首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The oceanic carbon cycle in the tropical-subtropical Pacific is strongly affected by various physical processes with different temporal and spatial scales, yet the mechanisms that regulate air-sea CO2 flux are not fully understood due to the paucity of both measurement and modeling. Using a 3-D physical-biogeochemical model, we simulate the partial pressure of CO2 in surface water (pCO2sea) and air-sea CO2 flux in the tropical and subtropical regions from 1990 to 2004. The model reproduces well the observed spatial differences in physical and biogeochemical processes, such as: (1) relatively higher sea surface temperature (SST), and lower dissolved inorganic carbon (DIC) and pCO2sea in the western than in the central tropical-subtropical Pacific, and (2) predominantly seasonal and interannual variations in the subtropical and tropical Pacific, respectively. Our model results suggest a non-negligible contribution of the wind variability to that of the air-sea CO2 flux in the central tropical Pacific, but the modeled contribution of 7% is much less than that from a previous modeling study (30%; McKinley et al., 2004). While DIC increases in the entire region SST increases in the subtropical and western tropical Pacific but decreases in the central tropical Pacific from 1990 to 2004. As a result, the interannual pCO2sea variability is different in different regions. The pCO2sea temporal variation is found to be primarily controlled by SST and DIC, although the role of salinity and total alkalinity, both of which also control pCO2sea, need to be elucidated by long-term observations and eddy-permitting models for better estimation of the interannual variability of air-sea CO2 flux.  相似文献   

2.
The option of storing CO2 in subsea rock formations to mitigate future increases in atmospheric CO2 may induce problems for animals in the deep sea. In the present study the deep-sea bivalve Acesta excavata was subjected to environmental hypercapnia (pHSW 6.35, PCO2 = 33,000 μatm) corresponding to conditions reported from natural CO2 seeps. Effects on acid–base status and metabolic rate were related to time of exposure and subsequent recovery. During exposure there was an uncompensated drop in both hemolymph and intracellular pH. Intracellular pH returned to control values, while extracellular pH remained significantly lower during recovery. Intracellular non-bicarbonate buffering capacity of the posterior adductor muscle of hypercapnic animals was significantly lower than control values, but this was not the case for the remaining tissues analyzed. Oxygen consumption initially dropped by 60%, but then increased during the final stages of exposure, which may suggest a higher tolerance to hypercapnia than expected for a deep-living species.  相似文献   

3.
Partial pressure of CO2 in surface sea water (pCO2) was measured continuously off Sanriku in May, 1997 by a new pCO2 measurement system. We have examined the relation of pCO2 to physical factors such as temperature, salinity and density, chemical and biological factors such as nutrients and carbonate system and chlorophylla. In the Kuroshio region pCO2 was not correlated to physical, chemical and biological factors in the range of 260 to 290 μatom. In transition water (Tr1) between Kuroshio and the Oyashio second branch, pCO2 was weakly correlated to physical factors and strongly correlated to nutrients. In transition water (Tr2) between the Oyashio first and second branches, pCO2 was highly correlated to temperature (SD: 10.9 μatom) and salinity (SD: 8.6 μatom) and also to nutrients. In transition water (Tr1+Tr2), pCO2 was highly multivariately correlated to temperature (T), salinity (S), chlorophylla (CH) (or nitrate+nitrite (N)) as follows, pCO2(μatom)= 10.8×T(°C)+27.7×S+2.57CH(μg/1) −769, R2= 0.86, SD = 20.9, or pCO2(μatom)= 3.9×T(°C)+25.5×S+16.0NO3(μM) −686, R2= 0.99, SD = 6.4. Moreover, pCO2 was predicted by only two factors, one physical (S) and the other chemical/biological (N) as follows: pCO2 (μatom)=32.8×S+19.4N−908, R2=0.97, SD=8.4. The pH measured at 25°C was well correlated with normalized pCO2 at a fixed temperature. In the Oyashio region pCO2 was decreased to 160 μatom, probably because of spring bloom, but was not correlated linearly to chlorophylla. The results obtained showed the possibility of estimating pCO2 of the Oyashio and transition regions in May by satellite remote sensing of SST, but the problem of estimation of pCO2 in Kuroshio water remains to be solved.  相似文献   

