首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms involved in Atlantic meridional overturning circulation (AMOC) decadal variability and predictability over the last 50 years are analysed in the IPSL–CM5A–LR model using historical and initialised simulations. The initialisation procedure only uses nudging towards sea surface temperature anomalies with a physically based restoring coefficient. When compared to two independent AMOC reconstructions, both the historical and nudged ensemble simulations exhibit skill at reproducing AMOC variations from 1977 onwards, and in particular two maxima occurring respectively around 1978 and 1997. We argue that one source of skill is related to the large Mount Agung volcanic eruption starting in 1963, which reset an internal 20-year variability cycle in the North Atlantic in the model. This cycle involves the East Greenland Current intensity, and advection of active tracers along the subpolar gyre, which leads to an AMOC maximum around 15 years after the Mount Agung eruption. The 1997 maximum occurs approximately 20 years after the former one. The nudged simulations better reproduce this second maximum than the historical simulations. This is due to the initialisation of a cooling of the convection sites in the 1980s under the effect of a persistent North Atlantic oscillation (NAO) positive phase, a feature not captured in the historical simulations. Hence we argue that the 20-year cycle excited by the 1963 Mount Agung eruption together with the NAO forcing both contributed to the 1990s AMOC maximum. These results support the existence of a 20-year cycle in the North Atlantic in the observations. Hindcasts following the CMIP5 protocol are launched from a nudged simulation every 5 years for the 1960–2005 period. They exhibit significant correlation skill score as compared to an independent reconstruction of the AMOC from 4-year lead-time average. This encouraging result is accompanied by increased correlation skills in reproducing the observed 2-m air temperature in the bordering regions of the North Atlantic as compared to non-initialized simulations. To a lesser extent, predicted precipitation tends to correlate with the nudged simulation in the tropical Atlantic. We argue that this skill is due to the initialisation and predictability of the AMOC in the present prediction system. The mechanisms evidenced here support the idea of volcanic eruptions as a pacemaker for internal variability of the AMOC. Together with the existence of a 20-year cycle in the North Atlantic they propose a novel and complementary explanation for the AMOC variations over the last 50 years.  相似文献   

2.
A thorough analysis of a proxy El Nino/Southern Oscillation (ENSO) record indicates that a bifurcation occurred in the ENSO system sometime around 5,000 years b.p. As a result of this bifurcation the attractor became higher dimensional and a new mechanism of instability was introduced. As a consequence of these changes the system switched from a dynamics where the normal condition (La Nina) was dominant to a dynamics characterized by more frequent and stronger El Nino events.  相似文献   

3.
Abrupt temperature changes during the last 1,500 years   总被引:1,自引:1,他引:0  
We investigate the occurrence of abrupt changes in a total of 35 different proxy records from the extra-tropical Northern Hemisphere for the last ~1,500 years. The proxy records include ice-core δ18O, speleothem, tree ring width/density, marine sediment and lake sediment records with annual, sub-decadal or decadal resolutions. The aim is to explore the spatio–temporal distribution of abrupt climate changes using a kink point analysis technique. A clustering of warm kink points (the kink points with the highest temperatures) around AD 1000 appears corresponding to the Medieval Warm Period and indicates a geographically widespread temperature peak at that time. Kink points around AD 1000 are somewhat more numerous on higher latitudes than on lower latitudes. There are some tendencies for the coldest kink points (the kink points with the lowest temperatures) to be clustered in the ninetenth century, but they are generally more unevenly spaced in time than the warm peaks around AD 1000. The relative lack of kink points detected during the 1500 s–1700 s, likely the coldest part of the Little Ice Age, implies that this cold period was relatively stable and without abrupt events. A possible cluster of kink points on lower latitudes in the early ninth century is also found. No clear difference in the timing of kink points between the different proxy types can be observed.  相似文献   

4.
Pan  Yongjie  Lyu  Shihua  Li  Suosuo  Gao  Yanhong  Meng  Xianhong  Ao  Yinhuan  Wang  Shujin 《Theoretical and Applied Climatology》2017,127(3-4):1011-1022

Soils containing gravel (particle size ≥2 mm) are widely distributed over the Qinghai–Tibet Plateau (QTP). Soil mixed with gravel has different thermal and hydrological properties compared with fine soil (particle size <2 mm) and thus has marked impacts on soil water and heat transfer. However, the most commonly used land models do not consider the effects of gravel. This paper reports the development of a new scheme that simulates the thermal and hydrological processes in soil containing gravel and its application in the QTP. The new scheme was implemented in version 4 of the Community Land Model, and experiments were conducted for two typical sites in the QTP. The results showed that (1) soil with gravel tends to reduce the water holding capacity and enhance the hydraulic conductivity and drainage; (2) the thermal conductivity increases with soil gravel content, and the response of the temperature of soil mixed with gravel to air temperature change is rapid; (3) the new scheme performs well in simulating the soil temperature and moisture—the mean biases of soil moisture between the simulation and observation reduced by 25–48 %, and the mean biases of soil temperature reduced by 9–25 %. Therefore, this scheme can successfully simulate the thermal and hydrological processes in soil with different levels of gravel content and is potentially applicable in land surface models.

