首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following a catastrophic flash flood in July 1996, as much as 50 cm of post-glacial clays were deposited in less than 2 days in the upper reaches of the Saguenay Fjord (Quebec, Canada), disrupting the normal sedimentation and diagenetic regimes. We report detailed geochemical analyses of sediments (porosity, Eh, organic and inorganic carbon, Fe and Mn reactive solid phases, and acid volatile sulfide) and porewaters (salinity, dissolved organic carbon (DOC), Fe(II), Mn(II), nitrate, ammonium, and sulfate) for seven stations located in the Saguenay Fjord. Three of these (SAG-05, SAG-09, and SAG-30) were visited in 1996 and once per year thereafter to document the chemical evolution of the sediment toward a new steady state. The flood deposits contain less organic carbon and more inorganic carbon than the indigenous fjord sediments. The flood deposit modified the distribution patterns of reactive Mn and Fe as a result of the reduction of Mn and Fe oxides delivered with the deposit and those concentrated at the now buried former sediment-water interface. Most of the Mn(II) migrated to the new sediment-water interface, where a Mn-rich layer was formed. In contrast, much of the Fe(II) was precipitated as sulfides and remained trapped at or close to the old interface. A nitrate peak developed in the porewater at the old sediment-water interface, possibly because of the oxidation of ammonia by Mn oxides. The distributions of porewater DOC within the flood deposit correlate with the distributions of dissolved Mn(II) and Fe(II), suggesting that adsorbed DOC was released when metal oxides were reduced.  相似文献   

2.
Samples of authigenic material, sediment overlying water and oxic surface sediment (0–0.5-cm depth) from a perennially oxygenated lacustrine basin were analysed to investigate which solid phases are important for binding a suite of trace elements (Ag, As, Ca, Cd, Cu, Hg, In, methylmercury (MeHg), Mg, Mo, Pb, Sb and Zn). The authigenic material, which was collected with inert Teflon sheets deployed for several years across the sediment–water interface, contained mainly poorly crystallized Fe oxyhydroxides and natural organic matter, presumably humic substances derived from the watershed. Manganese oxyhydroxides were not present in the collected authigenic material due to the slightly acidic condition (pH = 5.6) of the lake that prevents the formation and recycling of these compounds. Conditional equilibrium constants for the adsorption of cationic (KFe–M) and anionic (KFe–A) trace elements onto the authigenic Fe oxyhydroxides were estimated from their concentrations in the authigenic material and in bottom water samples. These field-derived values of KFe–M and KFe–A were compared with those predicted by the surface complexation model, using laboratory-derived intrinsic adsorption constants and the water composition at the study site. Equilibrium constants (KPOM–M) were also calculated for the adsorption of the cationic trace elements onto the humic substances contained in the diagenetic material. The field-derived values of KPOM–M were compared to those predicted by the speciation code WHAM 6 for the complexation of the trace elements by dissolved humic substances in the lake. Combining the results of the present study with those on the distributions of trace elements in the porewater and solid-phase sediments reported in previous studies at the same site, it was determined whether the trace elements bind preferentially to Fe oxyhydroxides or natural organic matter in oxic sediments. The main inferences are that the anionic trace elements As, Mo and Sb, as well as the cationic metal Pb are preferentially bound to the authigenic Fe oxyhydroxides whereas the other trace elements, and especially Hg and MeHg, are preferentially bound to the humic substances.  相似文献   

