首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过对天山北坡中段草地类型的野外调查,利用典范主分量分析法(CCA)分析草地植物群落的垂直分布格局,研究了环境因子与草地群落之间的关系。结果表明:天山北坡中段草地类型沿生态梯度的排序分析结果与群落的实际分布情况是相吻合的,CCA排序给出了两个显著与主导的生态梯度,即热量梯度与湿度梯度。CCA第一轴反映了热量由低到高的梯度变化,而CCA第二轴与降水量有密切相关。正是这两个水热因子的复合梯度决定了天山北坡中段草地类型及其在空间上的地理分布。在热量梯度上是从高寒草甸、亚高山草甸、山地草甸、山地草甸草原、山地草原、山地荒漠草原、最终到山地荒漠。在湿度梯度上则是由旱生的荒漠植被到中生的草原植被过渡到草甸植被的过程。由CCA排序图,还能较好地反映草地群落的结构梯度。47个主要优势种有着各自不同的分布和分布范围,这与它们的生物、生态学特性有着密切的关系,是环境因素综合作用的结果,反映草地类型和环境因子之间的相互制约关系。  相似文献   

2.
高寒草甸是广布于青藏高原的主要植被类型,它是青藏高原大气与地面之间生物地球化学循环的重要构成部分,在区域碳平衡中起着极为重要的作用。基于对青藏高原主要高寒草甸生态系统类型CO2通量研究方面的综述,系统分析了高寒草甸生态系统CO2通量日、季、年等不同时间尺度的变化特征以及温度、光合有效辐射、降水等主要环境因子对高寒草甸生态系统CO2通量的影响;同时,结合其他地区草地生态系统,就青藏高原三种典型高寒草甸生态系统类型源汇效应和Q10值进行了比较;最后,结合青藏高原高寒草甸生态系统CO2通量研究的现实与需要,提出了当前存在一些不确定性和有待深入研究的问题。  相似文献   

3.
根据生态系统服务功能理论,利用RS和G IS技术,以土壤含水量为基础因子,对青藏高原区草地生态系统的土壤水分保持功能及其价值的动态变化过程进行有效评价,以直接的货币形式反映出青藏高原主要草地类型的土壤水分保持功能的大小。通过计算和分析发现:(1)由于草地类型分布面积、单位面积保持量的影响,各种类型草地提供的土壤水分保持功能及其价值贡献率有较大差异,按照大小依次为:高寒草原类、高寒草甸类,高寒荒漠类、高寒草甸草原类和温性山地草甸类;(2)草地对土壤水分保持量及其价值呈现出较强的阶段性变化过程;(3)由于各种草地类型所处地理区域不同、草地本身各种自然特点和整体生态功能的不同,青藏高原草地生态系统提供的土壤水分保持功能及其经济价值呈现出明显的地域分布规律:自西北至东南逐渐降低。应该说,由于青藏高原地域、地理和独特气候等原因所致,本文计算得出的青藏高原草地生态系统土壤水分保持功能及其价值的具体数值不一定十分准确,但是能在一定程度上反映出土壤水分保持功能的强大及其在生长季中随时间变化的动态过程和基本规律(这种规律性结论与前人研究结论一致),这是一种在区域尺度上揭示草地生态系统土壤水分保持功能及其价值动态变化过程的方法尝试,这也是对动态评估生态服务功能的一种有益尝试。  相似文献   

4.
对格尔木河流域进行了植被样方调查及表土、河流冲积物表层花粉分析,结果显示该流域表土花粉能较好地反映样方植被群落特征,河流冲积物样点中,上游段花粉组合以藜科、麻黄科、蒿属为主,反映了该段植被带的整体面貌;中下游段样点花粉组合中禾本科、莎草科占绝对优势,反映河道周围湿生草地植被带特征。主成分分析(PCA)显示,前两个因子轴能很好地区分高寒灌丛草甸带、矮半灌木荒漠带和湿生草地样点。  相似文献   

5.
高寒草甸(Alpine meadow)又称为高山草甸,是发育在高原和高山地带的一种草地类型。由于处在寒冷的环境条件下,其植被组成主要是冷中生的多年生草本植物。在青藏高原东部及其周围海拔3 000 m以上的高海拔山地,广泛分布着由蒿草等高寒植被组成的草甸,是青藏高原高寒生态系统的主要草地类型,分布面积约70×104km2,占青藏高原可利用草场的近50%。作  相似文献   