4.
We report results from two surveys of pCO2, biological O2 saturation (??O2/Ar) and dimethylsulfide (DMS) in surface waters of the Ross Sea polynya. Measurements were made during early spring (November 2006-December 2006) and mid-summer (December 2005-January 2006) using ship-board membrane inlet mass spectrometry (MIMS) for high spatial resolution (i.e. sub-km) analysis. During the early spring survey, the polynya was in the initial stages of development and exhibited a rapid increase in open water area and phytoplankton biomass over the course of our ∼3 week occupation. We observed a rapid transition from a net heterotrophic ice-covered system (supersaturated pCO2 and undersaturated O2) to a high productivity regime associated with a Phaeocystis-dominated phytoplankton bloom. The timing of the early spring phytoplankton bloom was closely tied to increasing sea surface temperature across the polynya, as well as reduced wind speeds and ice cover, leading to enhanced vertical stratification. There was a strong correlation between pCO2, ??O2/Ar, DMS and chlorophyll a (Chl a) during the spring phytoplankton bloom, indicating a strong biological imprint on gas distributions. Box model calculations suggest that pCO2 drawdown was largely attributable to net community production, while gas exchange and shoaling mixed layers also exerted a strong control on the re-equilibration of mixed layer ??2 with the overlying atmosphere. DMS concentrations were closely coupled to Phaeocystis biomass across the early spring polynya, with maximum concentrations exceeding 100 nM.During the summer cruise, we sampled a large net autotrophic polynya, shortly after the seasonal peak in phytoplankton productivity. Both diatoms and Phaeocystis were abundant in the phytoplankton assemblages during this time. Minimum pCO2 was less than 100 ppm, while ??O2/Ar exceeded 30% in some regions. Mean DMS concentrations were ∼2-fold lower than during the spring, although the range of concentrations was similar between the two surveys. There was a significant correlation between pCO2, ??O2/Ar and Chl a across the summer polynya, but the strength of these correlations and the slope of O2 vs. CO2 relationship were significantly lower than during the early spring. Summertime DMS concentrations were not significantly correlated to phytoplankton biomass (Chl a), pCO2 or ??O2/Ar. In contrast to the early spring time, there were no clear temporal trends in summertime gas concentrations. Rather, small-scale spatial variability, likely resulting from mixing and localized sea-ice melt, was clearly evident in surface gas distributions across the polynya. Analysis of length-scale dependent variability demonstrated that much of the spatial variance in surface water gases occurred at scales of <20 km, suggesting that high resolution analysis is needed to fully capture biogeochemical heterogeneity in this system.  相似文献   

5.
The partial pressure of carbon dioxide (pCO2) in estuary-plume systems is related to the internal processes of net organic metabolism and physical mixing, but is also strongly influenced by biogeochemical inputs from the land and ocean. Surface layer pCO2, stimulated fluorescence of chlorophyll (f-chl) and colored organic matter (f-com), and beam attenuation at 660 nm (c-660) were measured during three seasonal surveys of the Kennebec (ME) and Merrimack (MA) estuary-plume systems. These estuaries are both supplied by large New England Rivers and separated by less than 150 km, but significant differences were often observed in the distributions of surface pCO2 and optical variables. High pCO2 concentrations were generally associated with high f-com, while lower pCO2 concentrations were associated with high f-chl and c-660. Using simple regression models, optical measurements were used to estimate chlorophyll and total organic carbon concentrations. Results suggest that labile riverine carbon is responsible for sustaining supersaturated pCO2 conditions and that phytoplankton productivity, likely driven by inputs of riverine dissolved inorganic nitrogen, is responsible for pCO2 undersaturation. Although optical variables are often related to surface pCO2, the results suggest that efforts to retrieve pCO2 in complex waters using optical data may be enhanced using a site-specific, multivariate approach.  相似文献   

6.
Excess CO2 and pHexcess showing an increase in dissolved inorganic carbon and a decrease in pH from the beginning of the industrial epoch (middle of the 19th century) until the present time have been calculated in the intermediate water layer of the northwestern Pacific and the Okhotsk Sea. It is concluded that: (1) The Kuril Basin (Okhotsk Sea) and the Bussol' Strait areas are characterized by the greatest concentrations of excess CO2 at isopycnal surfaces due to the processes of formation and transformation of intermediate water mass. (2) The largest difference in excess CO2 concentration between the Okhotsk Sea and the western subarctic Pacific (about 8 µmol/kg) is found at the = 27.0. (3) The difference in excess CO2 between the western subarctic Pacific and subtropical regions is significant only in the upper part of the intermediate water layer ( = 26.7–27.0). (4) About 10% of the excess CO2 accumulation in the subtropical north Pacific is determined by water exchange with the subarctic Pacific and the Okhotsk Sea.  相似文献   