3.
A mass-flow event triggered by the 1996 flood in the Saguenay region buried the mercury-contaminated indigenous sediments at the head of the Saguenay Fjord under up to 50 cm of postglacial deltaic sediments. The vertical distributions of total mercury and methyl-mercury in the sediments and pore waters were measured in box cores recovered from the Saguenay Fjord within and outside the affected area prior to and on six consecutive years after the flood. The total solid mercury (THgs) profiles show that remobilization was limited and most of the mercury remobilized from the contaminated, indigenous sediments was trapped below or slightly above the former sediment–water interface by authigenic acid-volatile sulfides (AVS). Nonetheless, a small fraction of the remobilized mercury diffused into the flood layer, some of it was methylated and/or scavenged by organic matter and AVS. Elevated solid-phase methyl-mercury concentrations, [MeHgs], at depth in the sediment are correlated to peak AVS and THgs but, in the absence of elevated dissolved methyl-mercury concentrations, [MeHgd], the higher [MeHgs] may reflect an earlier episode of Hg methylation, the product of which was scavenged by the AVS and buried. Throughout the sediment cores, sediment–water partitioning of MeHg and Hg(II) appears to be controlled in great part by the AVS and residual organic matter content of the sediment.  相似文献   

4.
The sediments of the Port Camargue marina (South of France) are highly polluted by Cu and As (Briant et al., 2013). The dynamics of these pollutants in pore waters was investigated using redox tracers (sulfides, Fe, Mn, U, Mo) to better constrain the redox conditions.In summer, pore water profiles showed a steep redox gradient in the top 24 cm with the reduction of Fe and Mn oxy-hydroxides at the sediment water interface (SWI) and of sulfate immediately below. Below a depth of 24 cm, the Fe, Mn, Mo and U profiles in pore waters reflected Fe and Mn reducing conditions and, unlike in the overlying levels, sulfidic conditions were not observed. This unusual redox zonation was attributed to the occurrence of two distinct sediment layers: an upper layer comprising muddy organic-rich sediments underlain by a layer of relatively sandy and organic-poor sediments. The sandy sediments were in place before the building of the marina, whereas the muddy layer was deposited later. In the muddy layer, large quantities of Fe and Mo were removed in summer linked to the formation of insoluble sulfide phases. Mn, which can adsorb on Fe-sulfides or precipitate with carbonates, was also removed from pore waters. Uranium was removed probably through reduction and adsorption onto particles. In winter, in the absence of detectable pore water sulfides, removal of Mo was moderate compared to summer.Cu was released into solution at the sediment water interface but was efficiently trapped by the muddy layer, probably by precipitation with sulfides. Due to efficient trapping, today the Cu sediment profile reflects the increase in its use as a biocide in antifouling paints over the last 40 years.In the sandy layer, Fe, Mn, Mo and As were released into solution and diffused toward the top of the profile. They precipitated at the boundary between the muddy and sandy layers. This precipitation accounts for the high (75 μg g−1) As concentrations measured in the sediments at a depth of 24 cm.  相似文献   

5.
This research tests the hypothesis that trace metals respond to the extent of reducing conditions in a predictable way. We describe pore water and sediment measurements of iron (Fe), manganese (Mn), vanadium (V), uranium (U), rhenium (Re), and molybdenum (Mo) along a transect off Washington State (USA). Sediments become less reducing away from the continent, and the stations have a range of oxygen penetration depths (depth to unmeasurable O2 concentration) varying from a few millimeters to five centimeters. When oxygen penetrates ∼1 cm or less, Fe is reduced in the pore waters but reoxidized near the sediment-water interface, preventing a flux of Fe2+ to overlying waters, whereas Mn oxides are reduced and Mn2+ diffuses to overlying waters. Both Re and U authigenically accumulate in sediments. Only at the most reducing location, where the oxygen penetrates 0.3 cm below the sediment-water interface, does the surface 30 cm of sediments become reducing enough to authigenically accumulate Mo.Stations in close proximity to the Juan de Fuca Ridge crest are enriched in Mn and Fe from hydrothermal plume processes. Both V and Mo clearly associate with Mn cycling, whereas U may be associating with either Mn oxides and/or Fe oxyhydroxides. Rhenium is uncomplicated by adsorption to Mn oxides and/or Fe oxyhydroxides, and Re accumulation in sediments appears to be due solely to the extent of reducing conditions. Therefore, authigenic sediment Re enrichment appears to be the best indicator for intermediate reducing conditions, where oxygen penetrates less than ∼1 cm below the sediment-water interface, when coupled with negligible authigenic Mo enrichment.  相似文献   

