首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At the 41,000-period of orbital tilt, summer insolation forces a lagged response in northern ice sheets. This delayed ice signal is rapidly transferred to nearby northern oceans and landmasses by atmospheric dynamics. These ice-driven responses lead to late-phased changes in atmospheric CO2 that provide positive feedback to the ice sheets and also project ‘late’ 41-K forcing across the tropics and the Southern Hemisphere. Responses in austral regions are also influenced by a fast response to summer insolation forcing at high southern latitudes.At the 22,000-year precession period, northern summer insolation again forces a lagged ice-sheet response, but with muted transfers to proximal regions and no subsequent effect on atmospheric CO2. Most 22,000-year greenhouse-gas responses have the ‘early’ phase of July insolation. July forcing of monsoonal and boreal wetlands explains the early CH4 response. The slightly later 22-K CO2 response originates in the southern hemisphere. The early 22-K CH4 and CO2 responses add to insolation forcing of the ice sheets.The dominant 100,000-year response of ice sheets is not externally forced, nor does it result from internal resonance. Internal forcing appears to play at most a minor role. The origin of this signal lies mainly in internal feedbacks (CO2 and ice albedo) that drive the gradual build-up of large ice sheets and then their rapid destruction. Ice melting during terminations is initiated by uniquely coincident forcing from insolation and greenhouse gases at the periods of tilt and precession.  相似文献   

2.
《Quaternary Science Reviews》2005,24(10-11):1111-1121
The early part of marine isotopic Stage 11 near 400,000 years ago provides the closest analog to Holocene insolation levels of any interglaciation during the era of strong 100,000-year climatic cycles. The CH4 concentration measured in Vostok ice fell to ∼450 ppb, and CO2 values to ∼250 ppm. These natural decreases contrast with the increases in recent millennia and support the early anthropogenic hypothesis of major gas emissions from late-Holocene farming. During the same interval, δD values fell from typical interglacial to nearly glacial values, indicating a major cooling in Antarctica early in Stage 11. Other evidence suggests that new ice was accumulating during the closest insolation analog to the present day: a major increase in δ18Oatm at Vostok, a similar increase in marine δ18O values, and re-initiation of ice rafting in the Nordic Sea. The evidence permits extended (>20,000 year) intervals of Stage 11 interglacial warmth in the Antarctic and North Atlantic, yet it also requires that this warmth ended and a new glacial era began when insolation was most similar to recent millennia. The Holocene CO2 anomaly was produced only in part by direct anthropogenic emissions; over half of the anomaly resulted from the failure of CO2 values to fall as they had during previous interglaciations because of natural responses, including a sea-ice advance in the Antarctic and ice-sheet growth in the northern hemisphere.  相似文献   

3.
深海记录中的热带过程及其周期性   总被引:2,自引:4,他引:2  
田军  汪品先 《地球科学》2006,31(6):747-753
地球运行轨道参数包括偏心率、斜率和岁差, 在地质时期分别具有413ka和100ka、41ka、23ka和19ka的周期, 它决定地表太阳辐射在不同纬度和季节的周期性变化.太阳辐射变化中, 岁差周期最为明显, 斜率周期在中高纬度比较明显, 而偏心率周期本身作用微弱, 主要通过调控岁差周期的变幅影响气候.传统的地球轨道驱动理论认为, 北半球高纬的太阳辐射决定全球冰量和地表的气候变化, 轨道周期可能线性地反映到气候变化的周期中去.实际的深海记录反映的情况并非如此, 尤其在热带海区, 气候替代性指标的周期性与太阳辐射的周期性既存在相似性, 也存在较大区别.相似性在于, 热带海区的气候替代性指标均表现出较强的岁差和斜率周期, 而且通常情况下岁差周期的强度要高于斜率周期的强度, 说明热带海区的气候变化受控于岁差调控的太阳辐射的变化; 区别性在于, 热带海区气候替代性指标通常表现出较强的不容忽视的100ka、413ka的偏心率周期和10ka左右的半岁差周期, 而且100ka、413ka的偏心率周期还是季风系统的典型周期, 说明热带海区的气候变化并不是简单的线性响应太阳辐射的变化, 也不完全受北半球高纬的控制, 而是具有自身的特性.   相似文献   