7.
As part of the research program WEST-COSMIC Phase I (1997–2001), vertical profiles down to the greater depths (0–2000 m or 5800 m) of the plankton community structure composed of heterotrophic bacteria, phytoplankton, protozooplankton and metazooplankton were studied at one station in each subarctic (44°N) and in transitional region (39°N), and two stations in subtropical region (30°N and 25°N); all in 137–155°E in the western North Pacific Ocean. The biomass of all four taxonomic groups decreased rapidly with increasing depths at all stations, although the magnitude of depth-related decrease differed among the groups. As plankton community structure, metazooplankton biomass and bacterial biomass occupied >50% of the total in 0–2000 and 2000–4000 or 5000 m strata, respectively, at subarctic and transitional stations, while bacterial biomass contributed to >50% of the total consistently from 0 through 4800 or 5800 m at subtropical stations. Metazooplankton biomass integrated over the greater depths exhibited a clear latitudinal pattern (high north and low south), but this was not the case for those of the other taxonomic groups. As a component of metazooplankton, an appreciable contribution of diapausing copepods to the metazooplankton was noted at subarctic and transitional stations, but they were few or nil at subtropical stations. As protozooplankton assemblages, heterotrophic microflagellates (HMF) and dinoflagellates were two major components at subarctic and transitional stations, but were only HMF predominated at subtropical stations. From biomass ratios between heterotrophic bacteria, HMF and dinoflagellates, “sinking POC-DOC-heterotrophic bacteria-HMF-heterotrophic dinoflagellates” link was proposed as a microbial food chain operative in the deep layer of the western North Pacific. All results are discussed in the light of latitudinal differences in the structure and functioning of plankton community contributing to the ‘biological pump’ in the western North Pacific Ocean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Ecological experiments were conducted to examine the effects of seawater containing elevated par- tial pressure of carbon dioxide (p CO2 800 × 10 -6 , 2 000 × 10 -6 , 5 000 × 10 -6 and 10 000 × 10 -6 ) on the survival and reproduction of female Acartia pacifica, Acartia spinicauda, Calanus sinicus and Centropages tenuiremis, which are the dominant copepods in the southern coastal waters of China. The results show that the effects of elevated p CO2 on the survival rates of copepods were species-specific. C. sinicus, which was a macro-copepod, had a higher survival rate (62.01%-71.96%) than the other three species (5.00%-26.67%) during the eight day exposure. The egg production rates of C. sinicus, A. spinicauda and C. tenuiremis were significantly inhibited by the increased p CO2 and the exposure time duration. There were significantly negative impacts on the egg hatching success of A. spinicauda and C. tenuiremis in the p CO2 2 000 × 10 -6 and 10 000 × 10 -6 groups, and, in addition, the exposure time had noticeably impacts on these rates too. This study indicates that the reproductive performances of copepods were sensitive to elevated p CO2 , and that the response of different copepod species to acidified seawater was different. Furthermore, the synergistic effects of seawater acidification and climate change or other pollutant stresses on organisms should be given more attention.  相似文献   

9.
We observed the partial pressure of oceanic CO2, pCO2 sea, and related surface properties in the westernmost region of the subarctic North Pacific, seasonally from 1998 to 2001. The pCO2 sea in the Oyashio region showed a large decrease from winter to spring. In winter, pCO2 sea was higher than 400 μatm in the Oyashio region and this region was a source of atmospheric CO2. In spring, pCO2 sea decreased to extremely low values, less than 200 μatm (minimum, 139 μatm in 2001), around the Oyashio region with low surface salinity and this region turned out to be a strong sink. The spatial variations of pCO2 sea were especially large in spring in this region. The typical Oyashio water with minimal mixing with subtropical warm water was extracted based on the criterion of potential alkalinity. The contribution of main oceanic processes to the changes in pCO2 sea from winter to spring was estimated from the changes in the concentrations of dissolved inorganic carbon and nutrients, total alkalinity, temperature and salinity observed in surface waters in respective years. These quantifications indicated that photosynthesis made the largest contribution to the observed pCO2 sea decreases in all years and its magnitude was variable year by year. These year-to-year differences in spring biological contribution could be linked to those in the development of the density stratification due to the decrease in surface salinity. Thus, the changes in the surface physical structure could induce those in pCO2 sea in the Oyashio region in spring. Furthermore, it is suggested that the direction and magnitude of the air-sea CO2 flux during this season could be controlled significantly by the onset time of the spring bloom. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Response of phytoplankton to increasing CO2 in seawater in terms of physiology and ecology is key to predicting changes in marine ecosystems. However, responses of natural plankton communities especially in the open ocean to higher CO2 levels have not been fully examined. We conducted CO2 manipulation experiments in the Bering Sea and the central subarctic Pacific, known as high nutrient and low chlorophyll regions, in summer 2007 to investigate the response of organic matter production in iron-deficient plankton communities to CO2 increases. During the 14-day incubations of surface waters with natural plankton assemblages in microcosms under multiple pCO2 levels, the dynamics of particulate organic carbon (POC) and nitrogen (PN), and dissolved organic carbon (DOC) and phosphorus (DOP) were examined with the plankton community compositions. In the Bering site, net production of POC, PN, and DOP relative to net chlorophyll-a production decreased with increasing pCO2. While net produced POC:PN did not show any CO2-related variations, net produced DOC:DOP increased with increasing pCO2. On the other hand, no apparent trends for these parameters were observed in the Pacific site. The contrasting results observed were probably due to the different plankton community compositions between the two sites, with plankton biomass dominated by large-sized diatoms in the Bering Sea versus ultra-eukaryotes in the Pacific Ocean. We conclude that the quantity and quality of the production of particulate and dissolved organic matter may be altered under future elevated CO2 environments in some iron-deficient ecosystems, while the impacts may be negligible in some systems.  相似文献   

