首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon isotopes (δ13C) and C/N ratios from bulk organic matter have recently been used as alternative proxies for relative sea‐level (RSL) reconstruction where there are problems associated with conventional biological indictors. A previous study on a single isolation basin (Upper Loch nan Eala) in northwest Scotland has shown a clear relationship between δ13C, C/N ratios and palaeosalinity from Younger Dryas and Holocene aged sediments. In this paper we present results of δ13C and C/N ratio analyses from other isolation basins in northwest Scotland over the Holocene and the Lateglacial period in order to validate this technique. The results from the Holocene sequences support the earlier findings that this technique can be used to identify RSL change from isolation basins over the Holocene in this region. The relationship between δ13C, C/N ratios and RSL change is not apparent in sediments of Lateglacial age. Other environmental variables such as atmospheric CO2 concentration, poor vegetation development and temperature influence δ13C values during this period. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Microfossils in isolation basin sediments are frequently used to reconstruct sea‐level change, but preservation problems and non‐analogue situations can limit their usefulness. Here we investigate the potential of stable carbon isotopes (δ13C) and C/N ratios from bulk organic matter, as an alternative proxy of salinity within isolation basin sediments from a basin in northwest Scotland. Within the Holocene sediment δ13C and C/N are determined largely by the mean weighted values of the predominant source of the organic material. Analysis of modern materials and comparison with the diatom record shows that the marine parts of the sequence are dominated by high δ13C and variable C/N. In the fresh water sequences the organic material is a mixture of both freshwater aquatic and terrestrial plant input that have relatively low δ13C and high C/N. The application of δ13C and C/N ratios in the studied basin in general follow the environmental change recorded by the diatoms and shows the potential of bulk organic matter in the investigation of salinity change in isolation basins. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Anaerobic incubations of upland and wetland temperate forest soils from the same watershed were conducted under different moisture and temperature conditions. Rates of nitrous oxide (N2O) production by denitrification of nitrate () and the stable isotopic composition of the N2O (δ15N, δ18O) were measured. In all soils, N2O production increased with elevated temperature and soil moisture. At each temperature and moisture level, the rate of N2O production in the wetland soil was greater than in the upland soil. The 15N isotope effect (ε) (product − substrate) ranged from −20‰ to −29‰. These results are consistent with other published estimates of 15N fractionation from both single species culture experiments and soil incubation studies from different ecosystems.A series of incubations were conducted with 18O-enriched water (H2O) to determine if significant oxygen exchange (O-exchange) occurred between H2O and N2O precursors during denitrification. The exchange of H2O-O with nitrite () and/or nitric oxide (NO) oxygen has been documented in single organism culture studies but has not been demonstrated in soils prior to this study. The fraction of N2O-O derived from H2O-O was confined to a strikingly narrow range that differed between soil types. H2O-O incorporation into N2O produced from upland and wetland soils was 86% to 94% and 64% to 70%, respectively. Neither the temperature, soil moisture, nor the rate of N2O production influenced the magnitude of O-exchange. With the exception of one treatment, the net 18O isotope effect (εnet) (product-substrate) ranged from +37‰ to +43‰.Most previous studies that have reported 18O isotope effects for denitrification of to N2O have failed to account for the effect of oxygen exchange with H2O. When high amounts of O-exchange occur after fractionation during reductive O-loss, the 18O-enrichment is effectively lost or diminished and δ18O-N2O values will be largely dictated by δ18O-H2O values and subsequent fractionation. The process and extent of O-exchange, combined with the magnitude of oxygen isotope fractionation at each reduction step, appear to be the dominant controls on the observed oxygen isotope effect. In these experiments, significant oxygen isotope fractionation was observed to occur after the majority of water O-exchange. Due to the importance of O-exchange, the net oxygen isotope effect for N2O production in soils can only be determined using δ18O-H2O addition experiments with δ18O-H2O close to natural abundance.The results of this study support the continued use of δ15N-N2O analysis to fingerprint N2O produced from the denitrification of . The utilization of 18O/16O ratios of N2O to study N2O production pathways in soil environments is complicated by oxygen exchange with water, which is not usually quantified in field studies. The oxygen isotope fractionation observed in this study was confined to a narrow range, and there was a clear difference in water O-exchange between soil types regardless of temperature, soil moisture, and N2O production rate. This suggests that 18O/16O ratios of N2O may be useful in characterizing the actively denitrifying microbial community.  相似文献   