4.
Climate: Is the past the key to the future?   总被引:2,自引:0,他引:2  
 The climate of the Holocene is not well suited to be the baseline for the climate of the planet. It is an interglacial, a state typical of only 10% of the past few million years. It is a time of relative sea-level stability after a rapid 130-m rise from the lowstand during the last glacial maximum. Physical geologic processes are operating at unusual rates and much of the geochemical system is not in a steady state. During most of the Phanerozoic there have been no continental ice sheets on the earth, and the planet’s meridional temperature gradient has been much less than it is presently. Major factors influencing climate are insolation, greenhouse gases, paleogeography, and vegetation; the first two are discussed in this paper. Changes in the earth’s orbital parameters affect the amount of radiation received from the sun at different latitudes over the course of the year. During the last climate cycle, the waxing and waning of the northern hemisphere continental ice sheets closely followed the changes in summer insolation at the latitude of the northern hemisphere polar circle. The overall intensity of insolation in the northern hemisphere is governed by the precession of the earth’s axis of rotation, and the precession and ellipticity of the earth’s orbit. At the polar circle a meridional minimum of summer insolation becomes alternately more and less pronounced as the obliquity of the earth’s axis of rotation changes. Feedback processes amplify the insolation signal. Greenhouse gases (H2O, CO2, CH4, CFCs) modulate the insolation-driven climate. The atmospheric content of CO2 during the last glacial maximum was approximately 30% less than during the present interglacial. A variety of possible causes for this change have been postulated. The present burning of fossil fuels, deforestation, and cement manufacture since the beginning of the industrial revolution have added CO2 to the atmosphere when its content due to glacial-interglacial variation was already at a maximum. Anthropogenic activity has increased the CO2 content of the atmosphere to 130% of its previous Holocene level, probably higher than at any time during the past few million years. During the Late Cretaceous the atmospheric CO2 content was probably about four times that of the present, the level to which it may rise at the end of the next century. The results of a Campanian (80 Ma) climate simulation suggest that the positive feedback between CO2 and another important greenhouse gas, H2O, raised the earth’s temperature to a level where latent heat transport became much more significant than it is presently, and operated efficiently at all latitudes. Atmospheric high- and low-pressure systems were as much the result of variations in the vapor content of the air as of temperature differences. In our present state of knowledge, future climate change is unpredictable because by adding CO2 to the atmosphere we are forcing the climate toward a “greenhouse” mode when it is accustomed to moving between the glacial–interglacial “icehouse” states that reflect the waxing and waning of ice sheets. At the same time we are replacing freely transpiring C3 plants with water-conserving C4 plants, producing a global vegetation complex that has no past analog. The past climates of the earth cannot be used as a direct guide to what may occur in the future. To understand what may happen in the future we must learn about the first principles of physics and chemistry related to the earth’s system. The fundamental mechanisms of the climate system are best explored in simulations of the earth’s ancient extreme climates. Received: 7 November 1996/Accepted: 23 January 1997  相似文献   

5.
Climate models, forced only with insolation, indicate that boreal summer monsoons respond to orbital forcing with a zero phase both at the precession and obliquity bands. Discrepancies exist among data with respect to the timing of the response. Some late Pleistocene monsoon records show small lags of 2–3 kyr, close to model results, while many others show considerably longer lags of 5–8 kyr. It has been hypothesized that such lags arise from factors that were, up till now, not included in the modelling experiments, namely variations in glacial-age boundary conditions.Here we address this issue using long, time-dependent climate simulations that do include varying ice sheets and greenhouse gas concentrations. Inclusion of these additional forcings introduces a small peak in the monsoon spectra at the 100 kyr period, while monsoon variance remains dominated by precession with a smaller contribution from obliquity. At the precession band orbital forcing remains the dominant control, with lags close to zero. At the obliquity band varying ice sheet and greenhouse gases explain most of the simulated African and Indian monsoon variance, with orbital forcing playing a minor role. For the East Asian monsoon orbital forcing remains dominant. As a result the simulated obliquity phase of different monsoon systems lies between summer insolation maxima and ice minima/greenhouse gas maxima, with a lag that varies with distance to the Eurasian ice sheet.  相似文献   