6.
由于气候变化和不合理的人类活动,20世纪80年代以来青藏高原高寒草地发生严重退化。地上生物量是评价草地退化的直观指标。通常采用植被盖度和高度来估算草地地上生物量,但草地退化后,植被盖度和高度与地上生物量之间的关系是否会发生变化目前还不清楚,这影响着退化草地生物量估算的精度。通过多元回归分析研究了青藏高原中部和东北部高寒草甸、高寒草原在不同退化程度下植被盖度和高度与地上生物量的关系。结果表明:(1)高寒草甸与高寒草原地上生物量整体上及不同退化阶段都没有显著差异(P>0.05)。(2)随着退化程度的加剧植被盖度和高度对地上生物量的影响也发生改变,体现在未退化阶段地上生物量主要受植被高度影响,退化后主要受植被盖度影响。(3)无论是高寒草甸还是高寒草原分退化程度的回归模型估算结果都较不分退化程度模型估算的生物量更接近实测值。我们建议在退化高寒草地研究中采用盖度和高度估算生物量时,根据退化阶段采用不同的估算模型。  相似文献   

7.
高寒草甸草地退化对土壤水热性质的影响及其环境效应   总被引:2,自引:2,他引:0  
尤全刚  薛娴  彭飞  董斯扬 《中国沙漠》2015,35(5):1183-1192
青藏高原高寒草甸草地的大面积退化,将改变浅层土壤的水热性质,影响地表水热交换,甚至导致区域生态环境的变化。本文通过系统分析典型原生高寒草甸与中度退化高寒草甸的植物群落特征、地上地下生物量和土壤理化特征的差异,研究高寒草甸草地退化对土壤水热性质的影响及其环境效应。结果表明:随着高寒草甸草地退化,植被覆盖度显著降低(p<0.01),适应旱生、深根系的杂草侵入适应湿润生境、浅根系的以莎草科植物为主的原生植被,生物多样性显著增加(p<0.01);草毡表层(0~10 cm)地下生物量显著减少(p<0.01),30~50 cm地下生物量显著增加(p<0.01)。草毡表层变薄降低了土壤容重的垂向异质性,使表层土壤容重显著增加(p<0.01),土壤颗粒显著变粗(p<0.01)。受浅层土壤有机质降低和土壤容重增加的影响,中度退化高寒草甸土壤的持水量和饱和导水率降低,土壤导热率升高。高寒草甸草地植被退化,土壤持水量、饱和导水率降低和导热率增加将加速地表水热交换,对高寒草甸草地退化和下伏多年冻土消融都可能是正反馈。  相似文献   

8.
为了探讨山区表层土壤水分的空间分布格局及其影响因素,以北京市怀柔区为研究区域,联合使用ALOS/PA-LSAR微波数据和Landsat-5遥感影像反演得到研究区的土壤水分数据,运用旋转主成分分析法分析了高程、坡度、坡向和植被盖度4个环境因子对土壤水分的影响情况及分布规律,并确定相应的主控因子.结果表明:高程和坡度是影响山区表层土壤水分空间变异的主控因子,植被盖度次之,坡向的影响最弱.对主控因子(高程和坡度)的单因素分析表明,土壤含水量随着高程的增加而逐渐减少,随着坡度的增加,土壤含水量总体上呈现先增加(坡度<3°)后减小(坡度>3°)的趋势,对深入研究山区土壤水分分布特性和水土保持具有指导意义.  相似文献   

