首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seafood is an essential source of protein globally. As its demand continues to rise, balancing food security and the health of marine ecosystems has become a pressing challenge. Ecosystem-based fisheries management (EBFM) has been adopted by the European Union (EU) Common Fisheries Policy (CFP) to meet this challenge by accounting for the multiple interacting natural and socio-economic drivers. The CFP includes both the implementation of regulatory measures to EU stocks and the establishment of bilateral fisheries agreements with neighbouring countries, known as sustainable fisheries partnership agreements (SFPAs). While the effects of fisheries management regulations are well acknowledged, the consequences of the SFPAs on EU ecosystems have been commonly overlooked. Here we investigate the development of the Gulf of Cadiz marine ecosystem over the last two decades and found evidence of the impact of both policy interventions. Our findings reveal the effectiveness of regulatory measures in reverting a progressively degrading ecosystem, characterised by high fishing pressure and dominance of opportunistic species, to a more stable configuration, characterised by higher biomass of small pelagics and top predators after 2005. Knock-on effects of the EU-Morocco SFPA and climate effects were detected before 2005, resulting in increased purse seine fishing effort, lower biomass of pelagic species and warmer temperatures. This southern EU marine ecosystem has been one of the latest to introduce regulations and is very exposed to fishery agreements with neighbouring Morocco. Our study highlights the importance of taking into consideration, not only the effects of in situ fisheries regulations but also the indirect implications of political agreements in the framework of EBFM.  相似文献   

2.
The extent to which nations and regions can actively shape the future or must passively respond to global forces is a topic of relevance to current discourses on climate change. In Australia, climate change has been identified as the greatest threat to the ecological resilience of the Great Barrier Reef, but is exacerbated by regional and local pressures. We undertook a scenario analysis to explore how two key uncertainties may influence these threats and their impact on the Great Barrier Reef and adjacent catchments in 2100: whether (1) global development and (2) Australian development is defined and pursued primarily in terms of economic growth or broader concepts of human well-being and environmental sustainability, and in turn, how climate change is managed and mitigated. We compared the implications of four scenarios for marine and terrestrial ecosystem services and human well-being. The results suggest that while regional actions can partially offset global inaction on climate change until about mid-century, there are probable threshold levels for marine ecosystems, beyond which the Great Barrier Reef will become a fundamentally different system by 2100 if climate change is not curtailed. Management that can respond to pressures at both global and regional scales will be needed to maintain the full range of ecosystem services. Modest improvements in human well-being appear possible even while ecosystem services decline, but only where regional management is strong. The future of the region depends largely on whether national and regional decision-makers choose to be active future ‘makers’ or passive future ‘takers’ in responding to global drivers of change. We conclude by discussing potential avenues for using these scenarios further with the Great Barrier Reef region's stakeholders.  相似文献   

3.
Like other animal production systems, aquaculture has developed into a highly globalized trade-dependent industry. A major part of aquaculture technology requires fishmeal to produce the feed for farmed species. By tracing and mapping patterns of trade flows globally for fishmeal we show the aquaculture industry's increasing use of marine ecosystems worldwide. We provide an in-depth analysis of the growth decades (1980–2000) of salmon farming in Norway and shrimp farming in Thailand. Both countries, initially net exporters of fishmeal, increased the number of import source nations of fishmeal, peaking in the mid-1990s. Thailand started locally and expanded into sources from all over the globe, including stocks from the North Sea through imports from Denmark, while Norway predominantly relied on northern region source nations to feed farmed salmon. In 2000, both have two geographically alternate sources of fishmeal supply: the combination of Chile and Peru in South America, and a regional complement. We find that fishmeal trade for aquaculture is not an issue of using ecosystems of the South for production in the North, but of trade between nations with industrialized fisheries linked to productive marine ecosystems. We discuss the expansion of marine ecosystem appropriation for the global aquaculture industry and observed shifts in the trade of fishmeal between marine areas over time. Globalization, through information technology and transport systems, has made it possible to rapidly switch between marine areas for fishmeal supply in economically connected food producing systems. But the stretching of the production chain from local to global and the ability to switch between marine areas worldwide seem to undermine the industry's incentives to respond to changes in the capacity of ecosystems to supply fish. For example, trade information does not reveal the species of fish that the fishmeal is made of much less its origins and there is lack of feedback between economic performance and impacts on marine ecosystem services. Responding to environmental feedback is essential to avoid the trap of mining the marine resources on which the aquaculture industry depends. There are grounds to suggest the need for some global rules and institutions that create incentives for seafood markets to account for ecosystem support and capacity.  相似文献   