6.
米兰科维奇冰期旋回理论:挑战与机遇   总被引:7,自引:6,他引:7       下载免费PDF全文
丁仲礼 《第四纪研究》2006,26(5):710-717
米兰科维奇理论认为,北半球高纬夏季太阳辐射变化是驱动第四纪冰期旋回的主因。这个理论的核心是单一敏感区的触发驱动机制,即北半球高纬气候变化信号被放大、传输进而影响全球。最近,由于大量高分辨率及精确定年的气候变化记录的获得,从以下4个方面构成了对米氏理论的挑战:1)一些低纬地区并没有明显的10万年冰量周期,而是以2万年岁差周期为主,表明北半球冰盖的扩张、收缩变化并没有完全控制低纬区的气候变化;2)在最近几次冰消期时,南半球和低纬区的温度增高,要早于北半球冰盖的融化,表明冰消期的触发机制并非是北半球高纬夏季太阳辐射;3)大气CO2浓度在第2冰消期的增加同南极升温相一致,表明该时大气CO2浓度增加亦有可能早于北半球冰盖消融;4)南半球的末次冰盛期有可能早于北半球。这就说明单一敏感区触发驱动机制已难以圆满解释所有观察事实,天文因素控制下轨道尺度气候变化机制研究正面临理论突破的新需求和新机遇。  相似文献   

7.
地球气候变化的米兰科维奇理论研究进展   总被引:9,自引:0,他引:9  
米兰科维奇理论是从全球尺度上研究日射量与地球气候之间关系的天文理论(以下简称为“米氏理论”)。该理论认为,地球轨道偏心率、黄赤交角及岁差等三要素变化引起的到达北半球中高纬度夏季日射量变化是造成冰期—间冰期旋回的根本原因。详细回顾了米氏理论的发展历程,并以南极东方站过去42万年大气和气候变化的历史资料为例,讨论了经典米氏理论中有待研究的若干问题。  相似文献   

8.
Deep sea sediment cores taken between 50° and 75°N in the North Atlantic, in water depths varying between 1340 and 3850 m, were examined to provide an astronomically calibrated late Quaternary time-scale based on physical property records. Magnetic susceptibility and gamma ray attenuation porosity evaluator (GRAPE) density changes of these cores revealed significant responses to orbital forcing in the eccentricity (100 kyr), obliquity (41 kyr) and precessional (23, 19 kyr) bands. At 75°N (Greenland Sea), a response to obliquity forcing was weak despite the fact that it should become more pronounced in sediments at high latitudes. Application of bandpass filtering at the obliquity period (41 kyr), however, showed that variance at this period did exist in the magnetic susceptibility record, but at a very low power. At 50°N stacked curves of magnetic susceptibility correlated strongly with the SPECMAP curve for the past 500 ka. Since about 65 ka, dropstone layers are recorded in both magnetic susceptibility and GRAPE data of Rockall Plateau sediments. Although Rockall Plateau sediments show peaks in physical properties that correlate with Heinrich events (H1, H2, H4, H5, H6), such a relationship was not readily observed in Norwegian-Greenland Sea records. Heinrich events at Rockall Plateau sites indicate a northward flow of icebergs in the eastern North Atlantic. This flow pattern and the presence of Heinrich events during the past 65 ka raise the questions of whether similar events occurred before this time period, and to what kind of ice sheet dynamics and climatic-oceanographic conditions favoured major iceberg surges from the Laurentide ice sheet to the North Atlantic at 50°N.  相似文献   

