首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The western part of the Bohemian Massif hosts an intersection of two regional fault zones, the SW-NE trending Oh?e/Eger Graben and the NNW-SSE trending Mariánské Lázně Fault, which has been reactivated several times in the geological history and controlled the formation of the Tertiary Cheb Basin. The broader area of the Cheb Basin is also related to permanent seismic activity of ML 3+ earthquake swarms. The Eastern Marginal Fault of the Cheb Basin (northern segment of the Mariánské Lázně Fault) separates the basin sediments and underlying granites in the SW from the Kru?né Hory/Erzgebirge Mts. crystalline unit in the NE. We describe a detailed geophysical survey targeted to locating the Eastern Marginal Fault and determining its geometry in the depth. The survey was conducted at the Kopanina site near the Nový Kostel focal zone, which shows the strongest seismic activity of the whole Western Bohemia earthquake swarm region. Complex geophysical survey included gravimetry, electrical resistivity tomography, audiomagnetotellurics and seismic refraction. We found that the rocks within the Eastern Marginal Fault show low resistivity, low seismic velocity and density, which indicates their deep fracturing, weathering and higher water content. The dip of the fault in shallow depths is about 60° towards SW. At greater depths, the slope turns to subvertical with dip angle of about 80°. Results of geoelectrical methods show blocky fabric of the Cheb Basin and deep weathering of the granite bedrock, which is consistent with geologic models based on borehole surveys.  相似文献   

2.
With a high-resolution seismic survey, we targeted the shallow structural features of the Cheb Basin, Northwest Bohemia. The aim of this study was to evaluate these features’ relation to seismic activity below the Cheb Basin with the first reflection seismic image of parts of the basin. We recorded a densely sampled, 3200 m long seismic survey stretching from Kopanina towards SE, into the basin. From the recordings of 170 shots at 192 geophones with 384-m total spread, we obtained a reflection seismic image down to the basement at 300-m depth, supplemented by a shallow tomographic velocity model for the uppermost 40 m. Strong lateral velocity contrasts indicate Quaternary river terraces, into which the Plesná river incises. We observe reverse faults in the lower basin sediments, which we interpret as signs of a push-up structure related to the N-S oriented Po?átky-Plesná Zone (PPZ). However, we do not observe any vertical fault offsets in the younger sedimentary layers, which suggests that any normal or reverse faulting must be older than 20 Ma. The image agrees well with previous lithostratigraphic borehole data and previous sedimentological and tectonic models. Our explanation for the formation of the escarpment at the eastern bank of the Plesná valley, previously interpreted as outcrop of the PPZ, relies solely on incision of the Plesná river into weak sediments.  相似文献   

3.
The West Bohemia and adjacent Vogtland are well known for quasi-periodical earthquake swarms persisting for centuries. The seismogenic area near Nový Kostel involved about 90 % of overall earthquake activity clustered here in space and time. The latest major earthquake swarm took place in August–September 2011. In 1994 and 1997, two minor earthquake swarms appeared in another location, near Lazy. Recently, the depth-recursive tomography yielded a velocity image with an improved resolution along the CEL09 refraction profile passing between these swarm areas. The resolution, achieved in the velocity image and its agreement with the inverse gravity modeling along the collateral 9HR reflection profile, enabled us to reveal the key structural background of these West Bohemia earthquake swarms. The CEL09 velocity image detected two deeply rooted high-velocity bodies adjacent to the Nový Kostel and Lazy focal zones. They correspond to two Variscan mafic intrusions influenced by the SE inclined slab of Saxothuringian crust that subducted beneath the Teplá-Barrandian terrane in the Devonian era. In their uppermost SE inclined parts, they roof both focal zones. The high P-wave velocities of 6,100–6,200 m/s, detected in both roofing caps, indicate their relative compactness and impermeability. The focal domains themselves are located in the almost gradient-free zones with the swarm foci spread near the axial planes of profound velocity depressions. The lower velocities of 5,950–6,050 m/s, observed in the upper parts of focal zones, are indicative of less compact rock complexes corrugated and tectonically disturbed by the SE bordering magma ascents. The high-velocity/high-density caps obviously seal the swarm focal domains because almost no magmatic fluids of mantle origin occur in the Nový Kostel and Lazy seismogenic areas of the West Bohemia/Vogtland territory, otherwise rich in the mantle-derived fluids. This supports the hypothesis of the fluid triggering of earthquake swarms. The sealed focal domains retain ascending magmatic fluids until their critical pressure and volumes accumulated cause rock micro-fractures perceived as single earthquake bursts. During a swarm period, the focal depths of these sequential events become shallower while their magnitudes grow. We assume that coalescence of the induced micro-fractures forms temporary permeability zones in the final swarm phase and the accumulated fluids release into the overburden via the adjacent fault systems. The fluid release usually occurs after the shallowest events with the strongest magnitudes ML > 3. The seasonal summer declines of hydrostatic pressure in the Cheb Basin aquifer system seem to facilitate and trigger the fluid escape as happened for the 2000, 2008, and 2011 earthquake swarms. The temporary fluid release, known as the valve-fault action, influences the surface aquifer systems in various manners. In particular, we found three quantities, the strain, mantle-derived 3He content in CO2 surface sources and ground water levels, which display a 3–5 months decline before and then a similar restoration after each peak earthquake during the swarm activities. The revealed structure features are particularly important since the main Nový Kostel earthquake swarm area is proposed as a site for the ICDP project, ‘Eger Rift Drilling’.  相似文献   