6.
Vertical profiles from the water column, including the maximum turbidity zone (MTZ) to the consolidated sediment were sampled in September 2000 in the freshwater reaches of the Gironde Estuary during a complete neap tide-spring tide cycle. The vertical distributions of dissolved major redox parameters and metals (Mn, Fe, Cd, Cu, V, Co, Ni, Mo, and U) were determined. Reactive particulate metal fractions were also determined from selective leaching. The studied system is characterized by density layers functioning at different time-scales, consisting of two mobile layers, i.e., the liquid (LM) and the soft mud (SM), overlying consolidated sediments (CS). This results in a three-zone diagenetic regime where (1) O2 dynamics are fast enough to show depletion in the rapidly mixed LM sequence (tidal time-scale), (2) denitrification occurs on the weekly time-scale mixing SM sequence, and (3) the Mn, Fe, and sulfate cycling occurs in the CS layer (annual time-scale). The studied trace metals show differential behavior during early diagenesis: (1) Cd, Cu, and V are released into pore water preferentially from organic matter in the SM, (2) Co, Ni, and U are released in the CS from Mn and Fe oxides during reductive dissolution, and (3) Mo from both processes. Transient conditions (i.e., oscillations of redox fronts and reoxidation processes), due to the dynamics of the mobile layers, strongly influence the trace metal distributions as inducing resolubilization (Cd, Cu, and Mo). In the CS, authigenic metal phases accumulate, either by direct precipitation with sulfides (Cu, Cd) or co-precipitation with Fe-sulfides (Mo). Microbially mediated reduction of Fe oxides is proposed to control U removal from pore water by reduction of U(VI) to U(IV) at depth. However, a significant fraction of the trace metals is trapped in the sediment in exchangeable forms, and therefore is susceptible to be mobilized due to resuspension of estuarine sediment during strong river flood periods and/or dredging activities.  相似文献   

7.
The shallow alluvial aquifers of the delta plains and flood plains of Bangladesh, comprises about 70% of total land area are mostly affected by elevated concentrations of arsenic (As) in groundwater exposing a population of more than 35 million to As toxicity. Geochemical studies of shallow alluvial aquifer in the Meghna flood plain show that the uppermost yellowish grey sediment is low in As (1.03 mg/kg) compared to the lower dark grey to black sediment (5.24 mg/kg) rich in mica and organic matter. Sequential extraction data show that solid phase As bound to poorly crystalline and amorphous metal (Fe, Mn, Al)-oxyhydroxides is dominant in the grey to dark grey sediment and reaches its maximum level (3.05 mg/kg) in the mica rich layers. Amount of As bound to sulphides and organic matter also peaks in the dark grey to black sediment. Vertical distributions of major elements determined by X-ray fluorescence (XRF) show that iron (Fe2O3), aluminum (Al2O3) and manganese (MnO) follow the general trend of distribution of As in the sediments. Concentrations of As, Mn, Fe, HCO3 , SO4 2− and NO3 in groundwater reflect the redox status of the aquifer and are consistent with solid phase geochemistry. Mineralogical analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) fitted with energy dispersive X-ray spectrometer (EDS) revealed dominance of crystalline iron oxides and hydroxides like magnetite, hematite and goethite in the oxidised yellowish grey sediment. Amorphous Fe-oxyhydroxides identified as grain coating in the mica and organic matter rich sediment suggests weathering of biotite is playing a critical role as the source of Fe(III)-oxyhydroxides which in turn act as sink for As. Presence of authigenic pyrite in the dark grey sediment indicates active reduction in the aquifer.  相似文献   

8.
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O3T suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C–S–Fe relationship owing to authigenic precipitation of Fe–Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.  相似文献   