5.
To determine stable-isotope ratios of natural gas components a system is constructed to separate CH4 and N2 from milliliter quantities of natural gas by gas chromatography. Having passed through the separation column and a catharometer detector the gas flow is distributed consecutively into two lines, one in which N2 is trapped in a helium cryostat at 4.2 K and one in which CH4 is immediately combusted by CuO to CO2 and H2O which are trapped separately.The δ 2H-, δ 13C- and δ 15N-values are determined by conventional isotope mass spectrometry.  相似文献   

6.
Oxygen atoms within fossil wood provide high-resolution records of climate change, particularly for the Quaternary. However, current analysis methods of fossil cellulose do not differentiate between different positions of the oxygen atoms. Here, we propose a refinement to tree-cellulose paleoclimatology modeling, using the cellulose-derived compound phenylglucosazone as the isotopic substrate. Stem samples from trees were collected at northern latitudes as low as 24°37′N and as high as 69°00′N. We extracted stem water and cellulose from each stem sample and analyzed them for their 18O content. In addition, we derived the cellulose to phenylglucosazone, a compound which lacks the oxygen attached to the second carbon of the cellulose-glucose moieties. Oxygen isotope analysis of phenylglucosazone allowed us to calculate the 18O content of the oxygen attached to the second carbon of the cellulose-glucose moieties. By way of these analyses, we tested two hypotheses: first, that the 18O content of the oxygen attached to second carbon will more closely reflect the 18O content of the stem water, and will not resemble the 18O content of either cellulose or its derivative phenylglucosazone. Second, tree-ring models that incorporate the variable oxygen isotope fractionation shown here and elsewhere are more accurate than those that do not. Our first hypothesis was rejected on the basis that the oxygen isotope ratios of the oxygen attached to the second carbon of the glucose moieties had a noisy isotopic signal with a large standard deviation and gave the poorest correlation with the oxygen isotope ratios of stem water. Related to this isotopic noise, we observed that the correlation between oxygen isotope ratios of phenylglucosazone with both stem water and relative humidity were higher than those observed for cellulose. Our hypothesis about tree-ring models which account for changes in the oxygen isotopic fractionation during cellulose synthesis was consistent only for the 18O content of phenylglucosazone. We showed that the tree-ring model based on the 18O content of phenylglucosazone was an improvement over existing models that are based on whole cellulose. Additionally, this approach may be used in other cellulose based archives such as peat deposits and lacustrine sediments.  相似文献   

7.
Silicon isotope compositions of main channel samples of the Yangtze River were systematically investigated along with their chemical compositions. The concentration of suspended matter in the Yangtze River tends to decrease from the upper reaches to the lower reaches, corresponding to settling of the sediments in the lakes and reservoirs due to reduction of the velocity of water flow. The silica contents of suspended matter vary from 52.1% to 56.9% and their δ30Si values vary from 0 to −0.7‰, both similar to those of shales. From the upper to lower reaches, the silica contents of suspended matter tend to increase, whilst their δ30Si values tend to decrease. Both trends reflect the increase of clay minerals and decrease of carbonates in suspended matter.The concentrations of dissolved silicon vary from 97 to 121 μmol/L and their δ30Si values vary over a wide range from 0.7 to 3.4‰. From the upper to lower reaches, dissolved silica concentrations tend to decrease and their δ30Si values tend to increase. These trends mainly reflect the change of chemical and isotopic characteristics of the tributaries from the upper to lower reaches. The major factors responsible for these changes may be the high meteoric precipitation and significant silicon absorption by grass (in wetlands) and rice (in paddy fields) in drainage areas of the middle and lower reaches.There is no correlation between δ30Si of dissolved silicon and that of suspended matter. The Δ30SiDiss-SPM values vary over a wide range of 1.0-3.7‰, indicating that (1) they are out of isotopic equilibrium, (2) dissolved silicon and the associated suspended matter do not belong to one physico-chemical system, and (3) isotopic exchange rate between them is very slow.The δ30Si value of dissolved silicon output from the Yangtze River to the East Sea is estimated to be 3.0‰, much higher than the values reported for the Amazon and Congo rivers. This increases the δ30Si range of dissolved silicon in the world’s rivers from 0.4-1.2%; to 0.4-3.4%.  相似文献   