4.
In West Bohemia in the period of 2003–2005 five permanent GPS stations were established to detect local movement trends. Their mutual position changes were determined from time series of GPS observations and were associated with seismic, gravity, and geo-scientific data related to the geodynamics of the West Bohemian region. Knowledge of local physical processes based on spatial and time earthquake occurrences, focal mechanisms of main events, stress and strain fields set up a tool for recent seismotectonic analyses. The permanent GPS measurements bring independent effective phenomenon, direct monitoring of site movements. The movements detected by our GPS stations evidenced WSW-ENE extension with subsiding trends in the western part of the Cheb Basin and the Smrčiny Mts. Besides, there were monitored dextral movements along the Mariánské Lázně tectonic fault zone (MLF). A comparison of results with previous data formed a presumption that an antithetic stress pattern has to exist inside the inner part of the MLF tectonic zone. This antithetic stress can explain the coexistence of dextral and sinistral movements on individual tectonic elements in the West Bohemian area.  相似文献   

5.
Our objective is to look for deep paths of Cenozoic volcanism and migration routes of active mantle volatiles through the lithosphere of the western Bohemian Massif. We show that the rejuvenated junction of three mantle domains, delimited by different orientation of seismic anisotropy and belonging to originally separated microplates — the Saxothuringian (ST), Moldanubian (MD) and Teplá-Barrandian (TB) — can provide the easiest upward routes of fluids through the deep lithosphere. Geographic distribution of mantle-fluid escapes at the surface suggests fluid migration through the ductile lower crust and through partly open faults in the rigid upper crust, which is locally detached and shifted from its lower part and from the mantle lithosphere. Present-day escapes of mantle-derived helium and CO2 concentrate mainly in two tectonically different crust edifices — in the Cheb Basin (CHB) and in an allochtonous block called the Mariánské Lázně Complex (MLC). Crystalline basement of the CHB developed above the Variscan ‘triple junction’ of the mantle lithosphere domains. The basement was extended during the Cenozoic and dissected by systems of faults into small partly sunken blocks. Thanks to buoyancy the mantle fluids migrate upwards along the lithosphere junction into the faulted basement of the CHB. The highest CO2 flow and the highest 3He/4He ratios are observed at intersections of major normal faults and along the southern boundary of the Smrčiny (Fichtelgebirge) granite Pluton. The fluid escapes are separated from the earthquake swarm epicentres. Routes of the fluids to the MLC are longer and more complicated. Surface escapes tap the mantle fluids mainly from the Mariánské Lázně Fault (MLF) and from the tectonic boundaries along which the MLC block of the TB lower crust was thrust over the ST complexes. Hypocentres of earthquake swarms of the two major focal areas at Novy Kostel and Lazy, located mainly at depths of 6–13 km, reside either in granite or in underlying gneiss, while the escapes of mantle fluids follow major faults or boundaries of crystalline units outside the Smrčiny and Karlovy Vary granite Plutons. We suggest that primarily those parts of faults in the upper crust, which is strengthened by granite magmatism and rigid enough to selectively accumulate stresses, are seismoactive. On the other hand, other parts of the faults tapping ascending mantle volatiles are ‘lubricated’ by the fluids and secondary mineralogical changes, and thus they cannot accumulate sufficient stresses to be released by earthquakes. A comparison of the most probable paths of the mantle fluids with the space-time distribution of the Novy Kostel hypocentres does not seem to support the model of the earthquake swarms triggered by pressurized fluids of mantle origin.  相似文献   

