首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Precambrian Research》2001,105(2-4):129-141
The Isua greenstone belt (Fig. 1) contains the oldest known, relatively well preserved, metavolcanic and metasedimentary rocks on Earth. The rocks are all deformed and many were substantially altered by metasomatism, but both the deformation and metasomatism were heterogeneous. Transitional stages can be seen from relatively well preserved primary volcanic and sedimentary structures to schists in which all primary features have been obliterated. Likewise different kinds, and different episodes, of metasomatic alteration can be seen that produced a diversity of different compositions and metamorphic mineral assemblages from similar protoliths. New geological mapping has traced out gradations between the best preserved protoliths and their diverse deformed and metasomatised equivalents. By this means, the primary nature of the schists that make up most of the Isua greenstone belt was reinterpreted, and a new map that better portrays the primary nature of the rocks has been produced. The previously mapped stratigraphy was found to be of little value in understanding the geology. Stratigraphic units were defined by different and diverse criteria, such as current composition, structure, metamorphic texture, and inferred protoliths. Much of this stratigraphy represents a misinterpretation of the primary nature of the rocks. The new work indicates that most of the Isua greenstone belt consists of fault-bounded rock packages, mainly derived from basaltic and high-Mg basaltic pillow lava and pillow lava breccia, chert–BIF, and a minor component of clastic sedimentary rocks derived from chert and basaltic volcanic rocks. A previously mapped, extensive, unit of felsic volcanic rocks was found to be derived from metasomatised basaltic pillow lava and pillow breccia intruded by numerous sheets of tonalite.  相似文献   

2.
《Precambrian Research》2001,105(2-4):183-203
Previous studies have shown that the 2.04 Ga Kangâmiut dyke swarm of SW Greenland was injected into an active tectonic environment associated with the formation of the Nagssugtoqidian orogenic belt. Major and trace element modelling of the swarm shows that its chemical evolution was controlled by simple clinopyroxene–plagioclase fractionation. However, such trends — although typical of continental flood basalts and mafic dyke swarms — are at variance with their mineralogy and petrography, which show that locally hornblende is the dominant primary ferromagnesian mineral. Modelling of intradyke fractionation alone shows that hornblende could locally have been an important crystallising phase within several dykes. Normal basaltic fractionation must have occurred before dyke injection at the exposed crustal levels, where the influx of water into the dykes is believed to be responsible for the transition from clinopyroxene–plagioclase (tholeiitic) to hornblende–plagioclase±oxides (calc–alkaline) crystallisation. Overall geochemical trends are dominated by tholeiitic fractionation because (1) hornblende fractionation tended to buffer chemical composition; (2) the presence of water in the surrounding country rocks may have resulted in the advection of heat away from the dyke and consequently resulted in rapid crystallisation, particularly in thin dykes. There is no evidence from trace element data, and particularly Pb isotopic ratios, of any significant assimilation of country rocks occurring during clinopyroxene–plagioclase fractionation, although this does not preclude contamination of the mantle source prior to magma generation. It is likely that the incompatible element enrichment within the dykes resulted from subduction-related mantle metasomatism. The Kangâmiut dyke swarm was both a syn-tectonic and thermal event, which triggered it may be linked to passage of a slab window underneath the metasomatised region, or a mantle plume ascending under a subduction zone.  相似文献   

3.
Butler  Rhett 《Natural Hazards》2019,96(2):961-973

High-frequency (5–20 Hz) seismic signals precursory to and embedded within the June 17, 2017 ML?=?4 earthquake–landslide event are analyzed. This event in western Greenland generated a tsunami in Karrat fjord inundating Nuugaatsiaq village 32 km distant. Spectrogram and wavelet analyses of seismic data from the Greenland Ice Sheet Monitoring Network (GLISN) corroborate observations of seismic precursors at Nuugaatsiaq reported by Poli (Geophys Res Lett 44:8832–8836, 2017) and Caplan-Auerbach (in: AGU fall meeting abstracts, 2017) and reveal additional high-frequency arrivals being generated after the apparent initiation of fault rupture. New observations of seismic precursors 181 km from the Event at Upernavik, Greenland are correlated with those seen at Nuugaatsiaq. Wavelet analysis presents?>?100 significant energy peaks accelerating up to and into the earthquake–landslide event. The precursor events show a distinct, power law distribution, characterized by b values of ~?2.4. Results are compared and contrasted with small precursors observed in the studies of a natural chalk cliff landslide at Mesnil-Val, Haute Normandie, France. The earthquake–landslide appears to have been initiated by seismic precursors located at the fault scarp, leading to a small seismic foreshock and small landslide initiation, followed by a larger earthquake at the fault scarp, precipitating the primary landslide into the Karrat Fjord, which caused the subsequent tsunami.

