首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A previous study [Water Resour Res 39 (3) (2003) doi:10.1029/2002WR001338] questioned the validity of the traditional advection–dispersion equation for describing gas flow in porous media. In an original mathematical derivation presented in Part 1 [Adv Water Resour, this issue] we have demonstrated the theoretical existence of two novel physical phenomena which govern the macroscopic transport of gases in porous media. In this work we utilize laboratory experiments and numerical modeling in order to ascertain the importance of these novel theoretical terms. Numerical modeling results indicate that the newly derived sorptive velocity, arising from closure level coupling effects, does not contribute noticeably to the overall flux, under the conditions explored in this work. We demonstrate that the newly discovered “slip coupling” phenomenon in the mass conservation equation plays an important role in describing the physics of gas flow through porous solids for flow regimes of both environmental and industrial interest.  相似文献   

2.
《Advances in water resources》2002,25(8-12):1105-1117
Macroscopic differential equations of mass and momentum balance for two immiscible fluids in a deformable porous medium are derived in an Eulerian framework using the continuum theory of mixtures. After inclusion of constitutive relationships, the resulting momentum balance equations feature terms characterizing the coupling among the fluid phases and the solid matrix caused by their relative accelerations. These terms, which imply a number of interesting phenomena, do not appear in current hydrologic models of subsurface multiphase flow. Our equations of momentum balance are shown to reduce to the Berryman–Thigpen–Chen model of bulk elastic wave propagation through unsaturated porous media after simplification (e.g., isothermal conditions, neglect of gravity, etc.) and under the assumption of constant volume fractions and material densities. When specialized to the case of a porous medium containing a single fluid and an elastic solid, our momentum balance equations reduce to the well-known Biot model of poroelasticity. We also show that mass balance alone is sufficient to derive the Biot model stress–strain relations, provided that a closure condition for porosity change suggested by de la Cruz and Spanos is invoked. Finally, a relation between elastic parameters and inertial coupling coefficients is derived that permits the partial differential equations of the Biot model to be decoupled into a telegraph equation and a wave equation whose respective dependent variables are two different linear combinations of the dilatations of the solid and the fluid.  相似文献   

3.
A stationary principle is described to yield governing integral formulations for dissipative systems. Variation is applied on selective terms of energy or momentum functionals resulting with force or mass balance equations respectively. Applying the principle for a motion of a viscous fluid yields the Navier-Stokes equations as an approximation of the functional (i.e. equating to zero part of the integrand). When a Darcy's flow regime in a porous media is considered, implementing a space averaging method on the resultant integral derived by the principle, Forchheimer's law for energy accumulation and solute transport equation for momentum assembling are yielded in differential form approximation of a more extended functional formulation.  相似文献   

4.
This work is the fifth in a series of papers on the thermodynamically constrained averaging theory (TCAT) approach for modeling flow and transport phenomena in multiscale porous medium systems. The general TCAT framework and the mathematical foundation presented in previous works are used to develop models that describe species transport and single-fluid-phase flow through a porous medium system in varying physical regimes. Classical irreversible thermodynamics formulations for species in fluids, solids, and interfaces are developed. Two different approaches are presented, one that makes use of a momentum equation for each entity along with constitutive relations for species diffusion and dispersion, and a second approach that makes use of a momentum equation for each species in an entity. The alternative models are developed by relying upon different approaches to constrain an entropy inequality using mass, momentum, and energy conservation equations. The resultant constrained entropy inequality is simplified and used to guide the development of closed models. Specific instances of dilute and non-dilute systems are examined and compared to alternative formulation approaches.  相似文献   

5.
Equations which describe single phase fluid flow and transport through an elastic porous media are obtained by applying constitutive theory to a set of general multiphase mass, momentum, energy, and entropy equations. Linearization of these equations yields a set of equations solvable upon specification of the material coefficients which arise. Further restriction of the flow to small velocities proves that Darcy's law is a special case of the general momentum balance.  相似文献   

