). At higher SPM concentrations (about 30 mg dm?3), this percentage remained small for Se, Mo and Sb (<15%); it was substantial for V and As (25–50%).  相似文献   

18.
裙带菜(Undaria pinnatifida)是一种比较大型的经济海藻,在我国的辽宁、山东沿海和浙江的舟山群岛等都有自然繁殖。它的营养成分,除碘和碳水化合物外,其它部分均高于海带。另外,裙带菜还是一种碱性最高的藻类,这种碱性物质对人体健康有密切的关系,它可以中和人体内部因疲劳和新陈代谢  相似文献   

19.
Bottom simulating reflectors (BSRs), known as the base of gas hydrate stability zone, have been recognized and mapped using good quality three-dimensional (3D) pre-stack migration seismic data in Shenhu Area of northern South China Sea. Additionally, seismic attribute technique has been applied to better constrain on the distribution of gas hydrate. The results demonstrate that gas hydrate is characterized by “blank” zone (low amplitude) in instantaneous amplitude attribute. The thickness of gas hydrate stability zone inferred from BSR ranges from 125 to 355 m with an average of 240 m at sea water depth from 950 to 1,600 m in this new gas hydrate province. The volume of gas in-place bound in hydrate is estimated from 1.7 × 109 to 4.8 × 10m3, with the most likely value of around 3.3 × 10m3, using Monte Carlo simulation. Furthermore, geothermal gradient and heat flow are derived from the depths of BSRs using a conductive heat transfer model. The geothermal gradient varies from 35 to 95°C km−1 with an average of 54°C km−1. Corresponding heat flow values range from 43 to 105 mW m−2 with an average of 64 mW m−2. By comparison with geological characteristics, we suggest that the distribution of gas hydrate and heat flow are largely associated with gas chimneys and faults, which are extensively distributed in Shenhu Area, providing easy pathways for fluids migrating into the gas hydrate stability zone for the formation of gas hydrate. This study can place useful constraints for modeling gas hydrate stability zone from measured heat flow data and understanding the mechanism of gas hydrate formation in Shenhu Area.  相似文献   

20.
Halimeda is one of the major reef-building algas in the middle Miocene of Xisha, and one of the significant reefbuilding algas in the algal reef oil and gas field of the South China Sea. However, there have been few reports regarding the characteristics of mineral rocks, reservoir porosity and permeability layers, and sedimentationdiagenetic-evolution of fossil Halimeda systems. The present paper briefly introduces the relevant studies on chlorophyta Halimeda and the research status of oil and gas exploration. Through the 1 043 m core of the Xichen-1 well, we studied the characteristics of the mineral rocks and porosity and permeability of the middle Miocene Halimeda of the Yongle Atoll, identified and described the segments of fossil Halimeda, and pointed out that most of the segment slides are vertical sections in ovular, irregular or long strips. The overwhelming majority of these fossil Halimeda found and studied are vertical sections instead of cross sections. In this paper, knowledge regarding the cross sections of fossil Halimeda is reported and proven to be similar with the microscopic characteristics of modern living Halimeda; fossil Halimeda are buried in superposition; it is shown that there are different structures present, including typical bio-segment structure, and due to its feature of coexisting with red alga, tying structure, twining structure and encrusting structure are all present; and finally, it is suggested to classify the fossil Halimeda into segment algal reef dolomites. In addition, all of the studied intervals are moderately dolomitized. Secondary microcrystalline-dolosparite dominates the original aragonite raphide zones,and aphanitic-micrite dolomite plays the leading role in the cortexes and medullas; in the aragonite raphide zones between medulla and cysts, secondary dissolved pores and intercrystalline pores are formed inside the segments, and algal frame holes are formed between segments; therefore, a pore space network system(dissolved pores + intragranular dissolved pores—intercrystalline pores + algal frame holes) is established. Segment Halimeda dolomite has a porosity of 16.2%–46.1%, a permeability of 0.203×10–3–2 641×10–3 μm2, and a throatradius of 23.42–90.43 μm, therefore it is shown to be a good oil and gas reservoir. For the reasons mentioned above, we suggest building the neogene organic reef-modern reef sedimentation-diagenetic-evolution models for the Xisha Islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号