  相似文献   

5.
Wu  Tonghua  Qin  Yanhui  Wu  Xiaodong  Li  Ren  Zou  Defu  Xie  Changwei 《Theoretical and Applied Climatology》2018,132(3-4):1187-1199
Theoretical and Applied Climatology - The spatial and temporal changes of the ground surface freezing indices (GFIs), ground surface thawing indices (GTIs), air freezing indices (AFIs), and air...  相似文献   

6.
7.
Global solar radiation is of great significance to the balance of ground surface radiation, the energy exchange between the Earth’s surface and atmosphere, and the development of weather and climate systems in various regions. In this study, the monthly global radiation recorded at 23 stations over the Qinghai–Tibetan Plateau (QTP) was utilized to estimate global solar radiation (Q) from sunshine duration and to obtain improved fits to the variation coefficients of the monthly Angström–Prescott model (APM). The modeling results were evaluated by calculating the statistical errors, including mean bias error, mean absolute error, root mean square error, and mean relative error. We demonstrate that the monthly Q values can be predicted accurately by APM over the QTP. We also assess the variations of Q values at 116 meteorological stations by APM over the QTP during 1961–2000. The analysis shows that the annual mean sunshine duration amounted to more than 3,000 h over the whole plateau, implying promising prospects for economic applications of solar energy. During the past 40 years, the mean global solar radiation has been relatively high in the western QTP, extending northward to the Inner Mongolian Plateau. Although its decadal variations in the QTP and surrounding regions were inconsistent, the anomaly values of global solar radiation were generally positive during the 1960s and 1970s, indicating that the QTP’s global solar radiation has increased during those periods. The anomaly values were negative during the 1980s and 1990s, showing that the plateau’s global solar radiation has decreased during those periods. Global solar radiation over the QTP is negatively proportional to latitude but positively proportional to altitude and relative sunshine duration. Three factors, the sunshine duration, latitude, and altitude, exert great influence on global surface radiation, of which sunshine duration is most significant. A high-variation-coefficient zone of global solar radiation occurred in the western part of the QTP but, on average, the variation coefficient of the plateau’s global solar radiation was only 0.031, suggesting that the variation in global radiation was relatively stable over the whole QTP.  相似文献   

8.
Alpine wetland is one of the typical underlying surfaces on the Qinghai–Tibet Plateau. It plays a crucial role in runoff regulation. Investigations on the mechanisms of water and heat exchanges are necessary to understand the land surface processes over the alpine wetland. This study explores the characteristics of hydro-meteorological factors with in situ observations and uses the Community Land Model 5 to identify the main factors controlling water and heat exchanges.Latent heat flux and therm...  相似文献   

9.
Global semi-arid climate change over last 60 years   总被引:8,自引:0,他引:8  
  相似文献   

10.
11.
The first decades of the rainfall series of Lisbon have been digitized recently allowing a long-term assessment of the rainfall regime for 150 years of uninterrupted, i.e., the first assessment for the longest continuous precipitation time series in western Iberia. This data has been monitored continuously at the D. Luís observatory having started to be published in 1864 in the Observatory's log books (Annals). We use an approach based on different characteristics of rain spells that has been proved to be satisfactory for the analysis of the different parameters related to the rainfall regime in that part of the world. Thus, a rain spell is defined as a series of consecutive days with a measured daily rainfall equal or higher than 1.0 mm. Each rain spell is preceded and followed by at least one dry day. For each rain spell, its duration, its yield (RSY), and its average intensity (RSI) was calculated. Additionally, the total number of rain spells in each year was also considered. Dryness was analyzed using the dry days since last rain approach. Besides the evaluation over the entire 150-year period available, we have also looked into three equally spaced sub-periods. Lisbon reveals large inter-annual and intra-annual variability and both have increased considerably in the last decades. The large intra-annual variability is demonstrated by both; a very large range of annual rainfall percentage accumulated at any given date and by a very large range of dates on which a certain rainfall percentage was accumulated. Again, both metrics increased in the last decades. Parallel to the increase in the uncertainty, a very significant net increase is noticed in the annual totals since the 1960s compared to the first half of the previous century. The increase is mainly due to more intense events which are reflected by higher RSY and RSI values in the last 50 years.  相似文献   