11.
We survey the recent progress in studies of North Pacific Intermediate Water (NPIW) in SAGE (SubArctic Gyre Experiment), including important results obtained from related projects. Intensive observations have provided the transport distributions relating to NPIW and revealed the existence of the cross-wind-driven gyre Oyashio water transport that flows directly from the subarctic to subtropical gyres through the western boundary current as well as the diffusive contribution across the subarctic front. The anthropogenic CO2 transport into NPIW has been estimated. The northern part of NPIW in the Transition Domain east of Japan is transported to the Gulf of Alaska, feeding the mesothermal (intermediate temperature maximum) structure in the North Pacific subarctic region where deep convection is restricted by the strong halocline maintained by the warm and salty water transport originating from NPIW. This heat and salt transport is mostly balanced by the cooling and freshening in the formation of dense shelf water accompanied by sea-ice formation and convection in the Okhotsk Sea. Intensive observational and modeling studies have substantially altered our view of the intermediate-depth circulation in the North Pacific. NPIW circulations are related to diapycnal-meridional overturning, generated around the Okhotsk Sea due to tide-induced diapycnal mixing and dense shelf water formation accompanied by sea-ice formation in the Okhotsk Sea. This overturning circulation may possibly explain the direct cross-gyre transport through the Oyashio along the western boundary from the subarctic to subtropical gyres. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Observations were made of time variations of carbon dioxide in seawater, pCO2, and in the atmosphere, PCO2, in the Seto Inland Sea of Japan. The pCO2 data showed well defined diurnal variation; high values at nighttime and low values during daylight hours. The pCO2 correlated negatively with dissolved oxygen. These results denote that the diurnal variation of pCO2 is associated with effects of photoplankton's activity in seawater. The pCO2 measured in the Seto Inland Sea showed higher values than the PCO2 during June to November, denoting transport of carbon dioxide from the sea surface to the atmosphere, and lower values during December to May, denoting transport of carbon dioxide from the atmosphere to the sea surface. The exchange rates of carbon dioxide were calculated using working formula given by Andriéet al. (1986). The results showed that the Seto Inland Sea gained carbon dioxide of 1.0 m-mol m–2 d–1 from the atmosphere in March and lost 1.7 m-mol m–2 d–1 to the atmosphere in August.  相似文献   

13.
We used more than 25,000 nutrient samples to elucidate for the first time basin-scale distributions and seasonal changes of surface ammonium (NH4 +) and nitrite (NO2 ?) concentrations in the Pacific Ocean. The highest NH4 +, NO2 ?, and nitrate (NO3 ?) concentrations were observed north of 40°N, in the coastal upwelling region off the coast of Mexico, and in the Tasman Sea. NH4 + concentrations were elevated during May–October in the western subarctic North Pacific, May–December in the eastern subarctic North Pacific, and June–September in the subtropical South Pacific. NO2 ? concentrations were highest in winter in both hemispheres. The seasonal cycle of NH4 + was synchronous with NO2 ?, NO3 ?, and satellite chlorophyll a concentrations in the western subtropical South Pacific, whereas it was synchronous with chlorophyll-a but out of phase with NO2 ? and NO3 ? in the subarctic regions.  相似文献   