8.
9.
上新世-更新世转型是上新世温暖气候向更新世冰期-间冰期旋回过渡的重要时段,与此同时,青藏高原的强烈隆升也深刻改变了高原及周边地区的地貌格局和生态环境面貌.因此,开展青藏高原东北缘地区上新世-更新世转型期的古气候变化是理解地球各圈层相互作用的重要切入点.而兰州盆地地处中国三大自然区的衔接位置,对气候变化和构造活动响应较为...  相似文献   

10.
A Late Paleocene (∼60 Ma BP) lateritic soil from Northern Ireland (the Antrim paleosol, herein referred to as Nire) contains coexisting goethite, gibbsite, phyllosilicate, and hematite. The Fe(III) oxides exhibit pisolitic and Liesegang-type morphologies that are mutually exclusive in hand specimens. X-ray diffraction (XRD) measurements of Al substituted for Fe in goethite indicate two populations: (1) low-Al, Liesegang-type goethites (∼0 mol% Al) and (2) high-Al, pisolitic goethites (∼9 to ∼24 mol% Al). Selective dissolution and incremental vacuum dehydration-decarbonation were used to determine the concentration and δ13C values of CO2 occluded in the respective structures of the goethites and gibbsites in this complex mixture of Nire lateritic minerals. The Fe(CO3)OH component in the high-Al goethites appears to retain a proxy carbon isotopic record of vadose zone CO2 in the ancient soil. The δ13C values of CO2 occluded in coexisting goethites and gibbsites indicate that these minerals did not form in equilibrium with the same environmental CO2.The measured mole fractions (X) of Fe(CO3)OH in the high-Al goethites range from 0.0059 (±0.0005) to 0.0077 (±0.0006) and correspond to soil CO2 concentrations of ∼28,000 to ∼37,000 ppmV. The average values of X and δ13C for the four high-Al goethites are 0.0067 ± 0.0007 and −20.1 ± 0.5‰, respectively. The δ13C value of the organic matter undergoing oxidation in this midlatitude (∼55°N) Late Paleocene soil appears to have been ∼ −28.2‰. Taken together, these data indicate an atmospheric CO2 concentration of ∼2400 ppmV (± ∼1200 ppmV) at ∼60 Ma BP. The inferred high concentration of atmospheric CO2 would have been coincident with the warm global climate of the Late Paleocene and is consistent with the idea that CO2 plays an important role in climate variation.  相似文献   

11.
采用人工合成标准物质共注实验、与文献报道的保留指数对比并结合异构体的结构及性质的方法,对石油和沉积有机质中 C3-和 C4-烷基取代二苯并噻吩类含硫多环芳烃化合物进行了系统的鉴定。确定了常规色谱质谱(GC-MS)分析中,烷基取代二苯并噻吩异构体在 HP-5MS (5%-苯基甲基聚硅氧烷)色谱柱上的标准保留指数。确认了前人初步鉴定的部分三甲基二苯并噻吩异构体甲基取代基位置,初步比较了 C3-和 C4-烷基取代二苯并噻吩在不同成因石油和沉积有机质中的分布特征,初步探讨了 C3-和 C4-烷基取代二苯并噻吩潜在的地球化学意义。研究结果为今后进一步探索烷基取代二苯并噻吩系列在石油和沉积有机质中的地球化学意义奠定了可靠的基础。  相似文献   

12.
Samples of suspended matter were collected at different locations, seasons, depths and lateral profiles in the Amazon River and three of its main tributaries, the Madeira, the Solimões and the Negro rivers. Their iron isotope compositions were studied in order to understand the iron cycle and investigate the level of isotopic homogeneity at the river cross-section scale. Samples from four depth profiles and three lateral profiles analyzed show suspended matter δ57Fe values (relative to IRMM-14) between −0.501 ± 0.075‰ and 0.196 ± 0.083‰ (2SE). Samples from the Negro River, a blackwater river, yield the negative values. Samples from other stations (whitewater rivers, the Madeira, the Solimões and the Amazon) show positive values, which are indistinguishable from the average composition of the continental crust (δ57FeIRMM-14 ∼ 0.1‰). Individual analyses of the depth and lateral profiles show no significant variation in iron isotope signatures, indicating that, in contrast to certain chemical or other isotopic tracers, one individual subsurface sample is representative of river deeper waters. This also suggests that, instead of providing detailed information on the riverine iron cycling, iron isotopes of particulate matter in rivers will rather yield a general picture of the iron sources.  相似文献   