6.
海原走滑断裂带及其尾端挤压构造   总被引:36,自引:10,他引:26       下载免费PDF全文
研究了青藏高原东北部地区海原活动断裂带的几何学、运动学和动力学特征、左旋位移总量及全新世滑动速率,对海原走滑断裂带东南端发育的尾端挤压区的构造特征及地壳缩短量进行了研究,分析了走滑断裂带的走滑量与端部挤压区地壳缩短量之间的转换平衡关系  相似文献   

7.
The shallow medieval Jeroným Mine is located at a distance of about 25 km southeast of the Nový Kostel focal zone where the most intensive seismic activity in West Bohemia (Czech Republic) has been documented. Permanent seismological monitoring has been carried out since 2004 in this mine. During the 2011 and 2014 seismic swarms, more than 1000 triggered records comprising almost 1500 earthquakes were recorded at the permanent station in the mine. Three short-term seismological experiments were accomplished during these swarms. Several temporary seismic stations were simultaneously placed in different parts of underground spaces which enabled comparison of vibration effect caused by near earthquakes in different parts of the mine. Although the depth of the lowest parts of mine is only about 60 m, a vibration effect generated by earthquakes from the Nový Kostel focal zone is not the same for the whole underground complex.  相似文献   

8.
Geodynamic activity in the area of West Bohemia is typified by the occurrence of earthquake swarms, Quaternary volcanism and high flux of mantle-derived CO2. The highest swarm activity occurs beneath the eastern edge of the Cheb basin, which is delineated by the NW-SE trending morphologically pronounced Mariánské Lázn?? Fault (MLF) controlling the formation of the basin. The previous trenching survey across the MLF zone has identified several fault strands with possible Quaternary activity. In this paper we present the results of the geophysical survey focused to trace the faults signatures in geophysical sections and to build an image of near surface tectonics. The method of electric resistivity tomography (ERT) along two profiles parallel to the trench identified a strong resistivity contrast between the bodies of sandy gravels in the middle and conductive clayey sands to the west and weathered crystalline basement to the east. The 2-D ground penetration radar (GPR) sections show direct correlation of reflections with lithological boundaries identified in the trench. As expected, the GPR signal amplitudes increase with the resistivities found in the ERT sections. Two of the four faults identified in the trench are indicated in the resistivity and GPR sections. A 3-D GPR measurement has identified a spot of high amplitudes elongated parallel to the MLF trend, which coincides with the high resistivity body. To improve the signal-to-noise ratio of the time slices we stacked the GPR time slices within vertically homogeneous blocks. This provided a contrast image of the sand-gravel body including its boundaries in three dimensions. The detailed analysis of the 3-D GPR cube revealed additional fault that limits the highly reflective sands and appears to be offset by another younger fault. Our results suggest a complex fault pattern in the studied area, which deserves a further study.  相似文献   