4.
In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis.  相似文献   

5.
Climate change is transforming the structure of biological communities through the geographic extension and contraction of species’ ranges. Range edges are naturally dynamic, and shifts in the location of range edges occur at different rates and are driven by different mechanisms. This leads to challenges when seeking to generalize responses among taxa and across systems. We focus on warming-related range shifts in marine systems to describe extensions and contractions as stages. Range extensions occur as a sequence of (1) arrival, (2) population increase, and (3) persistence. By contrast, range contractions occur progressively as (1) performance decline, (2) population decrease and (3) local extinction. This stage-based framework can be broadly applied to geographic shifts in any species, life-history stage, or population subset. Ideally the probability of transitioning through progressive range shift stages could be estimated from empirical understanding of the various factors influencing range shift rates. Nevertheless, abundance and occupancy data at the spatial resolution required to quantify range shifts are often unavailable and we suggest the pragmatic solution of considering observations of range shifts within a confidence framework incorporating the type, amount and quality of data. We use case studies to illustrate how diverse evidence sources can be used to stage range extensions and contractions and assign confidence that an observed range shift stage has been reached. We then evaluate the utility of trait-based risk (invasion) and vulnerability (extinction) frameworks for application in a range shift context and find inadequacies, indicating an important area for development. We further consider factors that influence rates of extension and contraction of range edges in marine habitats. Finally, we suggest approaches required to increase our capacity to observe and predict geographic range shifts under climate change.  相似文献   

6.
Most discussions of impacts of Climate Change have focused on species from temperate or polar regions. Impacts to species inhabiting warm climates are often believed to be small relative to those of species living in cooler climates. However, it is evident that some tropical/sub-tropical species, including some marine megafauna may face potentially serious consequences from a changing climate. For example, larger, warmer oceans may appear to benefit marine wildlife species like cold-sensitive Florida manatees; however, findings regarding the impact of global climate change (GCC) on estuaries and nearshore areas of Florida indicate that predicted impacts of climate change may be detrimental to endangered manatees. An examination of how projected impacts of climate change will affect threats to manatees and their habitat indicates that threats may be exacerbated. The most significant threats to the Florida manatee population, such as cold-stress, watercraft collisions, and harmful algal blooms likely will increase. Habitat is likely to be degraded under future climate scenarios. Alterations to Florida’s marine environment are ongoing, yet current manatee management plans do not consider the impacts of climate change. The ability of manatees to adapt to change will be influenced by the speed of change and the degree to which human activity impedes or alters it. To minimize impacts to species we must recognize the influence GCC may have on populations, and begin to identify and implement ways to slow or reverse negative impacts arising from it.  相似文献   

7.
陆地生态系统与全球变化相互作用的研究进展   总被引:36,自引:3,他引:36  
全球变化及其对生态系统特别是陆地生态系统的影响已经严重地影响到人类生存环境与社会经济的可持续发展 ,引起了各国政府、科学家及公众的高度关注。文中从CO2 浓度倍增、温度变化、水分变化、水热与CO2 协同作用、辐射变化、臭氧变化以及人为干扰等气候环境变化对植物光合生理、生长发育、物质分配、水分利用、碳氮代谢等的影响方面阐述了全球变化影响生态系统的过程与机理 ;从地理分布范围、物候、结构与功能、生态系统的稳定性等方面分析了中国植被、森林生态系统、草原生态系统与农田生态系统对全球变化的响应 ;从植被变化引起的动力条件与热力条件的变化及植被固碳潜力的变化探讨了植被对于气候的反馈作用。在此基础上 ,基于当前全球变化研究前沿 ,提出了未来关于陆地生态系统与全球变化相互作用研究需要重视的方面 ,尤其是关于生态系统对全球变化响应的阈值研究应引起高度重视。  相似文献   