  相似文献   

4.
We present a review of geophysical models of the continental lithosphere of Norden, which includes the Nordic countries (Denmark, Iceland, Finland, Norway, Sweden), Greenland, and the adjacent regions of the neighbouring countries. The structure of the crust and the lithospheric mantle reflects the geologic evolution of Norden from Precambrian terrane accretion and subduction within the Baltic Shield and Greenland to Phanerozoic rifting, volcanism, magmatic crust formation, subduction and continent-continent collision at the edges of the cratons and at the plate boundaries. The proposed existence of a mantle plume below Iceland has not been uniquely demonstrated by the available seismic evidence. Its connection to the break-up of the North Atlantic Ocean c. 65 My ago is uncertain, but the 〉30 km thick crust in the strait between Iceland and Greenland may indicate the track of the plume. Using the results from seismic (reflection and refraction profiles, P- and S-wave, body-wave and surface-wave tomography), thermal, gravity, and petrologic studies,we review the structure of the crust and the lithospheric mantle of Norden and propose an integrated model of physical properties of the lithosphere of the region, including maps of lateral variation in crustal and lithospheric thicknesses and compositional variation in the lithospheric mantle.  相似文献   

5.
The Paleoproterozoic Prøven Igneous Complex (PIC) in West Greenland extends from ca. 72°15 to 73°10N, approximately 500 km north of the subduction-related intrusive complex in the core of the +1100 km wide, asymmetric collisional Nagssugtoqidian-Rinkian Orogen. A new U-Pb SHRIMP age for the PIC of 1869±9 Ma indicates that it intruded synchronously with the main collisional phase of the orogen into the passive margin side of the collision. Sm-Nd and Lu-Hf isotopic and A-type geochemical signatures are compatible with its derivation from melted Archean lower crustal material contaminated to varying degrees by pelitic sedimentary rocks of the Karrat Group. The timing, petrogenesis and position of the PIC within the orogen support a model of collisionally induced delamination of the mantle lithosphere following initial collision. Upwelling asthenospheric mantle replacing the partially or completely detached mantle lithosphere caused widespread partial melting of lower crust that resulted in the areally extensive (~ 250,000 km2) Cumberland-Prøven intrusive complexes of Baffin Island and West Greenland. Emplacement of the PIC at 1.87 Ga caused a high-temperature low- to medium-pressure metamorphic aureole that contrasts the regional, overprinting higher-pressure amphibolite facies metamorphism. The consequent high-temperature garnet-orthopyroxene-biotite-bearing assemblages occurring within the margin of the intrusion in the aureole are attributed to the intrusion event. Garnet-controlled Sm-Nd and Lu-Hf ages of 1.82–1.80 Ga require efficient diffusion of these elements during orogenic reheating at this time. This age range overlaps the post-collisional, north–south shortening in the Nagssugtoqidian Orogen to the south and serves to confirm the recently proposed genetic link between these two orogens. These new data infer that garnet-controlled isochrons based on the Lu-Hf and Sm-Nd systems cannot date high-grade events in slowly cooled or significantly reheated terrains in rocks possessing other phases that close at low temperatures.  相似文献   