12.
Understanding the role of aerosols in global and regional climate change requires the long-term measurements of aerosol optical properties. We use an indirect method to infer aerosol optical depths (AODs) based on atmospheric visibility and water vapor pressure measured at 504 key climate stations in eastern China (east of 100° E) over 1951–2002. Inferred AODs are compared with the MODIS satellite measurements for year of 2002. Results show that AODs averaged over 1951–2000 exhibit large values in Sichuan Basin and Changjiang River Delta, and there are two belts of high AODs, one from Beijing to South China by the middle reaches of Changjiang River and the other from Beijing to Changjiang Delta. Inferred AODs in eastern China show the lowest value in 1960s, increase dramatically in 1980s, and reach maximum in 1990s. The ratios of the regional and decadal mean AOD in 1950s, 1960s, 1970s, 1980s, and 1990s to that in 1960s are 1.085, 1.0, 1.066, 1.195, and 1.22, respectively. Statistical analysis shows that variations in AODs correlate with the changes in precipitation and air temperature in eastern China over the past 50 years. Correlation coefficients between annual mean AOD and precipitation are 0.39, 0.37, and 0.57 in the upper (Sichuan Basin), middle, and lower reaches of the Changjiang River, respectively. In the Sichuan Basin, the increase in annual mean AOD correlates with the reduction in air temperature with a correlation coefficient of ?0.33 at 95% confidence level.  相似文献   

13.
A critical overview of pan evaporation trends over the last 50 years   总被引:3,自引:0,他引:3  
Despite the observed increases in global average temperature, observations across the world show that the rate of pan evaporation at a regional scale has been steadily decreasing over the past 50 years. This is known as the pan evaporation paradox. This paper reviews current reported pan evaporation trends, examines available theoretical explanations about this “paradox”, and discusses current research gaps and priorities. It concludes that: (1) three major potential causes of pan evaporation, solar radiation, vapour pressure deficit (VPD) and wind speed, have been changing in the last 50 years. The magnitude of changes and importance of each of these three causes varies from region to region, as does the pan evaporation trend, although overall there is a decreasing trend. (2) Currently two existing theories explaining the pan evaporation trends have limits and are only valid in some specific regions and seasons. Neither of them provides a fundamental physical-based theory that could be applied everywhere. (3) Further investigations are needed before we can fully understand the global evapotranspiration trend in global warming scenarios.  相似文献   

14.
15.
We present a Palmer Drought Severity Index reconstruction (r = 0.61, P < 0.01) from 1440 to 2007 for the southeastern Tibetan Plateau, based on tree rings of the forest fir (Abies forrestii). Persistent decadal dry intervals were found in the 1440s–1460s, 1560s–1580s, 1700s, 1770s, 1810s, 1860s and 1980s, and the extreme wet epochs were the 1480s–1490s, 1510s–1520s, 1590s, 1610s–1630s, 1720s–1730s, 1800s, 1830s, 1870s, 1930s, 1950s and after the 1990s. Comparisons of our record with those identified in other moisture related reconstructions for nearby regions showed that our reconstructed droughts were relatively consistent with those found in other regions of Indochina, suggesting similar drought regimes. Spectral peaks of 2.3–5.5 years may be indicative of ENSO activity, as also suggested by negative correlations with SSTs in the eastern equatorial and southeastern Pacific Ocean. Significant multidecadal spectral peaks of 29.2–40.9 and 56.8–60.2 years were identified. As indicated by the spatial correlation patterns, the decadal-scale variability may be linked to SST variations in the northern Pacific and Atlantic Oceans.  相似文献   

16.
17.
18.
19.
20.
This paper explores changes in climatic variables, including solar radiation, rainfall, fraction of diffuse radiation (FDR) and temperature, during wheat season (October to May) and maize season (June to September) from 1961 to 2003 at four sites in the North China Plain (NCP), and then evaluates the effects of these changes on crop growth processes, productivity and water demand by using the Agricultural Production Systems Simulator. A significant decline in radiation and rainfall was detected during the 43 years, while both temperature and FDR exhibit an increasing trend in both wheat and maize seasons. The average trend of each climatic variable for each crop season from the four sites is that radiation decreased by 13.2 and 6.2 MJ m?2 a?1, precipitation decreased by 0.1 and 1.8 mm a?1, minimum temperature increased by 0.05 and 0.02°C a?1, maximum temperature increased by 0.03 and 0.01°C a?1, FDR increased by 0.21 and 0.38% a?1 during wheat and maize season, respectively. Simulated crop water demand and potential yield was significantly decreased because of the declining trend in solar radiation. On average, crop water demand was decreased by 2.3 mm a?1 for wheat and 1.8 mm a?1 for maize if changes in crop variety were not considered. Simulated potential crop yields under fully irrigated condition declined about 45.3 kg ha?1 a?1 for wheat and 51.4 kg ha?1 a?1 for maize at the northern sites, Beijing and Tianjin. They had no significant changes in the southern sites, Jinan and Zhengzhou. Irrigation, fertilization development and crop variety improvement are main factors to contribute to the increase in actual crop yield for the wheat–maize double cropping system, contrasted to the decline in the potential crop yield. Further research on how the improvement in crop varieties and management practices can counteract the impact of climatic change may provide insight into the future sustainability of wheat–maize double crop rotations in the NCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号