9.
《Journal of Geodynamics》2003,35(1-2):125-144
The NW Bohemia/Vogtland region situated at the western part of the Bohemian Massif is characteristic in a frequent reoccurrence of earthquake and micro-earthquake swarms. We present a comprehensive, integrated pattern of the space and time distribution of seismic energy release in the principal NK (Nový Kostel) focal zone for the period 1991–2001 and for the intensive 1985/1986 swarm. More than 3000 earthquakes, recorded by the WEBNET, the KRASLICE net and by temporary stations VAC, TIS and OLV operating during the 1985/1986 swarm, were located or re-located using the master event technique. Swarm-like sequences were identified and discriminated from solitary events by detecting local minima of the inter-event time using a standard short-time/long-time average (STA/LTA) detection algorithm. Most of the seismic energy in the NK zone was released during the two intensive 1985/1986 and 2000 swarms and in the course of the weaker January 1997 swarm. Further 27 swarm-like sequences (micro-swarms) and many solitary micro-earthquakes (background activity) were identified in the NK zone for the period 1991–2001 by the inter-event time analysis. Relative location revealed a pronounced planar character of the NK focal zone. Most of the events, including those of the intensive 1985/1986 and 2000 swarms, were located at the main focal plane (MFP) striking 169° N and dipping 80° westward at depths between 6 and 11 km. A singularity was the January 1997 swarm together with a micro-swarm that were both located across the MFP. The position and geometry of the MFP match quite well the Nový Kostel-Počátky-Zwota tectonic line. The space distribution patterns of larger events and of micro-swarms at the MFP differ: larger events predominantly grouped in planar clusters while the micro-swarms lined up along two parallel seismogenic lines. The temporal behaviour was examined from two aspects: (a) migration and (b) recurrence of the seismic activity. It was found that (a) the seismic activity in the time span 1991–2001 migrated in an area of about 12×4 km and (b) several segments of the MFP were liable to reactivation. The activity before, during and after the 2000 swarm took place in different parts of the MFP.  相似文献   

10.
High-resolution sea floor imaging (narrow beam sediment profiler) yields evidence for an offshore rupture along a strand of the Carboneras Fault Zone (CFZ) in the Gulf of Almería off southern Spain. The observed faults affect the seafloor and cut the Late Holocene sedimentary cover, hence the faults are regarded as active and the escarpments as relatively fresh. Seafloor faulting is associated with escarpments, fissures, pressure ridges, folds, and reverse faults indicating sinistral strike-slip faulting with a significant vertical displacement. Adjacent to the major fault zone secondary phenomena such as submarine slumps and slides are observed. The observed fresh escarpments imply an offshore rupture during a major earthquake along the CFZ. The southern Iberian margin and the Afro-Eurasian convergence zone form an area of moderate seismicity. However, some major events occurred, such as the 1522 Almería earthquake (EMS IX; [IGN (2005) Instituto Geografico Nacional, www.ign.es]), which affected large areas in the western Mediterranean. Different epicentral areas have been suspected, mainly along the 50 km long sinistral CFZ; however, no on-shore surface ruptures and paleoseismological evidences for this event have been found. Based on our data, a new epicentral area is proposed in the Gulf of Almería precisely along the observed sea floor rupture area, where the CFZ extend at least for 100 km offshore. Our findings suggest a specific seismic hazards and tsunami potential for offshore active and seismogenic faults in the Alborán Sea.  相似文献   

11.
The focal mechanisms of events from three micro-earthquake swarms (swarm in the years 1985/86, swarm of December 1994, and swarm of January 1997) in the epicentral area of Nový Kostel (West Bohemia region) were used as input data for stress analyses. The simple graphical method of Angelier and Mechler (1977) and inversion by the program BRUTE3 (Hardcastle and Hills, 1993) were applied to the data collections. The results of the stress analyses for the 1985/86 swarm and for the swarm of December 1994 are similar. For the January 1997 swarm, the results of the analyses differ from those for older swarms. The axis of maximum extension is oriented in the NE-SW direction and is subhorizontal, the axis of maximum compression is oriented in the NW-SE direction and perspicuously dips towards SE. These results are similar to older results of stress analyses carried out for the 1985/86 swarm (Antonini, 1988; Sonnleitner,1993). They are also consistent with most of other published results of stress analyses conducted at different sites in the western part of the Bohemian Massif. The orientation of the principal stresses confirms the sinistral strike-slip movement along the Nový Kostel-Poátky-Zwota line (the trend is about 355°) defined by the epicentres of the micro-earthquakes. The eastern tectonic limit of the Cheb Basin (and other respective parallel faults ) could be characterised by normal rather than strike-slip faulting.  相似文献   