9.
Pyrobitumen has been shown to be an essential component in formation of some Chilean manto-type (strata-bound) copper deposits and its presence has been observed in a number of other deposits but has received limited investigation. In this paper we present paragenetic and geochemical data from two central Chilean manto-type deposits from the Uchumi and Talcuna districts where solid pyrobitumen (residual petroleum) is intimately associated with copper sulfides.Pyrobitumen in the Uchumi deposit occurs in pore space within the host conglomerates and is adjacent to a granitoid stock; pyrobitumen predates bornite–chalcocite mineralization and may have reduced subsequent mineralizing fluids. Pyrobitumen from the Manto Delirio deposit, Talcuna District, fills the cores of early sphalerite veins and was partially replaced by later Cu–As mineralization; pyrobitumen is petrographically intergrown with Cu–Fe sulfides and light δ13C values of gangue calcite indicates the interaction of pyrobitumen with the mineralizing fluid.The presence of pyrobitumen within the ores of other manto-type copper deposits in the Lower Cretaceous basin of Chile suggests that degraded petroleum reservoirs, in particular if biodegradation generated authigenic pyrite, can be important controls for metallic mineralization derived from hydrothermal solutions of different sources.  相似文献   

10.
This paper presents materials on the chemical and mineralogical composition of Fe-Mn mineralization in island arcs (Kurile, Nampo, Mariana, New Britain, New Hebrides, and Kermadec) in the western part of the Pacific Ocean. The mineralization was proved to be of hydrothermal and/or hydrogenic genesis. The former is produced by hydrothermal Fe and Mn oxi-hydroxides that cement volcanic-terrigenous material in sediments. Some Fe oxi-hydroxides can be derived via the halmyrolysis of volcaniclastic material. Crusts of this stage are characterized by fairly low concentrations of trace and rare elements, and their REE composition is inherited from the volcanic-terrigenous material. The minerals of the Mn oxi-hydroxides are todorokite and “Ca-birnessite.” The Mn/Fe ratio increases away from the discharge sites of the hydrothermal solutions. The hydrogenic Fe-Mn crusts are characterized by high concentrations of trace and minor elements of both the Mn group (Co, Ni, Tl, and Mo) and the Fe group (REE, Y, and Th). The hydrogenic crusts consist of Fe-vernadite and Mn-feroxyhyte. Some of the hydrothermal crusts originally had a hydrothermal genesis. The first data were obtained on crust B30-72-10 from the Macauley Seamount in the Kermadec island arc, which contained anomalously high concentrations of Co (2587 ppm) and other Mn-related trace elements in the absence of hydrogeneous Fe oxi-hydroxides.  相似文献   

11.
We measured the vertical distributions of Mo, Fe, Mn, sulfide, sulfate, organic carbon, major ions, and pH in sediment porewater from one perennially oxic and three seasonally anoxic lacustrine basins in Eastern Canada, as well as those of Mo, acid volatile sulfide, Fe, Mn, Al, organic C, 210Pb and 137Cs in sediment cores from the same sites. The only input of anthropogenic Mo to these lakes comes from atmospheric deposition.The relatively monotonous distribution of Mo in the porewater of three seasonally anoxic basins suggests that Mo is not redistributed in the sedimentary column during periods of anoxia. In contrast, porewater Mo profiles obtained at three sampling dates in a perennially oxic basin display sharp Mo peaks below the sediment-water interface, indicating redistribution subsequent to deposition. Modeling of these latter porewater Mo profiles with a diagenetic reaction-transport equation coupled to comparisons among the various porewater and solid phase profiles reveal that Mo is released at 1-2 cm depth as a consequence of the reductive dissolution of Fe oxyhydroxides and scavenged both at the vicinity of the sediment-water interface, by re-adsorption onto authigenic Fe oxyhydroxides, and deeper in the sediments where dissolved sulfide concentrations are higher. The estimated rate constant for the adsorption of Mo onto Fe oxyhydroxides is 36 ± 45 cm3 mol−1 s−1.Diagenetic modeling indicates that authigenic Mo in sediments of the perennially oxic basin represents about one-third of the total solid phase Mo in the first cm below the sediment-water interface and only one tenth below this horizon. If we assume that no authigenic Mo is accumulated in the seasonally anoxic lake sediments we conclude that the sediment Mo concentrations, which are up to 3-16 times higher than the average lithogenic composition, depending on the lake, are mainly due to atmospheric deposition of anthropogenic Mo and not to the formation of authigenic Mo phases. Reconstructed historical records of the atmospheric Mo deposition indicate maximum values in the 1970s and 1980s and significant decreases since then. Emissions to the atmosphere associated with the smelting of non-ferrous ores and coal combustion appear to be the most important sources of anthropogenic Mo.  相似文献   