6.
We report new data on the major, minor and trace element compositions of metasedimentary quartzcordierite gneisses (QCG), an important member of the Archaean Malene supracrustal suite found throughout the Godthåbsfjord region of West Greenland. The analyzed QCG contain assemblages of quartz+cordierite+biotite±garnet±anthophyllite/gedrite±staurolite±sillimanite±plagioclase (with abundant accessory zircon, and minor rutile, monazite and allanite), and broadly resemble cordierite-orthoamphibole rocks found in a great number of other metamorphic terrains. Chemically, the QCG are characterized by: (1) high but variable SiO2 (59–87 wt%), relative enrichments in MgO, FeO, and Al2O3 (mg~0.35–0.85), and depletions in Na2O, K2O and especially CaO; (2) low concentrations of Sc, Cr, Co, Ni, and Sr; (3) high concentrations of Y, Nb, Zr, Hf, Ta, Th, U, and REE (rare earth elements)-with prominent negative Eu-anomalies in each case; (5) high concentrations of Ga (18–55 ppm), with variable Ga/Al ratios that are significantly higher than average crustal material. Low Cr and Ni, together with enriched and fractionated REE (displaying negative Eu-anomalies), distinguish the Malene QCG from published accounts of most other Archaean sedimentary rocks. Furthermore, all of the above-mentioned trace element characteristics distinguish the QCG from “ordinary” Malene clastic metasediments (quartzites, psammites, and pelites), suggesting a separate origin for the QCG. These data point towards chemically evolved felsic igneous rocks being the source of the QCG. Consequently, we propose that the Malene QCG represent metamorphosed felsic volcaniclastic sediments that underwent hydrothermal alteration by heated seawater prior to metamorphism, which resulted in gain of Mg (and Fe?), loss of alkalis and lime, and possibly Eu and Sr. The overall trace-element characteristics of the QCG (elevated Ga, Zr, Nb, REE, etc.) are features shared by A-type granites and their volcanic equivalents. Such igneous rocks may represent the ultimate source material for the QCG protolith.  相似文献   

7.
Three basic dyke swarms of post-Ellesmerian (post-Early Carboniferous) age in Nansen Land (83° N, 43° W) are still not dated numerically, but cross-cutting relationships show Group 1 to be older than Group 2, while Group 3 is the freshest and likely the youngest. Group 1 (the most northerly swarm) strikes N-S; Group 2 NW-SE, and Group 3 (the most southerly swarm) E-W. From more than 200 dykes 234 specimens from 28 sites were investigated palaeomagnetically. Group 1 dykes show unexpected shallow inclinations with a cleaned mean direction of (Dm, Im) = (151°, –5.8°), N = 7, k = 18.5, 95 = 13.9°. They show hydrothermal alterations, some remagnetization by lightning, and the low inclination indicates a low palaeo latitude. The palaeopole is (Plat, Plon) = (8.9° S, 14.0° W) with (dp, dm) = (7°, 14°), and is close to the North American Early Carboniferous mean pole, suggesting a syn- or early late-tectonic dyke injection. The polarity is reverse. Groups 2 and 3 of presumed Cretaceous or Tertiary age show dominantly normal and reverse polarities, respectively. Their mean directions per polarity are well grouped, with (Dm, Im) = (–30.6°, 76.7°), n = 13, k = 191.4, 95 = 3.9°, and (Dm, Im) = (133.4°, –76.7°), n = 10, k = 87.5, 95 = 5.9°, respectively. They are antipodal within 95% significance, and combining both swarms gives (Dm, Im) = (–37.5°, 76.8°), n = 23, k = 124.3, 95 = 2.7°, corresponding to a mean pole of (Plat, Plon) = (70.0° N, 185.1° E) with (dp, dm) = (4.7°, 5.0°), for which the spline of Late Cretaceous-Tertiary poles for all Greenland indicates a palaeomagnetic age of 57 ± 10 Ma. This pole (in present-day coordinates) is very close to the Late Cretaceous North American pole, in accordance with the fact that Greenland belongs to the North American craton, and that the two younger swarms are essentially postdating the opening of Baffin Bay.  相似文献   

8.
Copper–palladium intermetallic compounds and alloys (2314 grains) from the Au–Pd ore of the Skaergaard layered gabbroic pluton have been studied. Skaergaardite PdCu, nielsenite PdCu3, (Cu,Pd)β, (Cu,Pd)α, (Pd,Cu,Au,Pt) alloys, and native palladium have been identified as a result of 1680 microprobe analyses. The average compositions and various chemical varieties of these minerals are characterized, as well as vertical and lateral zoning in distribution of noble metals. The primary Pd–Cu alloys were formed within a wide temperature interval broadly synchronously with cooling and crystallization of host gabbro and in close association with separation of Fe–Cu sulfide liquid. In the course of crystallization of residual gabbroic melt enriched in iron, noble and heavy metals and saturated with the supercritical aqueous fluid, PGE and Au are selectively concentrated in the Fe–Cu sulfide phase as Pd–Cu and Cu–Au alloys.  相似文献   