14.
The relationship between dissolved cadmium (Cd) and phosphate (PO4) was examined at three stations in the subtropical area near the Ryukyu Islands in May 1999. Preformed PO4 was obtained using the Redfield ratio in order to separate the surface water and the other layers in this study area. Almost 0 μM (−0.043 μM to 0.094 μM) was estimated in the layers above 300 m and 250 m at Sts. 1 and 3 and at St. 2, respectively. Up to these depths, water was considered to be uniform, and these layers were defined as the surface water in this study area. In the surface water, the slopes of the regression lines of the Cd-PO4 plot were 0.162, 0.156, and 0.226 (nM/μM) at Sts. 1, 2, and 3, respectively, and these values were much closer to the estimated regenerated ratio of Cd to PO4 from the Apparent Oxygen Utilization (AOU)-Cd/PO4 plots, which was 0.197 (nM/μM) in this study area. Below surface layers, the slopes of the Cd-PO4 plot changed to 0.371, 0.352, and 0.362 (nM//μM) at Sts. 1, 2, and 3, respectively. In the relationships between Cd and PO4, clear deviations or kinks were observed at three stations at a PO4 concentration of approximately 0.2 μM in the plot, which was attributable to the discontinuity of surface water and the other layers across the North Pacific subtropical mode water. In studies of the interaction between surface water and biogenic particles concerning the Cd/PO4 ratio, separate analyses of seawater (surface water and the other layers) should be carried out to obtain the individual surface water ratio because the Cd/PO4 ratio in the surface water is expected to differ from that of the underlying water. Furthermore, the biological fractionation of these constituents is based on the surface water ratio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Diel changes in vertical distribution and feeding conditions of the chaetognath Parasagitta elegans (Verill) were observed in three regions of the subarctic North Pacific in the summer of 1997. Samples were collected by repeated vertical hauls with a Vertical Multiple Plankton Sampler (VMPS) for 15–45 hours by demarcating the 0–500 m water column into four sampling layers. Integrated abundance through the entire water column and the proportion of juveniles were higher in the Bering Sea than the western and eastern subarctic Pacific. Juveniles always inhabited the surface layer in the western subarctic Pacific and Bering Sea, but they inhabited the underlying layer in the eastern subarctic Pacific. Stages I–III concentrated into the upper 150 m in the western subarctic Pacific but were distributed widely from 20–300 m in the Bering Sea. Among them, Stages II and III migrated rather synchronously over a wide vertical range in the eastern subarctic Pacific. The feeding rate of P. elegans was calculated to be 0.18 prey/chaetognath/day in the western subarctic Pacific, 0.27 prey/chaetognath/day in the Bering Sea and 0.07 prey/chaetognath/day in the eastern subarctic Pacific.  相似文献   

16.
We have determined chlorophyll a (Chla) concentration, primary productivity, cell density and species composition of diatoms, and the number of microzooplankton at the surface in the subarctic North Pacific in January 1996. The wet weight of copepods obtained by vertical tows from 150 m to the surface was also measured during the cruise. Chla concentration and primary productivity tended to be higher in the region west of 180°, the western subarctic North Pacific (WSNP), than east of 180°, the eastern subarctic North Pacific (ESNP). The same results were observed for the total diatom cell densities and for the genera Thalassiosira and Denticulopsis. Significant linear relationships were observed between the Thalassiosira cell density and Chla concentration and primary productivity, indicating that Thalassiosira contributes to the high-WSNP and low-ESNP distribution patterns of Chla concentration and primary productivity. Moreover, naked ciliate abundance tended to be lower in the WSNP than in the ESNP, whereas copepod biomass showed an inverse trend. Significantly negative Spearman rank correlations were found between the Thalassiosira cell density and the number of naked ciliates and between the number of naked ciliates and the wet weight of copepods. These results indicate that copepod grazing indirectly controls Thalassiosira cell density via predation on the naked ciliates. We conclude that the high copepod biomass in the WSNP is a factor controlling the high-WSNP and low-ESNP Thalassiosira abundance and hence Chla concentration and primary productivity patterns.  相似文献   