12.
Biogeochemical processes induced by the deposition of gravity layer in marine sediment were studied in a 295-day experiment. Combining voltammetric microelectrode measurements and conventional analytical techniques, the concentrations of C, O2, N-species, Mn and Fe have been determined in porewaters and sediments of experimental units. Dynamics of the major diagenetic species following the sudden sediment deposition of few cm-thick layer was explained by alternative diagenetic pathways whose relative importance in marine sediments is still a matter of debate. Time-series results indicated that the diffusion of O2 from overlying waters to sediments was efficient after the deposition event: anoxic conditions prevailed during the sedimentation. After a few days, a permanent oxic horizon was formed in the top few millimetres. At the same time, the oxidation of Mn2+ and then Fe2+, which diffused from anoxic sediments, contributed to the surficial enrichment of fresh Mn(III/IV)- and Fe(III)-oxides. Vertical diffusive fluxes and mass balance calculations indicated that a steady-state model described the dynamic of Mn despite the transitory nature of the system. This model was not adequate to describe Fe dynamics because of the multiple sources and phases of Fe2+. No significant transfer of Mn and Fe was observed between the underlying sediment and the new deposit: Mn- and Fe-oxides buried at the original interface acted as an oxidative barrier to reduced species that diffused from below. Nitrification processes led to the formation of a NO3/NO2 rich horizon at the new oxic horizon. Over the experiment period, NO3 concentrations were also measured in the anoxic sediment suggesting anaerobic nitrate production.  相似文献   

13.
The chemical composition of sediments of cores taken from different areas of the Barents Sea was studied. The study involves reactive iron (Fereact) and reduced sulfur. The surficial oxidized layer with a thickness of 0.5–25 cm is characterized by increased content of Fe(III) in the form of oxyhydroxides and possibly hydroxophosphates. This layer is locally enriched in Mn. Reactive iron in sediments of horizons, which underlie the oxidized layer, is probably present mainly in the composition of silicates. The role of sulfides (acid-soluble phases and pyrite) among Fereact forms is predominantly subordinate. The core of pre-Holocene sediments is characterized by a strong correlation between the total content of reduced sulfur and its isotopic composition. This testifies to authigenic origin of pyrite in the pre-Holocene mud.  相似文献   