13.
Isotope ratios and elemental concentrations in otoliths are often used as natural tags to reconstruct migratory movements and connectivity patterns in marine and anadromous fishes. Although differences in otolith geochemistry have been documented among geographically separated populations, inter-annual variation within locations is less frequently examined. We compared otolith isotope (δ18O and 87Sr:86Sr) and elemental ratios (Sr:Ca and Ba:Ca) from several annual cohorts of juvenile American shad (Alosa sapidissima) in three rivers. These four geochemical signatures distinguished among river-specific populations of this species at both large and small geographic scales, with δ18O and 87Sr:86Sr generating the majority of multivariate variation. We found significant variation among years for all variables in two to three rivers. However, the magnitude of variability differed among ratios, with δ18O ratios showing substantial inter-annual shifts while 87Sr:86Sr ratios were relatively stable across years. Sr:Ca and Ba:Ca ratios also varied among years. These results imply that investigators using environmentally labile signatures must quantify geochemical signatures for each cohort of interest in order to confidently identify origins of migrants.  相似文献   

14.
Palaeoenvironmental assessment of past C3 and C4 vegetation distributions relies on end member data from plant analyses. In southwestern Africa, end member data of the carbon number distribution of n-alkanes from leaf waxes and their carbon isotopic composition were available for the rainforest and the savannah. To complement this, we analysed the n-alkane parameters of 41 C3 plants and 11 C4 plants from the transition region, i.e., the wood- and shrubland of Angola. The combined results for the rainforest, the wood- and shrubland and the savannah show an increase in the average chain length (ACL) of C3 and C4 plants and an increasingly enriched carbon stable isotope composition for the C3 plants from the equator towards southern Africa. The enlarged database was applied to the data of a north–south transect of deep-sea surface sediments already used in a previous study, which resulted in the proxies showing a good reflection of the vegetation on the adjacent southwest African continent in terms of %C4 plant cover. Applying end member values for ACL and δ13C obtained from the enlarged database by two different averaging methods (arithmetic average and median) to the n-alkane data from the sediment transect yielded similar vegetation reconstructions. In addition, a correlation between ACL and growth height of the plants is discussed, indicating that the ACL may be useful as a tree abundance parameter. Thus, the enlarged end member database strengthens the n-alkane parameters as tools for palaeoenvironmental studies.  相似文献   

15.
We investigate seasonal variations in the diet and drinking water of four Great Lakes mastodon (Mammut americanum) specimens using stable isotope analysis of serially sampled inner-enamel bioapatite structural carbonate (δ13Csc, δ18Osc), and previously published bulk analyses. Isotopic analyses and thin section measurements showed that mastodon tooth enamel extension rates (~ 12–4 mm/yr, decreasing toward the cervix) were lower than those of mammoths or modern elephants. Mastodons had distinct and highly regular seasonal variations in δ13Csc and δ18Osc, which we interpret in the context of local glacial history and vegetation changes. Seasonal variations in δ18O were large but variations in δ13C were small, and may have been obscured if coarser sampling methods than our inner-enamel sampling approach were used. Thus, our approach may be particularly useful for understanding relatively small seasonal changes in δ13C within C3 environments. The seasonal patterns, though not entirely conclusive, suggest that the Ontario mastodons did not migrate over very long distances. Rather, the climate and seasonal dietary patterns of mastodons within the region changed over time, from ~ 12,400 to 10,400 14C yr BP (~ 15,000 – 12,000 cal yr BP). Insights gained using these methods can contribute to a better understanding of megafaunal extinctions and Paleoamerican lifeways.  相似文献   