17.
Ocean acidification results from an increase in the concentrations of atmospheric carbon dioxide (CO2) impacts on marine calcifying species, which is predicted to become more pronounced in the future. By the end of this century, atmospheric pCO2 levels will have doubled relative to the pre‐industrial levels of 280 ppm. However, the effects of pre‐industrial pCO2 levels on marine organisms remain largely unknown. In this study, we investigated the effects of pre‐industrial pCO2 conditions on the size of the pluteus larvae of sea urchins, which are known to be vulnerable to ocean acidification. The larval size of Hemicentrotus pulcherrimus significantly increased when reared at pre‐industrial pCO2 level relative to the present one, and the size of Anthocidaris crassispina larvae decreased as the pCO2 levels increased from the pre‐industrial level to the near future ones after 3 days' exposure. In this study, it is suggested that echinoid larvae responded to pre‐industrial pCO2 levels. Ocean acidification may be affecting some sensitive marine calcifiers even at the present pCO2 level.  相似文献   

18.
Atmospheric and oceanic pCO2 were measured continuously along an Atlantic Meridional transect (50°N–50°S) in September–October 1995 and 1996 (U.K. to the Falklands Islands) and in April–May 1996 (Falklands Islands to the UK). The Atlantic ocean was a net sink for atmospheric CO2 for all 3 transects. The largest sinks were located at high latitudes, in regions of high wind speed, where strong CO2 undersaturations, associated with high biological activity, were observed. In these regions the partial pressure difference between the ocean and the atmosphere reached −110 μatm. A CO2 source occurred in the equatorial region between 0° and 10°S, where ΔpCO2 of up to 40 μatm was found. Another source was in the northern subtropical gyre where its extension varied according to the season. Along the whole transect the October cruises exhibited similar pCO2 distributions suggesting a dominance of the seasonal variability and small year to year changes.  相似文献   

19.
A one-dimensional model of temperature, salinity, nutrients, oxygen, carbon, and argon chemistry is used to hindcast the annual cycle of sea surface pCO2 at weathership Station Papa in the subarctic Pacific (50°N, 145°W), based on recent biological and chemical measurements made in conjunction with the SUPER program. Heat fluxes are calculated from the meteorological time series data from the Canadian weathership program. The Price, Weller and Pinkle (1986) model is used for predicting mixed layer dynamics. The rate of new production in the model is based on sediment trap data (Welschmeyer, personal communication) and a comparison of model oxygen and argon concentrations with the recent data of Emerson, Quay, Stump, Wilbur and Knox (1991). The balances of nutrients and oxygen in the permanent halocline require isopycnal ventilation on a time frame of approximately 10 years; this estimate is consistent with estimate of Van Scoy, Fine and Ostlund (1991) based in tritium data from Geosecs and Long Lines programs. The model results are compared with the 5 year time series data presented by Wong and Chang (1990). The model appears to capture the mean sea surface pCO2 and the magnitude and timing of the seasonal cycle. The data, howeber, contain much greater high frequency variation than the model results, which we believe is caused by patchiness in the horizontal distribution of NO3. The model pCO2 sensitivity to the chemistry of the upwelling water and the rate of biological new production are presented.Although the model simulation of pCO2 is satisfactory, this study illustrates the limitations of modelling the chemistry of the upper ocean in one dimension. The slow currents and horizontally homogeneous sea surface in the subarctic Pacific make Papa one of the best available candidates for modelling in 1-D. In spite of this, a 1-D formulation is inadequate to address the chemistry of the halocline (a crucial lower boundary condition to the mixed layer) and does not constrain the transport of the nutrients by wind-driven currents in the mixed layer. We conclude that further progress in modelling the upper ocean nutrient and carbon cycles will requires simulation in three dimensions.  相似文献   

20.
A model based on that of Kishi et al. (2001) has been extended to 15 compartments including silicon and carbon cycles. This model was applied to Station A7 off Hokkaido, Japan, in the Northwestern Pacific. The model successfully simulated the observations of: 1. a spring bloom of diatoms; 2. large seasonal variations of nitrate and silicate concentrations in the surface water; and 3. large inter-annual variations in chlorophyll-a. It also reproduced the observed features of the seasonal variations of carbon dioxide partial pressure (pCO2)—a peak in pCO2 in winter resulting from deep winter convection, a rapid decrease in pCO2 as a result of the spring bloom, and an almost constant pCO2 from summer through fall (when the effect of increasing temperature cancels the effect of biological production). A comparison of cases with and without silicate limitation shows that including silicate limitation in the model results in: 1. decreased production by diatoms during summer; and 2. a transition in the dominant phytoplankton species, from diatoms to other species that do not take up silicate. Both of these phenomena are observed at Station A7, and our results support the hypothesis that they are caused by silicate limitation of diatom growth. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号