6.
7.
This study introduces the dispersive fluid flux of total fluid mass to the density-driven flow equation to improve thermohaline modeling of salt and heat transports in porous media. The dispersive fluid flux in the flow equation is derived to account for an additional fluid flux driven by the density gradient and mechanical dispersion. The coupled flow, salt transport and heat transport governing equations are numerically solved by a fully implicit finite difference method to investigate solution changes due to the dispersive fluid flux. The numerical solutions are verified by the Henry problem and the thermal Elder problem under a moderate density effect and by the brine Elder problem under a strong density effect. It is found that increment of the maximum ratio of the dispersive fluid flux to the advective fluid flux results in increasing dispersivity for the Henry problem and the brine Elder problem. The effects of the dispersive fluid flux on salt and heat transports under high density differences and high dispersivities are more noticeable than under low density differences and low dispersivities. Values of quantitative indicators such as the Nusselt number, mass flux, salt mass stored and maximum penetration depth in the brine Elder problem show noticeable changes by the dispersive fluid flux. In the thermohaline Elder problem, the dispersive fluid flux shows a considerable effect on the shape and the number of developed fingers and makes either an upwelling or a downwelling flow in the center of the domain. In conclusion, for the general case that involves strong density-driven flow and transport modeling in porous media, the dispersive fluid flux should be considered in the flow equation.  相似文献   

8.
This work presents a highly efficient numerical scheme for solving immiscible, advection-dominated two-phase flow in heterogeneous porous media. The pressure equation is decoupled from the saturation equation using an IMPES approach, while the advective terms are decoupled from the capillary diffusive terms in the saturation equation through sequential operator splitting. The parabolic and hyperbolic equations are approximated in time by implicit and explicit schemes, respectively. Damped Newton linearization is applied to the implicit non-linear diffusive step. Mixed hybrid finite elements are applied to the global pressure equation and to the regularized capillary diffusion term. For both linear systems arising from the approximation procedure, an AMG preconditioned conjugate gradient solver is used. A finite volume scheme with slope limiter is applied to the advective step. Numerical comparison with standard preconditioners demonstrates the reliability of the proposed AMG-preconditioner. Benchmark examples illustrate the robustness of the method.  相似文献   

9.
《Advances in water resources》2005,28(10):1028-1031
An equation describing flow in an open channel with obstacles is derived, following the conservation of momentum approach used by Bélanger and St. Venant. When the obstacles are all submerged the result yields the Darcy–Weisbach equation for turbulent flow in pipes and open channels. When the obstacles are only partially submerged the result leads to the governing equation in a porous medium. If the flow is turbulent the square of the velocity is proportional to the hydraulic gradient and if the flow is laminar, which is the usual case, the velocity is proportional to the hydraulic gradient. This last result is in agreement with Darcy’s law in porous media. Thus our equation interpolates between and reduces to, the two fundamental results of Darcy. In general our equation should prove useful in practice for open flow in a channel with both submerged and emerging obstacles.  相似文献   

10.
A three-dimensional, reactive numerical flow model is developed that couples chemical reactions with density-dependent mass transport and fluid flow. The model includes equilibrium reactions for the aqueous species, kinetic reactions between the solid and aqueous phases, and full coupling of porosity and permeability changes that result from precipitation and dissolution reactions in porous media. A one-step, global implicit approach is used to solve the coupled flow, transport and reaction equations with a fully implicit upstream-weighted control volume discretization. The Newton–Raphson method is applied to the discretized non-linear equations and a block ILU-preconditioned CGSTAB method is used to solve the resulting Jacobian matrix equations. This approach permits the solution of the complete set of governing equations for both concentration and pressure simultaneously affected by chemical and physical processes. A series of chemical transport simulations are conducted to investigate coupled processes of reactive chemical transport and density-dependent flow and their subsequent impact on the development of preferential flow paths in porous media. The coupled effects of the processes driving flow and the chemical reactions occurring during solute transport is studied using a carbonate system in fully saturated porous media. Results demonstrate that instability development is sensitive to the initial perturbation caused by density differences between the solute plume and the ambient groundwater. If the initial perturbation is large, then it acts as a “trigger” in the flow system that causes instabilities to develop in a planar reaction front. When permeability changes occur due to dissolution reactions occurring in the porous media, a reactive feedback loop is created by calcite dissolution and the mixed convective transport of the system. Although the feedback loop does not have a significant impact on plume shape, complex concentration distributions develop as a result of the instabilities generated in the flow system.  相似文献   