9.
青海高寒草甸退化演替中的植被指数   总被引:2,自引:0,他引:2  
随着气候变化和人为活动干扰,高寒草甸退化已成为青藏高原严重的生态环境问题,精准识别其退化程度并制定相应恢复策略,对实现高寒草甸可持续发展具有重要意义。目前,低空间分辨率MODIS数据为草地遥感监测的主要数据源,但难以满足景观破碎度或异质性较强地区的应用。本研究基于野外调查资料,利用多源遥感数据(MODIS、Landsat、Sentinel-2)研究不同空间分辨率归一化植被指数(NDVI)对高寒草甸退化演替的响应,为准确评估青藏高原高寒草甸退化程度提供依据。结果表明:(1)随着高寒草甸退化,植被群落优势种演化趋势为禾草—矮嵩草—小嵩草—杂草群落;植被高度和生物量先快速下降,然后缓慢下降或趋于稳定,植被覆盖度和NDVI的变化呈相反特征。(2)随着湿地草甸旱化,植被群落优势种从藏嵩草演变为矮嵩草或小嵩草,湿地旱化初期植被高度、生物量和覆盖度平均值略低于原生湿地,NDVI略大于原生湿地,差异不显著。(3)植被高度、覆盖度和生物量与Sentinel-2或Landsat的NDVI相关性均优于MODIS,说明Sentinel-2和Landsat的NDVI对高寒草甸退化演替过程更加敏感,采用该数据能更准确评估高寒草甸退化程度。  相似文献   

10.
放牧对高寒草甸地表特征和土壤物理性状的影响   总被引:10,自引:1,他引:10  
在中国科学院海北高寒草甸生态系统定位站地区,选择五种处于不同放牧强度的高寒草甸为研究对象,进行放牧对高寒草甸植被演替规律和土壤对放牧压力的响应过程研究,为合理利用和提高草地生产力提供科学依据。结果表明:随着放牧强度的增加,高寒草甸地上生物量呈急剧下降趋势,由禾草草甸的646.24 g/m2下降到小嵩草草甸的328.16 g/m2,容重逐渐减小;在小嵩草草甸阶段地表逐渐出现塌陷和裂缝,0~10 cm土层中根土体积比逐渐变大;土壤的质地类型发生变化,由禾草草甸粘壤土转变为壤质粘土;放牧强度对牧草返青开始时间和生长期都没有影响,但在重牧处理时,非生长季地温降低程度很明显。  相似文献   

11.
生物与土壤     
S812.32007010239西藏那曲地区草地植被及土壤养分状况调查=Investigation of grassland growth and soil nutrient situation in Naqu prefec-ture of Tibet/万运帆,高清竹…∥草业科学.—2006,23(5).—7~11对西藏那曲地区草地植被状况、土壤水分、养分状况进行了调查分析.结果表明:无论是从牧草生长还是从土壤水分、养分状况来看,那曲地区东西部草地存在显著差异,东部草地明显好于西部草地.东部草地的平均土壤含水量比西部草地高50%,植被覆盖度约是西部草地的2.36倍,单位面积产草量约是西部草地的3倍.那曲地区草地土壤偏碱性,东部草地土…  相似文献   

12.
环境和空间因素长期以来被视为决定物种组成和分布的关键因素。然而,这些因素对高原植被的影响研究较少。青藏高原拥有一个独特的生态系统和全球环境梯度极端值。我们的目标是量化藏北高寒草地群落的空间分布,揭示植被的物种组成、空间因素和环境因素。在藏北高寒草地分布区,我们沿着1200公里长的梯度建立了63个采样点,采用双向指示种分析(TWINSPAN)和去趋势典范对应分析(DCCA)。调查发现沿横断面可识别的三种类型(高山草甸,高山草原,沙漠草原)中有14个高寒草地种群。分析发现高寒草地的植被组成和空间分布主要由年平均降雨量影响,受温度影响较小。沿着该断面,73.5%植被分布的变化能够被环境变量解释,56.3%被空间因素解释。环境和空间因素分别解释了总变异的29.6%和12.3%,而他们交互作用解释了43.9%。我们的研究结果为藏北高寒草地的生物和环境保护提供强有力的实证依据。  相似文献   

13.
青藏高原是我国重要的高寒草甸分布区和畜牧区,畜牧活动对区域植被和生态的影响作用受到众多学者的广泛关注.通过采集青藏高原东部高寒草甸区共49个放牧家畜粪样品(牦牛粪样品30个、马粪样品11个、羊粪样品8个),并在区域植被调查的基础上,对粪样品开展了花粉分析.结果 表明:这3种类型的粪样品花粉组合以莎草科(Cyperace...  相似文献   