12.
A working model of tectono-sedimentary evolution is proposed for the Cheb Basin, a polyhistory sedimentary basin formed between the late Oligocene and Pliocene by reactivation of basement fracture systems in the northwestern part of the Bohemian Massif. The basin is located at the intersection of the Ohe (Eger) Graben structural domain, characterized by dominance of NE-striking graben systems in present-day geology, and the NW-striking Cheb-Domalice Graben, a major strike-slip – dominated structure in Western Bohemia. The first significant depositional episode in the Cheb Basin coincides with the deposition of late Oligocene-Miocene clastics in the whole extensional system of the Ohe Graben, controlled by E-W – trending depocenters. The main structural feature of the Cheb Basin region at that time was a palaeohigh caused by a NW- trending accommodation zone separating minor E-W – trending depocentres. The second, late Pliocene, episode of sedimentation occurred under a very different kinematic regime than the Oligo-Miocene rift basin evolution. During this time, the present-day structure of the Cheb Basin and the Cheb-Domalice Graben formed as a consequence of sinistral displacement on the Mariánské Lázn Fault Zone. Reactivation of this strike-slip fault zone led to the formation of a horsetail splay of oblique-extensional faults at the northern termination of the Mariánské Lázn Fault Zone, which contained the present-day Cheb Basin.  相似文献   

13.
由于南华山北麓断裂带的新活动,使得南华山北麓菜园—乱堆子16公里范围内的21条冲沟发生明显断错,显示出左旋位移指向。本文研究了这些断错冲沟的地质地貌表征、断错冲沟的发育过程和断错量,并根据晚更新世以来沉积物的~(14)C年龄和区域冲沟的溯源侵蚀速率,计算出晚更新世以来南华山北麓断裂带的平均滑动速率为4.3毫米/年;同时,量测出1920年海原8.5级地震震中区地震断层的最位移量为6.9米。根据以上资料,估算出南华山北麓断裂带8.5级强震的重复率约为1600年  相似文献   

14.
在野外实测工作基础上, 对香山北缘活动断裂带东段自晚更新世以来的水平活动强度分时、 分段进行了研究. 结果表明, 该断裂带东段自晚更新世以来, 总体水平活动强度不大: 晚更新世早—中期水平位移速率为1.44 mm/a, 晚期水平位移速率为0.53 mm/a, 全新世水平位移速率为1.01 mm/a. 该断裂带左旋走滑强度在走向上具有不均一性, 而且其活动强度的最大部位(活动中心)随时间向东发生迁移, 碱沟—刘岗井次级断层是现今活动强度最大的次级断层.   相似文献   

15.
The Ximalin fault is the northwest section of the Ximalin-Shuiquan fault, which is part of the north-edge fault zone of the Yanghe Basin, located in the conjunction of the Zhangjiakou-Bohai fault zone and Shanxi fault-depression basin, and its structural geometry and deformation characteristics can facilitate the research on the interaction of the two tectonic belts. In this paper, data of geological surveys and geophysical exploration are used to study this fault exhaustively, concerning its geometry, structural features and activity as well as its relationship with adjacent faults and rule in the deformation transform of the north-edge fault zone of the Yanghe Basin. The results show that the Ximalin Fault is a strike-slip feature with thrust component. Its vertical slip rates are 0.17mm/a and 0.25~0.38mm/a, and the horizontal slip rate is 0.58~0.67mm/a and 0.50mm/a during the late Middle Pleistocene and Holocene, respectively. It is formed alternately by the NW-trending main faults and secondary NE-trending faults, of which the former is characterized by high-angle reverse with sinistral strike-slip, and the latter shows normal faulting. The two sets of structures have specific structural geometry relations, and the motion manners and deformation characteristics match each other. During the active process of the north-edge fault of the Yanghe Basin, the NW trending Ximalin fault played a role similar to a transform fault in deformation change and stress transfer, and its sinistral strike slip activity accommodated the NE trending normal faulting at the both ends.  相似文献   