9.
Milankovitch theory posits that Earth's orbital cycles were the primary forcing of Pleistocene ice-age cycles through their strong influence on summer insolation at high latitudes. Accordingly, Milankovitch theory predicts ice volume should vary at both obliquity and precessional periods. However, early Pleistocene global ice volume varied mainly at the obliquity period with weak variability at the precessional period suggesting that Milankovitch theory is not sufficient to explain the ice-age cycles. Here we describe the results from a series of coupled ocean-atmosphere general circulation model experiments, using the Fast Ocean Atmosphere Model, that systematically investigate the influence of precession and obliquity on continental snowfall and potential ablation.Our model results identify three factors that magnify the influence of obliquity forcing on the global ice volume: First, high-latitude snowfall variability is dominated by changes in Earth's axial tilt. Second, hemispheric changes in net snowfall due to Earth's precession are out-of-phase, and largely cancel to produce a very small global snowfall change. Third, snowmelt variability over Antarctica responds greatly to changes in obliquity that intensify accumulation over obliquity cycle. We discuss the implications of these factors for existing hypotheses that account for the variability in the ice volume record.  相似文献   

10.
A radiometric calibration of the SPECMAP timescale   总被引:1,自引:0,他引:1  
The astronomical theory of climate change asserts that Earth's climate is affected by changes in its orbit, which vary the seasonal and latitudinal distribution of solar radiation. This theory is the basis of the orbitally tuned SPECMAP timescale. A key constraint for this important chronology was the mid-point of the Penultimate Deglaciation, initially dated to 127,000 years ago. Recent work suggests this event may be considerably older, casting doubt on the astronomical theory, the SPECMAP timescale, and the accuracy of orbitally tuned chronologies. Difficulties with U/Th coral dating of sea-level events have impeded progress on this problem, because most corals are not closed systems. Here, we use a new approach to U/Th dating that corrects for open-system behavior and produces a sea-level curve of sufficient resolution to confidently correlate with SPECMAP over the last 240,000 years, permitting a reassessment of both this critical chronology and a central tenet of climate change theory. High-precision ages for 24 oxygen isotope events provide a 240,000-year chronology for marine δ18O records that is independent of orbital tuning assumptions. Although there appear to be significant differences between the radiometric and orbitally tuned timescales near the lastglacial maximum and at the Marine Isotope Stage 7/6 boundary, a comparison of radiometric and SPECMAP ages for identical isotope events suggest that the SPECMAP timescale is quite accurate and that its errors were, in general, overestimated. Despite suborbital complexity, orbital cyclicity is clearly evident in our record. High-amplitude sea-level oscillations at periods greater than 20,000 years are very close in phase to summer insolation in the Northern Hemisphere. Although sea-level changes cannot be uniquely tied to a specific season or latitude of insolation forcing, the simplest explanation is that long-period, high-amplitude sea-level change is linked to Northern Hemisphere insolation forcing. These results validate the principles of orbital tuning and suggest such timescales are generally robust.  相似文献   

11.
Foraminifera from two cores off eastern Vietnam and the northwestern Philippines, where modern summer and winter monsoon-driven upwelling occurs in the South China Sea, respectively, were analyzed to evaluate the changes in paleoproductivity and upper water structure over the last 220,000 yr. We observed enhanced organic carbon flux and a shoaled thermocline when upwelling intensified off eastern Vietnam during interglacial ages and off the northwestern Philippines during glacial ages. This indicates that the East Asian summer monsoon increased while the winter monsoon decreased during interglacial ages. Particularly, the upwelling reached a maximum off eastern Vietnam during late marine isotopic stage (MIS) 5 and off the northwestern Philippines during MIS 2, implying that the summer monsoon decreased gradually since MIS 5 while the winter monsoon displayed an opposite trend. The variations in upwelling proxies exhibit a distinct cyclicity with frequencies near 41,000 yr and 23,000 yr off eastern Vietnam, in contrast to a strong frequency peak near 100,000 yr off the northwestern Philippines. We suggest that the East Asian summer monsoon has been forced by changes in solar insolation associated with precession and obliquity, while ice-volume forcing is probably a primary factor in determining the strength and timing of the East Asian winter monsoon but with less important insolation forcing.  相似文献   