14.
选取巴塘高寒草甸设置封育及自然放牧样地,通过野外实地监测及室内试验相结合的方法,分析封育措施对植被群落结构及土壤持水能力的影响。结果显示:1)封育措施显著提高了高寒草甸植被群落总盖度及平均高度(p0.05),增加了群落的物种丰富度、均匀度及复杂程度,植被群落中禾本科和豆科植物等优良牧草显著增加,菊科、莎草科以及有毒杂草类植物所占比重有所下降。2)封育措施丰富了高寒草甸植被群落垂直分层结构,退化草地垂直结构由一层增加至三层。3)封育措施降低了高寒草甸0~40 cm层面土壤容重,二者差异在10~20 cm层面最明显(p0.05)。4)尽管未达到显著水平(p0.05),封育样地0~40 cm层面土壤有机碳密度均高于自然放牧样地。5)封育措施明显改善了高寒草甸土壤持水能力。其中,封育样地0~10、10~20、20~40 cm深度土壤饱和持水量、毛管持水量及田间持水量均高于自然放牧样地,封育条件下0~40 cm整个土层土壤饱和持水量、毛管持水量及田间持水量增加速率分别为1.4、1.9、1.7 mm/a。封育措施有利于退化草地生态环境的恢复,是遏制和改善高寒草地退化的有效措施。  相似文献   

15.
土壤水分是沙区主要的生态限制因子,其分布受气候、地形和植被等众多因素的影响。以腾格里沙漠沙坡头地区3种类型的沙丘(固定沙丘、半固定沙丘和流动沙丘)为研究对象,利用方差分析和冗余分析(RDA)等方法对沙丘不同部位和不同深度土壤水分的分布特征及其与地形-植被因子之间的关系进行了综合分析。结果表明:(1) 不同类型沙丘上0~300 cm的土壤水分随着深度的增加而增加,表层土壤水分的波动程度大于中层和深层。(2) 固定沙丘不同部位及不同深度的土壤水分之间没有明显的差异,半固定沙丘和流动沙丘迎风坡与丘底的土壤水分高于背风坡和丘顶。(3) 固定沙丘上的土壤水分受地形-植被因子的影响较半固定沙丘和流动沙丘小,影响固定沙丘土壤水分的主要因子有坡向、高差和灌木多度。(4) 地形-植被因子与研究区绝大多数半固定沙丘和流动沙丘的土壤水分均有负相关关系。研究揭示了腾格里沙漠土壤水分的分布规律及其与地形-植被因子的关系,对制定相应的防风固沙措施以及建立科学合理的植物固沙模式有积极的指导作用。  相似文献   

16.
高寒植被类型及其植物生产力的监测   总被引:31,自引:1,他引:30  
监测并分析了高寒草甸二种不同植被类型的生态环境条件、植物种类组成、生物量变化规律及其差异。研究表明:距离相近且海拔高度基本相同的矮蒿草草甸和金露梅灌丛草甸二种群落内部,由于受地形部位影响,虽然降水基本相同,但地表受热及蒸发量不同,土壤湿度存在明显差异。受上述环境条件特别是受土壤温湿度条件的限制,二种群落内的植物种类不同,地下、地上生物量的变化也不同,一般在山地阴坡主要分布着以金露梅灌丛为优势种外,多以线叶蒿草、小蒿草、羊茅、及其它杂草类为伴生种的金露梅灌丛草甸植被类型,而主要分布于滩地的矮蒿草草甸多以垂穗披碱草等植物为伴生种的湿中性植被类型,属典型的高寒草甸植被类型。生物量监测结果的比较分析表明,群落的地上生物量为:矮蒿草草甸 > 金露梅灌丛草甸;地下生物量随植被类型的不同,其峰值与谷值出现时间不一致。年内地下净生产量为:金露梅灌丛草甸 > 矮蒿草草甸。地下生产量周转值为:矮蒿草草甸 > 金露梅灌丛草甸。  相似文献   