16.
Matrix-supported diamicton and uniform to laminated, silty, fine-grained sediment deposited from about 42,500 to 27,600 cal yr B.P. under slackwater conditions nearly filled two caves in southwestern Illinois. At some point, most of the sediment was flushed from the caves and from about 22,700 to 4000 cal yr B.P., floods deposited a drape of sandy and silty sediment on remnant slackwater successions, cobbly alluvium, and bedrock (especially from 7700 to 4000 cal yr B.P.). Clay mineral analyses of the slackwater cave sediment reveal a provenance of chiefly Petersburg Silt, a smectite- and illite-rich proglacial lacustrine unit present in the overlying Illinois Episode glacial succession. Today, remnants of the ancient subterranean slackwater deposits nearly fill several secondary passages and, in at least two locations, cover a cobble-mantled strath terrace 1.3 to 1.5 m above active stream channels. Slumping and sinkhole formation appear to have been important mechanisms for deposition of the ancient subterranean deposits. Slumping of these surficial deposits and associated vegetation can occur along the flanks of sinkholes (in addition to sinkhole formation) and enter caves; however, the finer organics, some of them comminuted during transport into the caves, become part of the cave alluvium. This finer organic fraction is the modern analog of the humified organic matter disseminated in slackwater sediment dated in this investigation by radiocarbon methods. Twenty-four 14C ages on humified organic matter provide chronologic control. The δ13C values of the organic matter reflect the proportion of C4-type to C3-type vegetation growing in and around swallets and sinkholes at the time of redeposition. Drought-tolerant C4-type vegetation was more prevalent relative to C3-type vegetation from 42,500 to 31,200 cal yr B.P. compared to conditions from 28,800 cal yr B.P. to the present. The δ13C values are consistent with the results from other investigations of speleothems and organic matter from loessial paleosols.  相似文献   

17.
U-type paragenesis inclusions predominate (94.7%) among the crystalline inclusion suite of 115 diamonds (−4+2 mm) obtained from the recently discovered Snap Lake/King Lake (SKL) kimberlite dyke system, Southern Slave, Canada. The most common inclusions are olivine (90) and enstatite (22). Sulfide, Cr-pyrope, chromite and Cr-diopside inclusion are less abundant (15, 10, 5 and 1, respectively). Results of the inclusion composition study demonstrate the following. (a) The relatively enriched character of the mantle parent rocks of the U-type diamonds. The average Mg# of olivine inclusions is 92.1, and of enstatite inclusions average 93.3. CaO content in Cr-pyrope inclusions is relatively high (3.73–5.75 wt.%). (b) Four of ten U-type Cr-rich pyrope inclusions contain a majoritic component up to 16.8 mol.% which requires pressures of 110 kbar. Carbon isotopes compositions for 34 diamonds with U-type inclusions have a δ13C range from −3.2‰ to −9‰ with a strong peak around −3.5‰. This is much heavier than the ratios of U-type diamonds from Siberia and South Africa (4.5‰). Diamonds with olivine inclusions can be divided into two groups based on their δ13C values as well as the Mg# and Ni/Fe ratio in the olivines. Most show a narrow range of δ13C values from −3.2‰ to −4.8‰ (average −3.72‰) and have olivine inclusions with Mg# less than 92.3 and relatively high Fe/Ni ratios. A second group is characterized by a much wider variation of C isotope composition (δ13C varies from −3.8‰ to −9.0‰, average −5.97‰), and the olivine inclusions having a higher Mg# (up to 93.6) and relatively low Fe/Ni ratios. This difference in the C isotope composition may have several explanations: (a) peculiarities of asthenosphere degassing coupled with an abnormal thickness of lithosphere; (b) the abnormal thickness and enriched character of lithospheric mantle; (c) involvement of subducted C of crustal origin in the processes of the diamond formation. The presence of subcalcic Cr-rich majorite (up to 17 mol.%) pyropes of low-Ca harzburgite paragenesis among the crystalline inclusion suite of SKL diamonds is strong evidence for the existence of diamondiferous depleted peridotite in lithospheric mantle at depth near 300 km beneath Southern Slave area and is postulated to be one of the main reasons for the much heavier C isotope composition of SKL U-type diamonds in comparison with those from Siberian and South African kimberlites.  相似文献   