8.
IPCC第六次评估报告(AR6)第二工作组(WGII)报告的第二章表明,气候变化对陆地和淡水生态系统影响的范围和程度较前期评估结果更为严峻。人为气候变化导致生态系统结构、功能和恢复力恶化,生物群落转移,疾病的传播范围和发病率增加,野火燃烧面积增加和持续时间延长,局部地区物种灭绝,极端天气的频率和强度增加。未来气温升高2~4℃情景下,陆地和淡水生态系统中高灭绝风险物种占比为10%~13%,野火燃烧面积增加35%~40%,森林地区50%以上树木面临死亡风险,15%~35%的生态系统结构发生转变,碳损失持续增加,气温的升高将进一步加剧这些风险造成的严重且不可逆的影响。通过生态系统保护和恢复等人为适应和减缓措施,可以在一定程度的气候变化范围内保护生态系统的生物多样性并增强生态系统服务在气候变化下的恢复力。加剧的气候变化将阻碍适应措施的制定和实施,为保证措施的有效性需要考虑气候变化的长期影响并加快适应措施的部署。  相似文献   

9.
Commercial marine fishing contributes significantly to the Australian economy, and has great importance for coastal communities. However, climate change presents significant challenges for Australia’s fishing industries, now and into the future. With greater use of targeted information, the fishing industry will be better placed to minimise the negative impacts and take advantage of opportunities associated with the effects of climate change. The future of the fishing industry—specifically wild capture fisheries—will depend on its ability and capacity to apply appropriate adaptation strategies for its viability and sustainability in the long-term. Knowledge regarding expected long-term changes in species distributions, improved weather and seasonal climate forecasts and their influence on target species, and better understanding of species tolerances, can inform adaptation responses. This paper provides a review of recent advances in research addressing Australia’s priorities in relation to commercial marine fisheries’ responses to current and anticipated future climate change impacts, and considers barriers and adaptation options for fisheries management over the near-term planning horizon of 5–7 years.  相似文献   

10.
Blue carbon refers to the considerable amounts of carbon sequestered by mangroves, seagrass beds, tidal marshes and other coastal and marine vegetated ecosystems. At the present time, carbon market mechanisms to compensate those conserving blue carbon ecosystems, and thus reducing carbon emissions, are not yet in place. The ecosystem services provided by coastal vegetated ecosystems extend beyond their carbon storage capacity, and include their contribution to fishery production; shoreline protection; provision of habitat for wildlife and migratory species; flood water attenuation; nutrient cycling, pollution buffering; as well as their cultural, spiritual, subsistence and recreational uses. Because these services are of high economic, social and cultural value, the management and protection of blue carbon ecosystems could build collaboration between climate change and biodiversity practitioners on the national and international level. Such collaboration would also allow for the transfer of lessons learned from coastal management and conservation activities to carbon mitigation projects, and would include the need to work closely together with indigenous peoples and local communities. Resulting management activities on the local level could utilize and strengthen traditional knowledge and management systems related to blue carbon ecosystems, and increase both the resilience of biodiversity and that of coastal communities, as well as provide for long-term storage of blue carbon. While the challenge of scaling up local initiatives remains, some concrete examples already exist, such as the network of locally-managed marine areas (LMMAs) in the Pacific and beyond.  相似文献   

11.
Threats posed by Eurasian annual grasses to ecosystem function have received little attention. Therefore, protocols for prioritising these alien annual species and likely future dimensions of their spread are urgently required. Here we modelled these grasses potential distribution and shifts in distribution ranges in South Africa under current and future climate scenarios. We applied a modelling framework (BIOMOD), which integrated a variety of parametric statistical and non-parametric rule based models to point distribution records of 29 invasive grass species. Correspondence between modelled and recorded distributions was calculated using the model accuracy criteria called the AUC (Area under the Curve). Based on this criteria 12 C3 species were excellently modelled (AUC = 0.9–1), 11 C3 species had good model accuracy (AUC = 0.7–0.8) and four C3 and four C4 species fell into the fair (AUC = 0.6–0.7) model accuracy class. Mean temperature of the coldest month was the strongest environmental parameter, for most of the alien grass distributions. Modelled distributions of the alien annual grasses projected into the future indicated range contractions in all C3 species, except Briza minor, which were accompanied by shifts in species distribution ranges into higher altitudes. All C4 species displayed habitat loss of relatively similar magnitude with climate warming and shifts in their distribution ranges also into higher elevations. These findings conclude that climate change will hinder the spread of European annual grasses in southern Africa. However, shifts in their distributions into pristine areas at higher elevations could pose a threat to the natural vegetation by altering fire regimes.  相似文献   