12.
Frederik J. Hilgen 《Earth》2010,98(1-2):65-80
Today astronomical tuning is widely accepted as numerical dating method after having revolutionised the age calibration of the geological archive and time scale over the last decades. However, its origin is not well known and tracing its roots is important especially from a science historic perspective.Astronomical tuning developed in consequence of the astronomical theory of the ice ages and was repeatedly used in the second half of the 19th century before the invention of radio-isotopic dating. Building upon earlier ideas of Joseph Adhémar, James Croll started to formulate his astronomical theory of the ice ages in 1864 according to which precession controlled ice ages occur alternatingly on both hemispheres at times of maximum eccentricity of the Earth's orbit. The publication of these ideas compelled Charles Lyell to revise his Principles of Geology and add Croll's theory, thus providing an alternative to his own geographical cause of the ice ages. Both Croll and Lyell initially tuned the last glacial epoch to the prominent eccentricity maximum 850,000 yr ago. This age was used as starting point by Lyell to calculate an age of 240 million years for the beginning of the Cambrium. But Croll soon revised the tuning to a much younger less prominent eccentricity maximum between 240,000 and 80,000 yr ago. In addition he tuned older glacial deposits of late Miocene and Eocene ages to eccentricity maxima around 800,000 and 2,800,000 yr ago. Archibald and James Geikie were the first to recognize interglacials during the last glacial epoch, as predicted by Croll's theory, and attempted to tune them to precession. Soon after Frank Taylor linked a series of 15 end-moraines left behind by the retreating ice sheet to precession to arrive at a possible age of 300,000 yr for the maximum glaciation.In a classic paper, Axel Blytt (1876) explained the scattered distribution of plant groups in Norway to precession induced alternating rainy and dry periods as recorded by the layering in Holocene peat bogs. He specifically linked the exceptionally wet Atlantic period to the prolonged precession minimum at 33,300 yr ago and further related basic stratigraphic alternations to precession induced climate change in general. Such a linkage was also proposed by Grove Karl Gilbert for cyclic alternations in the marine Cretaceous of North America. Extrapolating sedimentation rates, he arrived at an astronomical duration for part of the Cretaceous that was roughly as long as the final estimate of William Thomson for the age of the Earth. Assuming that orbital parameters directly affect sea level, Karl Mayer-Eymar and Blytt correlated the well known succession of Tertiary stages to precession and eccentricity, respectively. Remarkably, Blytt, like Croll before him, used very long-period cycles in eccentricity to establish and validate his tuning.Understandably these studies in the second half of the 19th century were largely deductive in nature and proved partly incorrect later. Nevertheless, this fascinating period marks a crucial phase in the development of the astronomical theory of the ice ages and climate, and in astronomical dating. It preceded the final inductive phase, which started with the recovery of deep-sea cores in 1947 and led to a spectacular revival of the astronomical theory, by a century. The first half of the 20th century can best be regarded as an intermediate phase, despite the significant progress made in both theoretical aspects and tuning.  相似文献   

13.
The history of life on Earth is critically dependent on the carbon, sulfur and oxygen cycles of the lithosphere – hydrosphere – atmosphere – biosphere system. An Archean oxygen-poor greenhouse atmosphere developed through: (i) accumulation of CO2 and CH4 from episodic injections of CO2 from volcanic activity, volatilised crust impacted by asteroids and comets, metamorphic devolatilisation processes and release of methane from sediments; and (ii) little CO2 weathering-capture due to both high temperatures of the hydrosphere (low CO2 solubility) and a low ratio of exposed continents to oceans. In the wake of the Sturtian glaciation, enrichment in oxygen and appearance of multicellular eukaryotes heralded the onset of the Phanerozoic where greenhouse conditions were interrupted by periods of strong CO2-sequestration through intensified capture of CO2 by marine plants, onset of land plants and burial of carbonaceous shale and coal (Late Ordovician; Carboniferous – Permian; Late Jurassic; Late Tertiary – Quaternary). The progression from Late Mesozoic and Early Tertiary greenhouse conditions to Late Tertiary – Quaternary ice ages was related to the sequestration of CO2 by rapid weathering of the emerging Alpine and Himalayan mountain chains. A number of peak warming and sea-level-rise events include the Late Oligocene, mid-Miocene, mid-Pliocene and Pleistocene glacial terminations. The Late Tertiary – Quaternary ice ages were dominated by cyclic orbital-forcing-triggered terminations which involved CO2-feedback effects from warming seas and the biosphere and albedo flips due to ice-sheet melting. Since ca AD 1750 human emissions were ~305 Gt of carbon, as compared with ~750 Gt C in the atmosphere. The emissions constitute ~12% of the terrestrial biosphere and ~10% of the known global fossil fuel reserve of ~4000 Gt C, whose combustion would compare to the ~ 4600 Gt C released to the atmosphere during the K – T impact event 65 million years ago, with associated ~65% mass extinction of species. The current growth rate of atmospheric greenhouse gases and global mean temperatures exceed those of Pleistocene glacial terminations by one to two orders of magnitude. The relationship between temperatures and sea-levels for the last few million years project future sea-level rises toward time-averaged values of at least 5 m per 1°C. The instability of ice sheets suggested by the Dansgaard – Oeschinger glacial cycles during 50 – 20 ka, observed ice melt lag effects of glacial terminations, spring ice collapse dynamics and the doubling per-decade of Greenland and west Antarctic ice melt suggest that the Intergovernmental Panel on Climate Change's projected sea-level rises (<59 cm) for the 21st century may be exceeded. The biological and philosophical rationale underlying climate change and mass extinction perpetrated by an intelligent carbon-emitting mammal species may never be known.  相似文献   