9.
The lavas of the Zig-Zag Dal Formation of eastern North Greenland constitute a Mesoproterozoic tholeiitic flood basalt succession up to 1,350 m thick, extending >10,000 km2, and underlain by a sill complex. U–Pb dating on baddeleyite from one of the sills thought to be contemporaneous with the lava extrusion, gives an age of 1,382±2 Ma. The lavas, subdivided from oldest to youngest into Basal, Aphyric and Porphyritic units, are dominantly basaltic (>6 wt.% MgO), with more evolved lavas occurring within the Aphyric unit. The most magnesian lavas occur in the Basal unit and the basaltic lavas exhibit a generalised upward decrease in Mg number (MgO/(MgO + Fe2O3T)) through the succession. All of the lavas are regarded as products of variable degrees of olivine, augite and plagioclase fractionation and to be residual after generation of cumulates in the deep crust. The basaltic lavas display an up-section fall in the ratio of light to heavy rare-earth elements (LREE/HREE) but an up-section rise in Zr/Nb, Sc, Y and HREE. The older lavas (Basal and Aphyric units) are characterised by low Nd and Hf in contrast to higher values in the younger (Porphyritic unit) lavas. The Porphyritic Unit basalts are characterised by a notable enrichment in Fe and Ti. The Zig-Zag Dal succession is inferred to reflect an increase in melt fraction in the sub-lithospheric mantle, with melting commencing in garnet–lherzolite facies peridotites and subsequently involving spinel-facies mantle at increasingly shallow depths. Melting is deduced to have occurred beneath an attenuating continental lithosphere in conjunction with ascent of a mantle plume. Lithospheric contamination of primitive melts is inferred to have diminished with time with the Porphyritic unit basalts being products of essentially uncontaminated plume-source magmas. The high iron signature may reflect a relatively iron-rich plume source.  相似文献   

10.
Doklady Earth Sciences - The volcanic, sesimological, and geodynamic conditions in the region of the Jan Mayen Island are analyzed. It is shown that a part of Berenberg active volcano, located in...  相似文献   

11.
12.
U-Pb data from the Rinkian fold Belt, western Greenland, provide new constraints on provenance and timing of deposition of the Karrat Group, the emplacement interval of the Prøven Igneous Complex, and the tectonic setting of west Greenland during the interval 2.03–1.83 Ga. U-Pb detrital data establish the entire Karrat Group metasedimentary succession as Paleoproterozoic in age, initiated after ca. 2029 Ma (Qeqertarssuaq Formation), with deeper water deposition after 1953 ± 31 Ma and 1905 ± 20 Ma (Nûkavsak Formation). The detrital age profiles highlight a profound change in source region after ca. 1.95 Ga that we attribute to thickening, uplift, and exhumation related to collision of a juvenile magmatic arc with the northwest margin of Rae craton at ca. 1.97–1.95 Ga (Thelon Orogen). Accordingly, the Karrat Group is viewed as having initiated as an extensional rift basin(s) that received ca. 3.00–2.95 Ga detritus from local basement sources, and which evolved into a deeper water foreland-basin succession derived from the north. This foreland basin was intruded by the Prøven Igneous Complex, for which new U-Pb data establish emplacement between 1.90 and 1.87 Ga in a within-(Rae) plate setting. Prøven plutonism is coeval with lower-plate mantle magmatism elsewhere across NE Laurentia which may have been triggered by asthenospheric thinning due to plume-induced extension of lower-plate Rae craton at 1.95–1.92 Ga. Our data refute a direct link between the Prøven Igneous Complex and the voluminous 1.86–1.845 Ga Cumberland Batholith, Baffin Island, long considered its counterpart.  相似文献   