16.
The 40km-long, NEE trending Reshui-Taostuo River Fault was found in the southern Dulan-Chaka highland by recent field investigation, which is a strike-slip fault with some normal component. DEM data was generated by small unmanned aerial vehicle(UAV)on key geomorphic units with resolution<0.05m. Based on the interpretation and field investigation, we get two conclusions:1)It is the first time to define the Reshui-Taostuo River Fault, and the fault is 40km long with a 6km-long surface rupture; 2)There are left-handed dislocations in the gullies and terraces cut by the fault. On the high-resolution DEM image obtained by UAV, the offsets are(9.3±0.5) m, (17.9±1.5) m, and(36.8±2) m, measured by topographic profile recovery of gullies. The recovery measurements of two terraces present that the horizontal offset of T1/T0 is(18.2±1.5) m and the T2/T1 is (35.8±2) m, which is consistent with the offsets from gullies. According to the historical earthquake records, a M5 3/4 earthquake on April 10, 1938 and a MS5.0 earthquake on March 21, 1952 occurred at the eastern end of the surface rupture, which may be related to the activity of the fault. By checking the county records of Dulan and other relevant data, we find that there are no literature records about the two earthquakes, which is possibly due to the far distance to the epicenter at that time, the scarcity of population in Dulan, or that the earthquake occurred too long ago that led to losing its records. The southernmost ends of the Eastern Kunlun Fault and the Elashan Fault converge to form a wedge-shaped extruded fault block toward the northwest. The Dulan Basin, located at the end of the wedge-shaped fault block, is affected by regional NE and SW principal compressive stress and the shear stress of the two boundary faults. The Dulan Basin experienced a complex deformation process of compression accompanying with extension. In the process of extrusion, the specific form of extension is the strike-slip faults at each side of the wedge, and there is indeed a north-east and south-west compression between the two controlling wedge-shaped fault block boundary faults, the Eastern Kunlun and Elashan Faults. The inferred mechanism of triangular wedge extrusion deformation in this area is quite different from the pure rigid extrusion model. Therefore, Dulan Basin is a wedge-shaped block sandwiched between the two large-scale strike-slip faults. Due to the compression of the northeast and southwest directions of the region, the peripheral faults of the Dulan Basin form a series of southeast converging plume thrust faults on the northeast edge of the basin near the Elashan Fault, which are parallel to the Elashan Fault in morphology and may converge with the Elashan Fault in subsurface. The southern marginal fault of the Dulan Basin(Reshui-Taostuo River Fault)near the Eastern Kunlun fault zone is jointly affected by the left-lateral strike-slip Eastern Kunlun Fault and the right-lateral strike-slip Elashan Fault, presenting a left-lateral strike-slip characteristic. Meanwhile, the wedge-shaped fault block extrudes to the northwest, causing local extension at the southeast end, and the fault shows the extensional deformation. These faults absorb or transform the shear stress in the northeastern margin of the Tibet Plateau. Therefore, our discovery of the Dulan Reshui-Taostuo River Fault provides important constraints for better understanding of the internal deformation mode and mechanism of the fault block in the northeastern Tibetan plateau. The strike of Reshui-Taostuo River Fault is different from the southern marginal fault of the Qaidam Basin. The Qaidam south marginal burial fault is the boundary fault between the Qaidam Basin and the East Kunlun structural belt, with a total length of ~500km. The geophysical data show that Qaidam south marginal burial fault forms at the boundary between the positive gravity anomaly of the southern East Kunlun structural belt and the negative gravity anomaly gradient zone of the northern Qaidam Basin, showing as a thrust fault towards the basin. The western segment of the fault was active at late Pleistocene, and the eastern segment near Dulan County was active at early-middle Pleistocene. The Reshui-Taostuo River Fault is characterized by sinistral strike-slip with a normal component. The field evidence indicates that the latest active period of this fault was Holocene, with a total length of only 40km. Neither remote sensing image interpretation nor field investigation indicate the fault extends further westward and intersects with the Qaidam south marginal burial fault. Moreover, it shows that its strike is relatively consistent with the East Kunlun fault zone in spatial distribution and has a certain angle with the burial fault in the southern margin of Qaidam Basin. Therefore, there is no structural connection between the Reshui-Taostuo River Fault and the Qaidam south marginal burial fault.  相似文献   