11.
12.
基于对非饱和多孔介质的研究成果,考虑孔隙中的液相和气相的相互影响,研究非饱和土地基中剪切S波的传播特性。通过非饱和土中固相、液相和气相的质量平衡方程、动量平衡方程和非饱和土有效应力原理,建立问题的弹性波动方程,经过理论推导给出非饱和土中剪切S波的弥散特征方程。通过数值算例分析剪切S波的波速和衰减系数随饱和度、频率和固有渗透系数等因素的变化规律。结果表明,剪切S波的波速几乎不受饱和度的影响,但其随着频率的增大而减小,随着固有渗透系数的增大先不变后增大;剪切S波的衰减系数随着饱和度和频率的增加均增大,而随着固有渗透系数的增大先不变后增大最后减小。  相似文献   

13.
14.
The balance equations for mass and momentum, averaged over the scale of a watershed entity, need to be supplemented with constitutive equations relating flow velocities, pressure potential differences, as well as mass and force exchanges within and across the boundaries of a watershed. In this paper, the procedure for the derivation of such constitutive relationships is described in detail. This procedure is based on the method pioneered by Coleman and Noll through exploitation of the second law of thermodynamics acting as a constraint-type relationship. The method is illustrated by its application to some common situations occurring in real world watersheds. Thermodynamically admissible and physically consistent constitutive relationships for mass exchange terms among the subregions constituting the watershed (subsurface zones, overland flow regions, channel) are proposed. These constitutive equations are subsequently combined with equations of mass balance for the subregions. In addition, constitutive relationships for forces exchanged amongst the subregions are also derived within the same thermodynamic framework. It is shown that, after linearisation of the latter constitutive relations in terms of the velocity, a watershed-scale Darcy's law governing flow in the unsaturated and saturated zones can be obtained. For the overland flow, a second order constitutive relationship with respect to velocity is proposed for the momentum exchange terms, leading to a watershed-scale Chezy formula. For the channel network REW-scale Saint–Venant equations are derived. Thus, within the framework of this approach new relationships governing exchange terms for mass and momentum are obtained and, moreover, some well-known experimental results are derived in a rigorous manner.  相似文献   

15.
 A stochastic simulation is performed to study multiphase flow and contaminant transport in fractal porous media with evolving scales of heterogeneity. Numerical simulations of residual NAPL mass transfer and subsequent transport of dissolved and/or volatilized NAPL mass in variably saturated media are carried out in conjunction with Monte Carlo techniques. The impact of fractal dimension, plume scale and anisotropy (stratification) of fractal media on relative dispersivities is investigated and discussed. The results indicate the significance of evolving scale of porous media heterogeneity to the NAPL transport in the subsurface. In general, the fractal porous media enhance the dispersivities of NAPL mass plume transport in both the water phase and the gas phase while the influence on the water phase is more significant. The porous media with larger fractal dimension have larger relative dispersivities. The aqueous horizontal dispersivity exhibits a most significant increase against the plume scale.  相似文献   

16.
This paper presents the mass, momentum and energy equations that can be applied to nonisothermal flow in porous media. These equations are derived by taking a suitable volume average of the microscopic equations. The resulting macroscopic equations are then appropriate for experimental comparison.  相似文献   