18.
δ13C data from Tethyan sections provide evidence of profound changes in the carbon cycle during the Lower Triassic. Sections from the Panthalassa realm were investigated to establish whether these variations are also present there. In the Jurassic accretionary wedges in Japan, exotic blocks having a Panthalassan affinity, have been incorporated. The majority of the blocks are pelagic cherts but rare shallow-water carbonates are also present. We present a δ13C study on the Lower Triassic of a shallow-water carbonate succession deposited on a mid-oceanic seamount and accreted to the Chichibu Belt, Japan. Two sections have been measured at Kamura, central Kyushu Island. The carbon isotope curve shows depleted values across the Permian–Triassic boundary (PTB), subsequently followed by an increase to heavier values into the Dienerian, culminating in a maximum of almost +4‰ V-PDB, before a steep drop at a stratigraphic gap. Low values are recorded in the Smithian, but rise to enriched δ13C values > +3.5‰ near the Smithian–Spathian boundary. The observed trend of the stable carbon isotope curve from Japanese sediments mirrors the curves derived from sections in the Tethys (e.g. Italy, Iran, Turkey, Oman and the South China Nanpanjing Basin). Our results support the interpretation of this curve as representing a global trend across the PTB and in the Lower Triassic, although some distinct features are absent around the Dienerian/Smithian boundary. Profound variations of the carbon isotope curve in the Lower Triassic are presented for the first time from a marine section outside of the Tethys. They indicate severe, global changes in the Lower Triassic carbon cycle, and the causative processes must have significantly contributed to the delayed biotic recovery after the PTB. Large amounts of carbon were shifted between carbon reservoirs, most probably between shallow- and deep-ocean waters, and/or ocean and sediment. Anoxia followed by overturn of the ocean water masses may have been the mechanism which quickly altered ecological conditions in the ocean leading to variable availability of nutrients and oxygen, and changes in isotope composition of the available carbon in the surface waters that was incorporated in the precipitated carbonate.  相似文献   

19.
The carbon isotope composition (δ13C values) of long chain n-alkanes in lake sediments has been considered a reliable means of tracking changes in the terrigenous contribution of plants with C3 and C4 photosynthetic pathways. A key premise is that long chain leaf wax components used for isotope analysis are derived primarily from terrigenous higher plants. The role of aquatic plants in affecting δ13C values of long chain n-alkanes in lacustrine sediments may, however, have long been underestimated. In this study, we found that a large portion of long chain n-alkanes (C27 and C29) in nearshore sediments of the Lake Qinghai catchment was contributed by submerged aquatic plants, which displayed a relatively positive carbon isotope composition (e.g. −26.7‰ to −15.7‰ for C29) similar to that of terrestrial C4 plants. Thus, the use of δ13C values of sedimentary C27 and C29 n-alkanes for tracing terrigenous vegetation composition may create a bias toward significant overestimation/underestimation of the proportion of terrestrial C4 plants. For sedimentary C31, however, the contribution from submerged plants was minor, so that the δ13C values for C31 n-alkane in surface sediments were in accord with those of the modern terrestrial vegetation in the Lake Qinghai region. Moreover, we found that changes in the δ13C values of sedimentary C27 and C29 n-alkanes were closely related to water depth variation. Downcore analysis further demonstrated the significant influence of endogenous lipids in lake sediments for the interpretation of terrestrial C4 vegetation and associated environment/climate reconstruction. In conclusion, our results suggest that the δ13C values of sedimentary long chain n-alkanes (C27, C29 and C31) may carry different environmental signals. While the δ13C values of C31 were a reliable proxy for C4/C3 terrestrial vegetation composition, the δ13C values of C27 and C29 n-alkanes may have recorded lake ecological conditions and sources of organic carbon, which might be affected by lake water depth.  相似文献   

20.
The vertical distribution of pyrite, acid volatile sulphide (AVS), carbon, and total S (St) were determined directly in the sediments of three lakes of different trophic status. The results showed that freshwater pyrite formation reflects the redox status of the sediment or overlying waters. It appears to form chiefly in reducing sediments which are subject to oxidizing influences, by either a low turnover of organic carbon or periodic incursions of oxygen. Although there are high concentrations of AVS in the near-surface sediments of productive lakes, very little is diagenetically converted to pyrite.The feasibility of using sulphur ratios to diagnose whether rocks were formed in marine or freshwater environments is assessed. New values for FeS2/FeS of 0.5-5 show that this ratio does not provide a reliable test. Values of C/Sp, where Sp represents pyrite sulphur, lie within the range of 160–700 and are much higher than previously measured ratios of C/St of 1–50. These new determinations show that, if pyrite sulphur is unequivocally measured, C/S ratios may be a more sensitive indicator of salinity than had been previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号