17.
雅鲁藏布江源头区的植被及其地理分布特征   总被引:5,自引:1,他引:4  
雅鲁藏布江源头区是国家级重要生态功能区,该区域自然背景资料极为缺乏。2002—06和2002—11,结合遥感影像数据,对源头区主要河谷典型地理环境位点植被进行了2次地面踏勘。结果表明:源头区主要植被类型有高寒草原、高寒草甸、高寒灌丛以及高寒垫状植物和流石坡植物。高寒草原类型主要有紫花针茅(Stipa pur purea)草原、青藏苔草(Carex moorcroftii)草原、固沙草(Orinus thoroldii)草原、藏白蒿(Artemisia younghusbandii)草原、藏沙蒿(Artemisia weiibyi)草原。高寒草甸主要类型有高山嵩草(Kobresia pygmaea)草甸、藏北嵩草(Kobresia littledalei)、三角草(Trikeraia hookeri)草甸。高寒灌丛的主要建群种有小叶金露梅(Potentilla parvifolia)、金露梅(Potentilla fruticosa)和变色锦鸡儿(Caragana versicolor)。在雪线附近有由多种高寒植物组成的垫状植物群落和流石坡稀疏植物。对群落的物种组成,分布区的土壤、水分等生态要素以及植被地理格局进行了概括性描述。  相似文献   

18.
张伟  张宏  泽柏 《山地学报》2006,24(B10):266-274
在我国,高寒草甸是广布于青藏高原的主要植被类型之一,它对青藏高原大气与地面之间的能量平衡、水气交换、生物地球化学循环有着极其重要的作用。近年随着人们对全球气候变暖问题的日益关注,高寒草甸,这个全球气候敏感生态系统的源、汇动态及其影响因素的研究,成了认识全球碳循环的关键之一。分析了草地生态系统在碳循环研究中的地位和重要性,对我国高寒草地生态系统碳循环的研究现状作了较为详尽的阐述,包括植物、凋落物和土壤三大碳库以及主要含碳温室气体通量等。  相似文献   

19.
伊犁河谷不同植被带下土壤有机碳分布   总被引:10,自引:0,他引:10  
结合2008年和2009年野外实地调查与室内分析的资料,运用方差分析等方法对伊犁河谷高山草甸、草甸草原、典型草原、荒漠草原、温性针叶林等9种不同植被条件下的土壤有机碳含量分布及其储量进行了分析估算.研究结果表明:伊犁河谷土壤有机碳含量因植被类型变化而不同.在0~50 cm土层范围,高山草甸、草甸草原土壤有机碳含量较高,其次是温性针叶林和典型草原,含量最低的是隐域植被和荒漠植被土壤.除隐域植被外,各植被类型下土壤有机碳含最基本呈随着土层深度增加而降低的,变化趋势.有机碳密度同样是高山草甸、草甸草原和温性针叶林土壤有机碳密度较高且比较相近,荒漠植被下土壤有机碳密度最低.伊犁河谷草地表层土壤有机碳含量高、密度大,因此应重视对伊犁河谷草地的保护,尤其要保护草地表层土壤以降低浅层土壤有机碳发生变化的可能性,维护土壤碳库的稳定性.  相似文献   

20.
青藏高原高寒草地净初级生产力(NPP)时空分异   总被引:11,自引:2,他引:11  
基于1982-2009 年间的遥感数据和野外台站生态实测数据,利用遥感生产力模型(CASA模型) 估算青藏高原高寒草地植被净初级生产力(NPP),分别从地带属性(自然地带、海拔高程、经纬度)、流域、行政区域(县级) 等方面对其时空变化过程进行分析,阐述了1982 年以来青藏高原高寒草地植被NPP的时空格局与变化特征。结果表明:① 青藏高原高寒草地NPP多年均值的空间分布表现为由东南向西北逐渐递减;1982-2009 年间,青藏高原高寒草地的年均总NPP为177.2×1012 gC·yr-1,单位面积年均植被NPP为120.8 gC·m-2yr-1;② 研究时段内,青藏高原高寒草地年均NPP 在112.6~129.9 gC·m-2yr-1 间,呈波动上升的趋势,增幅为13.3%;NPP 增加的草地占草地总面积的32.56%、减少的占5.55%;③ 青藏高原多数自然地带内的NPP呈增加趋势,仅阿里山地半荒漠、荒漠地带NPP呈轻微减低趋势,其中高寒灌丛草甸地带和草原地带的NPP增长幅度明显大于高寒荒漠地带;年均NPP增加面积比随着海拔升高呈现"升高—稳定—降低"的特点,而降低面积比则呈现"降低—稳定—升高"的特征;④ 各主要流域草地年均植被NPP均呈现增长趋势,其中黄河流域增长趋势显著且增幅最大。植被NPP和盖度及生长季时空变化显示,青藏高原高寒草地生态系统健康状况总体改善局部恶化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号