17.
GPS observations in the Western Bohemia/Vogtland earthquake swarm region revealed indications of horizontal displacements of low amplitude, and no clear long-term trend in 1993–2007. On the other hand, in 1998–2001 there was relatively significant active movement along NNE-SSW oriented line that we called the “Cheb-Kraslice GPS Boundary” (ChKB), identical with an important limitation of earthquake activity. The most impressive were dextral (right-lateral) movements in the 1998–1999 period followed by reverse sinistral (left-lateral) movements in 1999–2000 that correlate with prevailing motion defined by fault plane solutions of the Autumn 2000 earthquake swarm. Before the February 2004 micro-swarm, two points located on opposite sides of the Mariánské Lázně fault showed extension in the order of about 7 mm in the same NNE-SSW direction of ChKB. The new NOKO permanent GPS station in Novy Kostel showed the peak-to-peak vertical changes up to 10 mm before and during the February 2007 micro-swarm. Annual precise levelling campaigns in the local network around Novy Kostel revealed regular vertical displacements during the 1994, 1997 and 2000 earthquake swarms. The points around the Novy Kostel seismological station showed uplift during the active periods, including the micro-swarm February 2004. However, no such indication was observed on levelling points in the period of the February 2007 swarm. Long-term vertical displacements depend on the same direction NNE-SSW (ChKB) as the GPS displacements. Both geodetic techniques have revealed oscillating displacements, GPS horizontal, and levelling vertical, rather than any long-term trends in the study period 1993–2007. The displacements exhibited significant spatial and temporal relation to tectonic activity (earthquake swarms) including their coincidence with the seismologically determined sense of motion along the fault plane during earthquakes.  相似文献   

18.
南迦巴瓦构造结周边地区主要断裂现今运动特征   总被引:3,自引:3,他引:0  
本文基于南迦巴瓦构造结周边16个宽频带地震台的观测波形数据,对地震事件进行相关分析,使用MSDP软件进行多台定位,编制了研究区内的地震目录,并利用CAP方法获得了研究区内主要断裂带两侧10km范围内M 3.0以上地震的震源机制解,用于分析主要断裂带的现今运动特征。研究结果表明:研究区内的地震活动受主要断裂带的控制;墨脱断裂带现今运动主要为左旋逆冲运动;米林断裂带以左旋正断运动为主;嘉黎断裂带以右旋逆冲为主,兼有左旋和正断运动;阿帕龙断裂带以右旋逆冲运动为主;边坝-达木新生断裂带运动以右旋逆冲运动为主,兼有正断和左旋运动;各主要断裂带的现今运动特征与地质和GPS观测结果相同,表明南迦巴瓦构造结周边地区主要断裂带的现今运动主要受阿萨姆构造结俯冲作用的控制。  相似文献   

19.
唐山地震发震构造的浅层地震探测   总被引:8,自引:2,他引:6  
利用浅层地震探测方法,研究了唐山地震区1年前出现在卫星图像上的异常现象与发震构造的关系,探讨地震中长期预测的途径。结果表明:唐山地震断层是一条倾向NW的右旋走滑第四纪同生断裂,它错断了全新统,晚更新统,中更新统,和早更新统地层。  相似文献   

20.
柯坪推覆构造的根部断裂记录到的地震活动相对较弱,以至于多数学者认为该断裂晚第四纪以来活动性不强。笔者根据遥感影像解译和野外调查得到迈丹断裂的几何展布,确认F3阿合奇段为最新地表破裂带,并通过一系列河流阶地的左旋位移测量确定其晚更新世以来有过走滑活动。结合地貌测量和探槽开挖得到断层垂直错距,探槽揭示的古地震事件发生在距今(1.76±0.22)ka之后,根据现场考察获得的活动构造定量数据,依据不同震级与地表破裂关系式推算出该次古地震震级为7.5级。研究成果可能对区域活动断裂的研究以及区域活动构造图像的完整性提供基础资料,同时最新地表破裂证据的发现可能有助于更新认识该断裂的危险性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号