14.
天文古气候理论及其进展—从米兰柯维奇到贝尔杰   总被引:3,自引:0,他引:3  
扼要介绍了天文古气候学的创立和发展简史。太阳是地球大气运动的第一驱动力,地球气候的长期演变在很大程度上受到入射太阳辐射变化的影响。入射太阳辐的变化主要和三个地球轨道参数有关,即地球绕太阳运行的椭圆轨道偏心率,地球自转轴倾角及岁差。太阳辐射的长期振荡主要集中在与这三个参数有关的频率上,这些频率通常被称为米兰柯维奇频率,数值模拟和地学记录都证实地质时间尺度的古气候的演化大多位于米兰柯维奇频率带上。  相似文献   

15.
白垩纪中期是温室气候的典型代表,在该时期地球经历了深刻的环境变化。有研究表明白垩纪中期欧洲低纬(约20°~30°N)地区海相地层的黑色页岩呈现斜率信号,同一时期同样纬度的中国地区以陆相沉积为主,但陆相低纬黑色页岩的轨道尺度周期研究较少。因此本研究选择甘肃张掖南台子白垩纪早Aptian期下沟组黑色页岩(古纬度约23°N)作为研究对象,以CaCO3含量作为高分辨率古气候替代性指标,利用平均频谱拟合差和年代标尺优化法分析了南台子早Aptian期下沟组黑色页岩段的轨道周期变化,并利用频谱分析方法对调谐后的时间域序列进行分析。结果显示南台子下沟组黑色页岩段以岁差周期为主导,与欧洲低纬地区相关研究显著不同。这一气候变化的探索不仅提供了中国西北地区白垩纪轨道尺度气候变化的新证据,而且也有助于更全面认识白垩纪中期低纬地区气候变化的驱动机制。  相似文献   

16.
A new composite BDP-96 biogenic silica record over the entire Pleistocene was generated by splicing BDP-96-1 and BDP-96-2 drill cores from Lake Baikal, crosschecked against a similar record from a nearby BDP-98 drill core. A new astronomically tuned age model is proposed based on correlating peak biogenic silica responses with the timing of September perihelia. This target is derived from analysis of regional climate proxy responses during the Holocene, the last interglacial and around paleomagnetic reversals. By resolving virtually every precessional cycle during the Pleistocene, the new age model represents a major improvement compared with previously reported Lake Baikal timescales. The astronomically tuned ages of the Pleistocene paleomagnetic reversals are consistent with published dates. The minimal tuning approach we used (precession only) has also aligned high signal power in a narrow obliquity band, confirming the strong presence of orbital forcing. There are also strong ca 100-ka scale cycles, but these are not aligned with the orbital eccentricity.Despite the location of Lake Baikal in a continental interior that is highly sensitive to insolation forcing, the tuned biogenic silica record reveals a consistent phase difference of −32° (ca 4 ka) relative to insolation in the obliquity band. An inherent lag embedded in a continental proxy record, not driven by global ice volume, is an intriguing finding. Another new observation is that long-term changes in sedimentation rates in Lake Baikal appear to be related to the amplitude of orbital forcing; both amplitudes and sedimentation rates undergo significant changes during MIS 24-MIS 19 interval corresponding to the Middle Pleistocene Transition. With potential for linking continental and marine climato-stratigraphies, the new Baikal record serves a new benchmark correlation target in continental Eurasia, as an alternative to June 65°N insolation and ODP-correlated timescales.  相似文献   