13.
Ruins representing both medieval Norse and Inuit (Thule culture) settlements can be found together on the coast at Sandhavn (59°59′ N, 44°46′ W), Greenland. The site presents a rare opportunity to investigate the character of past contact and interaction between these two peoples. Soils‐based, radiocarbon, and palynological analyses demonstrate the creation of hortic anthrosols within Norse home‐fields used between the mid‐11th and late 14th centuries A.D. Irrigation channels have been identified within the home‐fields, while rising grass pollen influx reveals intensification in hay production over the period ca. A.D. 1260–1350 despite climatic deterioration setting in around this time. Floor deposits and wall packing from an Inuit winter house returned dates of cal. A.D. 1220–1290 (2σ), yet no direct landscape‐based evidence for Inuit activity could be determined. Although the exact nature of the relationship between Norse and Thule at Sandhavn remains unclear, the role of this site as a harbor and possible trading area may have attracted Inuit settlers keen to participate in European trade networks. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
Estimates of early atmosphere compositions from metamorphosed banded iron formations(BIFs)including the well-studied ≥3.7 BIFs of the Isua supracrustal belt(Greenland)are dependent on knowledge of primary versus secondary Fe-mineralogical assemblages.Using new observations from locally well preserved domains,we interpret that a previously assumed primary redox indicator mineral,magnetite,is secondary after sedimentary Fe-clays(probably greenalite)±carbonates.Within ~3.7 Ga Isua BIF,pre-tectonic nodules of quartz+Fe-rich amphibole±calcite reside in a finegrained(≤100 μm)quartz+magnetite matrix.We interpret the Isua nodule amphibole as the metamorphosed equivalent of primary Fe-rich clays,armoured from diagenetic oxidative reactions by early silica concretion.Additionally,in another low strain lacunae,~3.76 Ga BIF layering is not solid magnetite but instead fine-grained magnetite+quartz aggregates.These magnetite+quartz aggregates are interpreted as the metamorphosed equivalent of Fe-clay-rich layers that were oxidised during diagenesis,because they were not armoured by early silicification.In almost all Isua BIF exposures,this evidence has been destroyed by strong ductile deformation.The Fe-clays likely formed by abiotic reactions between aqueous Fe~(2+)and silica.These clays along with silica±carbonate were deposited below an oceanic Fe-chemocline as the sedimentary precursors of BIF.Breakdown of the clays on the sea floor may have been by anaerobic oxidation of Fe~(2+),a mechanism compatible with iron isotopic data previously published on these rocks.The new determinations of the primary redoxsensitive Fe-mineralogy of BIF significantly revise estimates of early Earth atmospheric oxygen and CO_2 content,with formation of protolith Fe-rich clays and carbonates compatible with an anoxic Eoarchean atmosphere with much higher CO_2 levels than previously estimated for Isua and in the present-day atmosphere.  相似文献   

15.
 The reflectance of sediments (gray level) were measured on 11 sediment cores from the Norwegian–Greenland–Iceland Sea (Nordic seas). The analyzed time interval covers the past five glacial–interglacial cycles. Although the results demonstrate that the gray-level method has a potential for stratigraphic purposes, it is indicated that gray-level changes in the Nordic seas are not necessarily driven by variations in the content of biogenic calcite. A detailed comparison of gray-level values with contents of total CaCO3 (carbonate) and total organic carbon (TOC) reveals no overall causal link between these proxies. However, specific glacial core sections with layers containing organic-rich sediment clasts as a consequence of iceberg-rafting seem to correlate well with law gray-level values. Of those cores which show relatively high and comparable carbonate values in the last three main interglacial intervals (stages 11, 5.5, and 1), stage 11 is always marked by the highest gray-level values. A close inspection of the surface structure of the foraminiferal tests as well as the conduction of reflectance measurements on these tests leads to the conclusion that enhanced carbonate corrosion occurred during stage 11. The test corrosion not only affected the reflectance of the tests by making them appear whiter, it also seems responsible for the comparatively high gray-level values of the total sediment in stage 11. In contrast, the relatively low gray-level values found in stages 5.5, and 1 are not associated with enhanced test corrosion. This observation implies that variable degrees of carbonate corrosion can have a profound effect on total sediment reflectance. Received: 6 September 1998 / Accepted: 4 April 1999  相似文献   

16.
Quartz–amphibole–pyroxene gneiss from the island of Akilia, Southwest Greenland has been claimed to contain the earliest traces of life on Earth in the form of biogenic carbonaceous matter encapsulated as inclusions in apatite crystals. Various lines of evidence, including petrography, geochronology, field relations, and geochemistry, have, however, been presented that challenge this interpretation. Textural relationships and geochemical signatures in this controversial gneiss presented here manifest a complex, spatially variable metamorphic history that includes granulite- and amphibolite-facies overprints and metasomatism. A peak metamorphic, granulite-facies, quartz–orthopyroxene–clinopyroxene–amphibole–magnetite assemblage is preserved in only a few centimeter-scale layers within the 5-m-thick, quartz–amphibole–pyroxene gneiss unit. Calcite veinlets that appear to postdate the peak metamorphism occur in pyroxene. The quartz–amphibole–pyroxene gneiss unit has subsequently experienced isochemical (except hydration) amphibolite-facies alteration during which pyroxenes were retrogressed to amphiboles and magnetite, and calcite was consumed. Parts of the quartz–amphibole–pyroxene gneiss that contain texturally late hornblende have experienced metasomatic alteration by Al-carrying fluids. These fluids controlled the alteration of pyroxenes and amphiboles to hornblende, and modified the trace-element composition by remobilizing LREE and Eu. Apatite has variable REE composition and 87Sr/86Sr in the quartz–amphibole–pyroxene gneiss, but on the local scale (cm) is in equilibrium with co-existing silicates. Effective recrystallization of apatite crystals as well as co-existing silicates during several stages of the metamorphic history makes the intact preservation of diagenetic apatite with encapsulated primary carbonaceous matter implausible. Hence, it is highly unlikely that Akilia apatite could serve as repository of the earliest traces of life on Earth.  相似文献   