14.
位于扬子板块西南缘的"川滇黔接壤铅锌矿集区"是我国西南大面积低温成矿域的重要组成部分,麻栗坪铅锌矿床位于该矿集区昭通-曲靖成矿带中段,是近年来滇东北地区新发现的铅锌矿床。本文以麻栗坪铅锌矿不同硫化物为研究对象,通过LA-ICPMS原位点测试和元素Mapping分析,尝试揭示该矿床中Ge、Cd和In等微量元素在不同硫化物中分布规律与赋存状态。本次研究发现,麻栗坪矿床不同硫化物中富集的微量元素明显不同,闪锌矿主要富集Mn、Cu、Sn、Cd、In和Ge,而方铅矿主要富集Ag、Sb和Se,黄铁矿则富集As、Co和Ni。闪锌矿是分散元素Ge、In和Cd的主要载体矿物,且Cd、Ge、In、Mn、As、Sb和Ag以类质同象形式赋存于闪锌矿中;而Cu则主要以类质同象形式存在,部分Cu以黄铜矿的显微包裹体形式赋存于闪锌矿中,其中以类质同象赋存于闪锌矿中Cu和Ge呈现明显的相关性,可能暗示其与Zn的置换方式为:3Zn2+Ge4++2Cu+。总体上,该矿床闪锌矿以富集Cd、Ge,贫Fe、Mn、Co、Sn为特征,这些微量元素组成与典型MVT型矿床基本一致,明显有别于喷流沉积和岩浆热液型矿床,而与中低温条件下形成的闪锌矿微量元素组成相似。结合该矿床后生成矿特征明显等地质地球化学研究成果,我们认为该矿床应属于MVT型铅锌矿床。值得注意的是,该矿床闪锌矿相对富集In,可能暗示其形成具有特殊性,这可能与其成矿流体在长距离运移过程中所流经地层有关,该类流体活化萃取了基底地层的中-酸性岩浆岩或火山碎屑岩中的In,致使矿床中闪锌矿相对富集In。  相似文献   

15.
Iron and manganese redox cycling in the sediment — water interface region in the Kalix River estuary was investigated by using sediment trap data, pore-water and solid-phase sediment data. Nondetrital phases (presumably reactive Fe and Mn oxides) form substantial fractions of the total settling flux of Fe and Mn (51% of Fetotal and 84% of Mntotal). A steady-state box model reveals that nondetrital Fe and Mn differ considerably in reactivity during post-depositional redox cycling in the sediment. The production rate of dissolved Mn (1.6 mmol m–2 d–1) exceeded the depositional flux of nondetrital Mn (0.27 mmol m–2 d–1) by a factor of about 6. In contrast, the production rate of upwardly diffusing pore-water Fe (0.77 mmol m–2 d–1) amounted to only 22% of the depositional flux of nondetrital Fe (3.5 mmol m–2 d–1). Upwardly diffusing pore-water Fe and Mn are effectively oxidized and trapped in the oxic surface layer of the sediment, resulting in negligible benthic effluxes of Fe and Mn. Consequently, the concentrations of nondetrital Fe and Mn in permanently deposited, anoxic sediment are similar to those in the settling material. Reactive Fe oxides appear to form a substantial fraction of this buried, non-detrital Fe. The in-situ oxidation rates of Fe and Mn are tentatively estimated to be 0.51 and 0.16–1.7 mol cm–3 d–1, respectively.  相似文献   

16.
The Huilvshan gold deposit in the west Junggar (Xinjiang, China) is hosted in chloritized basalts, chlorite–siderite-altered basalts, and quartz–siderite rocks. Our study demonstrated that all these rocks were derived by alteration of basalts in a shear zone. The orebodies, consisting of quartz-sulfide veins and disseminated sulfides, formed in five stages: quartz–muscovite (I), disseminated sulfides (II), quartz–ankerite-sulfide (III), quartz–calcite-sulfide (IV), and quartz–calcite (V). Auriferous minerals are native gold in stage III and electrum in stage IV. During alteration of basalts in the shear zone, ore-forming elements were released from basalts to ore-forming fluid. Compared with fresh basalts, sulfide-bearing chloritized basalts contain much higher Sr, Ba, P, La, Ce, U, Mn, Ni, Zn, As, Ag, and Au contents. Phase analysis of the As–Cu–Fe–S–O system with the SUPCRT92 software package indicates that a decrease of the aH2S value, caused by the fluid–rock reactions and crystallization of sulfides, induced gold precipitation.  相似文献   

17.
Data on the decommissioned Degtyarka Cu sulfide deposit, Urals, confirm the hypothesis that the flooding of abandoned mine workings is associated with the synthesis of secondary sulfates. Numerical simulation of hydrogeochemical processes in the rock—water system imitating the flooding of an underground void makes it possible to evaluate the conditions under which kirovite (Fe,Mg)SO4 · 7H2O and melanterite are formed at the oxidation of ore sulfides. Secondary sulfates are formed when the redox potential of the system is transformed from reducing to oxidizing within the stability field of Fe(II) species. The Fe/Mg ratio of the kirovite (Fe,Mg)SO4 · 7H2O is controlled first of all by the percentage of sulfides in the rock—water system, the rock/water ratio, the openness of the system with respect to atmospheric gases, and the temperature.  相似文献   

