首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A high resolution regional climate model (RCM) is used to simulate climate of the recent past and to project future climate change across the northeastern US. Different types of uncertainties in climate simulations are examined by driving the RCM with different boundary data, applying different emissions scenarios, and running an ensemble of simulations with different initial conditions. Empirical orthogonal functions analysis and K-means clustering analysis are applied to divide the northeastern US region into four climatologically different zones based on the surface air temperature (SAT) and precipitation variability. The RCM simulations tend to overestimate SAT, especially over the northern part of the domain in winter and over the western part in summer. Statistically significant increases in seasonal SAT under both higher and lower emissions scenarios over the whole RCM domain suggest the robustness of future warming. Most parts of the northeastern US region will experience increasing winter precipitation and decreasing summer precipitation, though the changes are not statistically significant. The greater magnitude of the projected temperature increase by the end of the twenty-first century under the higher emissions scenario emphasizes the essential role of emissions choices in determining the potential future climate change.  相似文献   

2.
Climate spectra and detecting climate change   总被引:6,自引:0,他引:6  
Part of the debate over possible climate changes centers on the possibility that the changes observed over the previous century are natural in origin. This raises the question of how large a change could be expected as a result of natural variability. If the climate measurement of interest is modelled as a stationary (or related) Gaussian time series, this question can be answered in terms of (a) the way in which change is estimated, and (b) the spectrum of the time series. These computations are illustrated for 128 years of global temperature data using some simple measures of change and for a variety of possible temperature spectra. The results highlight the time scales on which it is important to know the magnitude of natural variability. The uncertainties in estimates of trend are most sensitive to fluctuations in the temperature series with periods from approximately 50 to 500 years. For some of the temperature spectra, it was found that the standard error of the least squares trend estimate was 3 times the standard error derived under the naïve assumption that the temperature series was uncorrelated. The observed trend differs from zero by more than 3 times the largest of the calculated standard errors, however, and is therefore highly significant.  相似文献   

3.
Tropical cyclones(TCs) are one of the most destructive natural phenomena on Earth in terms of human-life and economic losses. It is currently a matter of prodigious public and scientific interest how TC activity has changed and will change in a warming climate. This special issue focuses on a challenging subject raised in the Intergovernmental Panel on Climate Change(IPCC) report and numerous research papers.  相似文献   

4.
5.
Introduction: climate change and indigenous peoples of the USA   总被引:1,自引:1,他引:0  
  相似文献   

6.
Central America has high biodiversity, it harbors high-value ecosystems and it??s important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it??s unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Ni?o events in recent decades that adversely affected species in the region.  相似文献   

7.
8.
A version of the National Centre for Atmospheric Research (NCAR) coupled climate model is integrated under current climate conditions and in a series of experiments with climate forcings ranging from modest to very strong. The purpose of the experiments is to investigate the nature and behaviour of the climate feedback/sensitivity of the model, its evolution with time and climate state, the robustness of model parameterizations as forcing levels increase, and the possibility of a “runaway” warming under strong forcing. The model is integrated for 50 years, or to failure, after increasing the solar constant by 2.5, 10, 15, 25, 35, and 45% of its control value. The model successfully completes 50 years of integration for the 2.5, 10, 15, and 25% solar constant increases but fails for increases of 35% and 45%. The effective global climate sensitivity evolves with time and analysis indicates that a new equilibrium will be obtained for the 2.5, 10, and 15% cases but that runaway warming is underway for the 25% increase in solar constant. Feedback processes are analysed both locally and globally in terms of longwave and shortwave, clear-sky/surface, and cloud forcing components. Feedbacks in the system must be negative overall and of sufficient strength to balance the positive forcing if the system is to attain a new equilibrium. Longwave negative feedback processes strengthen in a reasonably linear fashion as temperature increases but shortwave feedback processes do not. In particular, solar cloud feedback becomes less negative and, for the 25% forcing case, eventually becomes positive, resulting in temperatures that “run away”. The conditions under which a runaway climate warming might occur have previously been investigated using simpler models. For sufficiently strong forcing, the greenhouse effect of increasing water vapour in a warmer atmosphere is expected to overwhelm the negative feedback of the longwave cooling to space as temperature increases. This is not, however, the reason for the climate instability experienced in the GCM. Instead, the model experiences a “cloud feedback” warming whereby the decrease in cloudiness that occurs when temperature increases beyond a critical value results in an increased absorption of solar radiation by the system, leading to the runaway warming.  相似文献   

9.
10.
<正>The Antarctic, including the continent of Antarctica and the Southern Ocean, is a critically important part of the Earth system. Research in Antarctic meteorology and climate has always been a challenging endeavor. Studying and predicting weather patterns in the Antarctic are important for understanding their role in local-to-global processes and facilitating field  相似文献   