17.
Germania Havn Sø is located at the outermost coast of northeastern Greenland. According to radiocarbon dating, the lake basin was deglaciated in the early Holocene, around 11,000 cal yr BP. At that time the lake was a marine bay, but the lake was isolated soon after deglaciation at ~ 10,600 cal yr BP. The marine fauna was species-poor, indicating harsh conditions with a high sedimentation rate and lowered salinity due to glacial meltwater supply. The pioneer vegetation around the lake was dominated by mosses and herbs. Deposition of relatively coarse sediments during the early Holocene indicates erosion of the newly deglaciated terrain. Remains of the first woody plant (Salix herbacea) appear at 7600 cal yr BP and remains of other woody plants (Salix arctica, Dryas octopetala, Cassiope tetragona and Empetrum nigrum) appear around one millennium later. Declining concentrations of D. octopetala and the caddis fly Apatania zonella in the late Holocene probably imply falling summer temperatures. Only moderate changes in the granulometric and geochemical record during the Holocene indicate relatively stable environmental settings in the lake, which can probably be explained by its location at the outer coast and the buffering effect of the neighboring ocean.  相似文献   

18.
Bituminous mud shales of the Upper Permian Ravnefjeld Formation (Zechstein 1 equivalent) are mineralised with zinc, lead and copper within a ca. 50 km2 area on Wegener Halvø in central East Greenland. The occurrence of base-metal sulphides in shale nodules cemented prior to compaction indicates an early commencement of base-metal mineralisation. In other cases, post-compactional sulphide textures are observed. Homogeneous lead isotope signatures of galena and sphalerite from the shales (206Pb/204Pb: 18.440–18.466; 207Pb/204Pb: 16.554–16.586; 208Pb/204Pb: 38.240–38.326) suggest that all base metals were introduced during a single hydrothermal event. Therefore, post-compactional textures are believed to result from recrystallisation of early diagenetic sulphides during deep burial in the Upper Cretaceous to Tertiary. Lead isotope signatures of galena hosted in Upper Permian carbonate build-ups are relatively heterogeneous compared to those of the shale-hosted sulphides. The observed relations indicate a shared lead source for the two types of mineralisation, but different degrees of homogenisation during mineralisation. This suggests that lead was introduced to the carbonate rocks and black shales during two separate events. δ34S of base-metal sulphides in the Ravnefjeld Formation lie between –12 and –4‰, whereas synsedimentary and early diagenetic pyrite in unmineralised shales in general have δ34S between –47 and –16.5‰. Early diagenetic pyrite in the Wegener Halvø area in general has δ34S 15 to 20‰ higher than the same pyrite morphotype in Triaselv in the western part of the basin. This relatively high δ34S can be explained by extensive microbial sulphate reduction within persistent euxinic (super-anoxic) bottom waters under which supply of isotopically light seawater sulphate (and disproportionation of intermediate sulphur compounds) was restricted. The sulphur in the base-metal sulphides is believed to represent sulphide-dominated pore water, enriched in 34S due to preferential removal of 32S by sulphate-reducing bacteria and precipitation of diagenetic pyrite in the near-seafloor environment. We suggest that the sulphide-dominated pore water was trapped in the shale formation prior to introduction of base-metal-bearing fluids through fractures in the underlying carbonates, and that sulphide precipitation took place when the two fluids met. δ34S values of carbonate-hosted base-metal sulphides fall within the same range as the shale-hosted ones. The relationship between barite and sulphides and evidence for pre-mineralisation entrapment of liquid hydrocarbons in the carbonates suggest that the sulphide in this case is derived by in-situ thermochemical sulphate reduction (TSR). Measured fractionation between sulphide and sulphate ranges from 18.5 to 24.4‰, suggesting temperatures of TSR around 70 to 100 °C. Vitrinite reflectance measurements in mineralised shale samples are all between 1.7 and 2.0%, except for samples taken close to a Tertiary dyke giving ca. 3.0%. Vitrinite reflectance data are comparable to previously published data from unmineralised shale samples in the area and could not be proven to correlate with the degree of mineralisation. This indicates that any early hydrothermal effect has been overprinted later, probably during deep burial in the Late Cretaceous to Early Tertiary as previously proposed.  相似文献   