17.
中国西南地区晚二叠世泥炭地净初级生产力及其控制因素   总被引:2,自引:0,他引:2  
邵龙义  汪浩  LargeDJ 《古地理学报》2011,13(5):473-480
米兰科维奇旋回理论是古环境研究中重要的时间“度量”工具.文中以贵州普安糯东17号煤层和云南富源天佑10号煤层为例,对晚二叠世煤层的地球物理测井信号进行频谱分析,以获得其中的米兰科维奇轨道周期参数.研究发现,测井信号所反映出的煤层灰分含量变化受泥炭地发育时期的米兰科维奇轨道周期(123 ka(偏心率):35.6 ka(斜...  相似文献   

18.
白垩纪中期是温室气候的典型代表,在该时期地球经历了深刻的环境变化。有研究表明白垩纪中期欧洲低纬(约20°~30°N)地区海相地层的黑色页岩呈现斜率信号,同一时期同样纬度的中国地区以陆相沉积为主,但陆相低纬黑色页岩的轨道尺度周期研究较少。因此本研究选择甘肃张掖南台子白垩纪早Aptian期下沟组黑色页岩(古纬度约23°N)作为研究对象,以CaCO3含量作为高分辨率古气候替代性指标,利用平均频谱拟合差和年代标尺优化法分析了南台子早Aptian期下沟组黑色页岩段的轨道周期变化,并利用频谱分析方法对调谐后的时间域序列进行分析。结果显示南台子下沟组黑色页岩段以岁差周期为主导,与欧洲低纬地区相关研究显著不同。这一气候变化的探索不仅提供了中国西北地区白垩纪轨道尺度气候变化的新证据,而且也有助于更全面认识白垩纪中期低纬地区气候变化的驱动机制。  相似文献   

19.
2.5Ma以来地球轨道参数变化对黄土粒度变化的线性驱动   总被引:9,自引:7,他引:9  
本文对2.5Ma以来宝鸡黄土剖面粒度曲线与ETP曲线做了互功率谱和凝聚函数分析,以期反映风力强度与地球轨道参数变化的关系。结果表明,2.5Ma以来粒度记录中始终存在着与地轴倾斜度、岁差呈线性响应的41000a、23000a和19000a周期;同时,在0.6—0.0MaB.P.时段存在与偏心率呈线性响应的0.1Ma周期,在2.5—1.6MaB.P.时段存在与偏心率0.4Ma呈线性响应的周期。上述结果佐证了地球轨道变化对内陆古气候变化的线性驱动作用,但该理论不能解释在约0.9—0.6MaB.P.和1.6MaB.P.前后出现的二次较大的主导气候周期转型事件。  相似文献   

20.
According to a new hypothesis, greenhouse-gas concentrations in the atmosphere should have fallen throughout the last several thousand years and caused a significant cooling of Earth's climate, but early anthropogenic emissions of carbon dioxide and methane kept temperatures relatively warm. A further prediction is that ice should have begun accumulating in northeast Canada several thousand years ago. We carry out a preliminary test of this hypothesis by reducing atmospheric CO2 and CH4 concentrations to their estimated ‘natural’ levels in an experiment with the GENESIS climate model. In the absence of anthropogenic contributions, global climate is almost 2 °C cooler than today and roughly one third of the way toward full-glacial temperatures. The hypothesis of an overdue glaciation is confirmed, but at a small scale: parts of Baffin Island retain snow cover year-round, and snow cover persists on high terrain in Labrador for 11 months of the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号