11.
12.
13.
<正>The Arctic climate system has changed rapidly during recent decades with a two-four times faster warming rate than the global average subject to the uncertainties of analysis datasets and approaches. These changes have apparently resulted in broader and sizeable impacts within the Arctic, in the low/mid-latitudes, and globally. The importance of these changes and impacts makes the Arctic stand out within the global climate systems,  相似文献   

14.
正This special issue of Advances in Atmospheric Sciences provides a selection of research highlights from the Climate Science for Service Partnership China(CSSP China).This pioneering partnership between China and UK based researchers has broken new ground in the development of climate science for services.By accelerating and enhancing collaborative science,CSSP China has built a strong foundation for services to support climate and weather resilient economic development  相似文献   

15.
This two-part study integrates a quantitative review of one year of US newspaper coverage of climate science with a qualitative, comparative analysis of media-created themes and frames using a social constructivist approach. In addition to an examination of newspaper articles, this paper includes a reflexive comparison with attendant wire stories and scientific texts. Special attention is given to articles constructed with and framed by rhetoric emphasising uncertainty, controversy, and climate scepticism.  相似文献   

16.
John Virgoe 《Climatic change》2009,95(1-2):103-119
This article explores international governance issues related to a possible future use of geoengineering techniques. Despite the serious arguments against geoengineering, policy-makers may start to take an interest in it in the medium term. The article identifies non-technical characteristics of geoengineering which might influence governance models, and then discusses three broad approaches: through the United Nations, by one state unilaterally, and through a consortium of states. An examination of international legal instruments reveals none that would pose an insuperable barrier to geoengineering. Finally, the article argues for early exploration of the technological, environmental, political and regulatory issues raised by geoengineering, to maximize the chances of good, science-based multilateral decision making if and when geoengineering’s day arrives.  相似文献   

17.
Ensemble regional model simulations over the central US with 30-km resolution are analyzed to investigate the physical processes of projected precipitation changes in the mid-twenty-first century under greenhouse gas forcing. An atmospheric moisture balance is constructed, and changes in the diurnal cycle are evaluated. Wetter conditions over the central US in April and May occur most strongly in the afternoon and evening, supported primarily by moisture convergence by transient eddy activity, indicating enhanced daytime convection. In June, increased rainfall over the northern Great Plains is strongest from 0000 to 0600 LT. It is supported by positive changes in stationary meridional moisture convergence related to a strengthening of the GPLLJ accompanied by an intensification of the western extension of the North Atlantic subtropical high. In the Midwest, decreased rainfall is strongest at 1500 LT and 0000 LT. Both a suppression of daytime convection as well as changes in the zonal flow in the GPLLJ exit region are important. Future drying over the northern Great Plains in summer is triggered by weakened daytime convection, and persists throughout August and September when a deficit in soil moisture develops and land–atmosphere feedbacks become increasingly important.  相似文献   

18.
19.
Abstract

A þrst climate simulation performed with the novel Canadian Regional Climate Model (CRCM) is presented. The CRCM is based on fully elastic non‐hydrostatic þeld equations, which are solved with an efþcient semi‐implicit semi‐Lagrangian (SISL) marching algorithm, and on the parametrization package of subgrid‐scale physical effects of the second‐generation Canadian Global Climate Model (GCMII). Two 5‐year integrations of the CRCM nested with GCMII simulated data as lateral boundary conditions are made for conditions corresponding to current and doubled CO2 scenarios. For these simulations the CRCM used a grid size of 45 km on a polar‐stereographic projection, 20 scaled‐height levels and a time step of 15 min; the nesting GCMII has a spectral truncation of T32, 10 hybrid‐pressure levels and a time step of 20 min. These simulations serve to document: (1) the suitability of the SISL numerical scheme for regional climate modelling, (2) the use of GCMII physics at much higher resolution than in the nesting model, (3) the ability of the CRCM to add realistic regional‐scale climate information to global model simulations, and (4) the climate of the CRCM compared to that of GCMII under two greenhouse gases (GHG) scenarios.  相似文献   

20.
<正>It is a great pleasure to introduce this second special issue of Advances in Atmospheric Sciences with new highlights from the Climate Science for Service Partnership(CSSP, Scaife et al., 2021) between China and the UK. The CSSP harnesses expertise in the China Meteorological Administration’s National Climate Centre(CMA NCC), the Institute of Atmospheric Physics(IAP) at the Chinese Academy of Sciences and the Met Office, plus key UK and Chinese universities and institutes to deliver a v...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号