19.
The Kangerlussuaq region of East Greenland hosts a variety of early Tertiary extrusive and intrusive igneous rocks related to continental break up and the passage of the ancestral Iceland plume. These intrusive bodies include a number of gabbroic macrodykes, two of which—the Miki Fjord Macrodyke, and the newly discovered Togeda Macrodyke—contain Cu–PGE–Au sulphide mineralisation along their margins. Sulphides occur as disseminated interstitial blebs and rounded globules of chalcopyrite and pyrrhotite with some Fe–Ti oxides and platinum-group minerals, comprising largely Pd bismuthides and tellurides. The globules are interpreted to have formed from fractionation of trapped droplets of an immiscible Cu- and Pd-rich sulphide melt and show geopetal indicators. Sulphur isotopes imply a local crustal source of S in these from pyritic sediments of the Kangerlussuaq Basin. Thus, generation of these sulphide occurrences was controlled by local country rock type. Low Ni/Cu and Pt/Pd ratios, also present in the Platinova reefs in the Skaergaard Intrusion, indicate that early fractionation of olivine may have depleted the magma of Ni and suggest the likely presence of a large magma chamber at depth. Xenoliths of Ni-rich olivine cumulates in the Miki Fjord Macrodyke may have been sourced from such a body. The location of thus far unidentified conduit or feeder zones to the macrodykes beneath the present day surface may represent potential targets for more massive sulphide orebodies.  相似文献   

20.
The Ilímaussaq intrusion, South Greenland, provides an exceptional test case for investigating the changes of stable Fe isotope fractionation of solidus phases with changes in the Fe3+/∑Fe ratio of an evolving melt. The intrusion comprises a sequence of four melt batches that were fed from the same parental alkali basaltic magma. Differentiation produced cumulate rocks that range from augite syenite (phase I) over peralkaline granite (phase II) to agpaitic syenites (phases IIIa and IIIb). Fe3+/∑Fe ratios in amphiboles increase substantially from phase I to phase II and III rocks and mark a major change in the parental magma composition from augite syenites to peralkaline granites and agpaitic syenites. Before this transition, olivine, clinopyroxene, and amphibole in augite syenite, the most primitive rock type in the Ilímaussaq Complex, have a uniform Fe isotope composition that is identical to that of the bulk of igneous crustal rocks and approximated by the average isotopic composition of basalts (δ56/54FeIRMM-014 = 0.072 ± 0.046‰). After the transition, amphiboles in the peralkaline granites and agpaitic syenites yield significantly heavier Fe isotope compositions with δ56/54FeIRMM-014 values ranging from 0.123 to 0.237‰. Contamination of the Ilímaussaq magma by ongoing crustal assimilation as cause for this increase can be excluded on the grounds of Nd isotope data. Large-scale metasomatic overprint with an external fluid can also be dismissed based on amphibole O and Li isotope systematics. Rather, the increase towards heavy Fe isotope compositions most likely reflects the change in chemical compositions of amphiboles (calcic in augite syenite to sodic in the agpaitic syenites) and their Fe3+/ΣFe ratios that mirror changes in the chemical composition of the melt and its oxygen fugacity. A sensitive adjustment of equilibrium Fe isotope fractionation factors to amphibole ferric/ferrous ratios is also supported by beta-factors calculated from Mössbauer spetroscopy data. Comparison of the measured isotope fractionation between clinopyroxene and amphibole with that predicted from Mössbauer data reveal Fe isotope systematics close to equilibrium in augite syenites but Fe isotopic disequilibrium between these two phases in phase IIIa agpaitic syenites. These results are in agreement with O and Li isotope systematics. While amphiboles in all Ilímaussaq lithologies crystallized at temperatures between 650 and 850 °C, textural evidence reveals later clinopyroxene crystallization at temperatures as low as 300–400 °C. Therefore, isotopic equilibrium at crystallization conditions between these two phases can not be expected, but importantly, subsolidus reequilibration can also be dismissed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号