17.
The migration mechanisms of endogenous gases in the geosphere are defined in relation to the fluid-rock conditions and analyzed by basic transport equations. Upon examining the geological factors that influence the physical parameters in the equations in porous and fracture media, and considering the widespread high-permeability of deep subsurface rocks, in terms of fracture aperture, (orders of 10−2 to 101 mm at depths of thousands meters, as suggested by recent crustal surveys) advection of carrier gases, in its several forms (gas-phase flow, water displacement by gas, gas slugs and bubbles) seems to represent a major migration process. Accordingly, in contrast with early views, the role of gas diffusion and water advection in the transport of endogenous gas to the Earth surface should be strongly minimized in many contexts. In a wide range of geological settings, carrier gases (CO2, CH4) may assume a dominant role in controlling transport and redistribution toward the Earth’s surface of trace gases (Rn, He). Bubble movement in fissured rocks seems to be an effective way of rapid (gas velocities in the order of 100 to 103 m per day) and long-distance gas migration. The evolution from bubble regimes to continuous phase flow and vice versa, as gas pressure and fracture width change, is the most suitable mechanism towards determining the surface geochemical processes of seismo-tectonic, environmental and geo-exploration relevance. The transport effectiveness of trace gases by a carrier gas has yet to be studied in quantitative terms. It is already clear, however, that further studies on the distribution and behavior of trace gases approaching the Earth’s surface may not be meaningful unless accompanied by carrier gas dynamics analyses.  相似文献   

18.
This work is the third in a series of papers on the thermodynamically constrained averaging theory (TCAT) approach to modeling flow and transport phenomena in multiscale porous medium systems. Building upon the general TCAT framework and the mathematical foundation presented in previous works in this series, we demonstrate the TCAT approach for the case of single-fluid-phase flow. The formulated model is based upon conservation equations for mass, momentum, and energy and a general entropy inequality constraint, which is developed to guide model closure. A specific example of a closed model is derived under limiting assumptions using a linearization approach and these results are compared and contrasted with the traditional single-phase-flow model. Potential extensions to this work are discussed. Specific advancements in this work beyond previous averaging theory approaches to single-phase flow include use of macroscale thermodynamics that is averaged from the microscale, the use of derived equilibrium conditions to guide a flux–force pair approach to simplification, use of a general Lagrange multiplier approach to connect conservation equation constraints to the entropy inequality, and a focus on producing complete, closed models that are solvable.  相似文献   

19.
Transport processes in heterogeneous porous media are often treated in terms of one-equation models. Such treatment assumes that the velocity, pressure, temperature, and concentration can be represented in terms of a single large-scale averaged quantity in regions having significantly different mechanical, thermal, and chemical properties. In this paper we explore the process of single-phase flow in a two-region model of heterogeneous porous media. The region-averaged equations are developed for the case of a slightly compressible flow which is an accurate representation for a certain class of liquid-phase flows. The analysis leads to a pair of transport equations for the region averaged pressures that are coupled through a classic exchange term, in addition to being coupled by a diffusive cross effect. The domain of validity of the theory has been identified in terms of a series of length and timescale constraints.In Part II the theory is tested, in the absence of adjustable parameters, by comparison with numerical experiments for transient, slightly compressible flow in both stratified and nodular models of heterogeneous porous media. Good agreement between theory and experiment is obtained for nodular and stratified systems, and effective transport coefficients for a wide range of conditions are presented on the basis of solutions of the three closure problems that appear in the theory. Part III of this paper deals with the principle of large-scale mechanical equilibrium and the region-averaged form of Darcy's law. This form is necessary for the development and solution of the region-averaged solute transport equations that are presented in Part IV. Finally, in Part V we present results for the dispersion tensors and the exchange coefficient associated with the two-region model of solute transport with adsorption.  相似文献   

20.
NUMERICAL SIMULATION OF SEDIMENT RELEASE FROM RESERVOIRS   总被引:1,自引:0,他引:1  
1 INTRODUCTION Reservoirs sedimentation is a serious problem in many countries, including the I. R. of Iran. Accumulation of sediment deposits decreases worldwide reservoir storage capacity by one percent per year (Mahmood, 1987). The loss of reservoir st…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号