18.
This article reports on the concentration of selected trace elements (Mn, Zn, Cr, Cu, Ba, As, B, V, and Hg) and major elements (Fe and Al) from the intertidal sediment cores from Sundarban wetland, India. This is a typical meso-macrotidal estuarine area affected by domestic and industrial activities located upstream. The overall concentrations range is low to moderate, indicating the environmental conditions in the outfall zone (grain size, hydrodynamic regime, and confinement), which favors the in situ accumulation of pollutants. The extent of contamination from trace elements in Sundarban core sediments is evaluated through a two-pronged approach: (i) by determining the metal enrichment in the sediments through the calculation of Pollution Load Index (PLI), Enrichment Factor (EF) and Index of Geoaccumulation (I geo), and (ii) by defining a potential level of biological risk by the use of quality criteria such as Threshold Effect Level (TEL) and Effects Range-Low (ERL) benchmarks. On the basis of the calculated indices, sediments are particularly enriched with Cr, Cu, B, V, and As. Those enrichments seem to be due to the fine granulometry of the regions with Fe and Mn oxi-hydroxides being the main metal carriers. Trace Elements input to the Sundarban wetland need to be kept under strict control in future specially with reference to As since, according to TEL and ERL benchmarks, it already appears to be associated with a potential biological risk.  相似文献   

19.
Fine sludges were collected from five filtration plants, and the partitioning of ten metals (Ag, Cd, Mn, Zn, Pb, Cu, Sn, Co, Ni, and Fe) in them was determined by selective leaching techniques. (1) The available amounts, which shows the total of each metal leached between 1 M CH3COONH4 and 30 percent H2O2, for Ag, Cd and Mn, ranged from 51 to 98 percent for five sludges. (2) The available amounts for Zn, Pb, Cu, and Sn were 47–92 percent for five sludges. (3) The most important fraction for Co, Ni, and Fe, except the Inagawa sludge, which is markedly polluted by organic matter, was the crystalline particle. Therefore, the above metals, except Co, Ni, and Fe, are thought to be enriched on ion-exchangeable sites, organic matter, hydrous Fe/Mn oxides, and sulfides in fine sludges.  相似文献   

20.
Four cores of anoxic sediments were collected from the Seine estuary to assess the early diagenesis pathways leading to the formation of previously reactive phase. Pore waters were analyzed for dissolved iron (Fe) and manganese (Mn) and different ligands (e.g., sulfate, chloride, total inorganic carbon). The anoxic zone is present up to the first centimeter depth, in these conditions the reduction of Mn and Fe oxides and SO4 2− was verified. The sulfate reduction was well established with a subsequent carbon mineralization in the NORMAI94 core. The chemical speciation of Mn and Fe in the dissolved and solid phases was determined. For the dissolved phase, thermodynamic calculations were used to characterize and illustrate the importance of carbonate and phosphate phases as sinks for Fe and Mn. The ion activity product (IAP) of Fe and Mn species was compared to the solubility products (Ks) of these species. In the solid phase, the presence of higher concentration of calcium carbonate in the Seine sediments is an important factor controlling Mn cycle. The carbonate-bound Mn can reach more than 75% of the total concentration. This result is confirmed by the use of electron spin resonance (ESR) spectroscopy. The reduction of Fe is closely coupled to the sulfate reduction by the formation of new solid phases such as FeS and FeS2, which can be regarded as temporal sinks for sulfides. These forms were quantified in all cores as acid volatile sulfide (AVS: FeS+ free sulfide) and chromium reducible sulfide (CRS: FeS2+elemental sulfur S0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号