12.
Carbon storage and flow through forest ecosystems are major components of the global carbon cycle. The cycle of carbon is intimately coupled with the cycle of nitrogen and the flow of water through forests. The supply of water for tree growth is determined by climate and soil physical properties. The rate at which nitrogen mineralization occurs depends on climate and the type of carbon compounds with which the nitrogen is associated. Species composition, which is also affected by climate, can greatly influence the composition of carbon compounds and subsequently nitrogen availability. Climate change can therefore have a direct effect on forest ecosystem production and carbon storage through temperature and water limitations, and an indirect effect through the nitrogen cycle by affecting species composition. Model simulations of these interactions show that climate change initiates a complex set of direct and indirect responses that are sensitive to the exact nature of the project climate changes. We show results using four different climate-change projections for a location in northeastern Minnesota. Modeled forest responses to each of these climate projections is different indicating that uncertainties in the climate projections may be amplified further as a result of shifts in balance between positive and negative ecosystem feedbacks.  相似文献   

13.
Climate and current anthropogenic impacts on fisheries   总被引:1,自引:1,他引:0  
Human impacts on marine fisheries go back many centuries or even thousands of years in some coastal areas. Full global exploitation of the most productive fish stocks probably occurred around 1990. Many stocks have been overexploited and the assessment and management required to rein this in and to combat other human pressures, such as pollution, has been slow to mature, but is showing positive trends. The need to protect marine ecosystems for their intrinsic value and for the services they provide has also been recognised and is being embodied in legislation and turned into operational tools. As with terrestrial systems, it will not be easy to find acceptable balances between food production and conservation objectives. Climate change imposes a new set of pressures on marine ecosystems; increasing temperature, reduced salinity in some enclosed seas and coastal areas, changing windfields and seasonality, acidification, deoxygenation and rising sea level will all affect the productivity and distribution of marine life. We can detect some of the consequences already but prediction is very difficult for a variety of reasons. In spite of these difficulties it is possible to map out robust guidance on the kind of research that will help us to adapt and on the development of practices and management that will insure against future change.  相似文献   

14.
全球气候变化对中国森林生态系统的影响   总被引:15,自引:0,他引:15  
王叶  延晓冬 《大气科学》2006,30(5):1009-1018
人类活动所引起的温室效应及由此造成的全球气候变化和对全球生态环境的影响正引起人们越来越多的重视.作为全球陆地生态系统一个重要组分,中国的森林生态系统对未来全球气候变化的响应更是人们关注的重点.作者系统地总结了全球气候变化对中国森林生态系统分布、生态系统生产力、森林树种以及森林土壤的影响,指出了现阶段该领域研究中存在的一些问题,并对今后需要加强的一些核心问题与研究重点作了展望.  相似文献   

15.
Armed conflicts trigger region-specific mechanisms that affect land use change. Deforestation is presented as one of the most common negative environmental impacts resulting from armed conflicts, with relevant consequences in terms of greenhouse gas emissions and loss of ecosystem services. However, the impact of armed conflict on forests is complex and may simultaneously lead to positive and negative environmental outcomes, i.e. forest regrowth and deforestation, in different regions even within a country. We investigate the impact that armed conflict exerted over forest dynamics at different spatial scales in Colombia and for the global tropics during the period 1992–2015. Through the analysis of its internally displaced population (departures) our results suggest that, albeit finding forest regrowth in some municipalities, the Colombian conflict predominantly exerted a negative impact on its forests. A further examination of georeferenced fighting locations in Colombia and across the globe shows that conflict areas were 8 and 4 times more likely to undergo deforestation, respectively, in the following years in relation to average deforestation rates. This study represents a municipality level, long-term spatial analysis of the diverging effects the Colombian conflict exerted over its forest dynamics over two distinct periods of increasing and decreasing conflict intensity. Moreover, it presents the first quantified estimate of conflict's negative impact on forest ecosystems across the globe. The relationship between armed conflict and land use change is of global relevance given the recent increase of armed conflicts across the world and the importance of a possible exacerbation of armed conflicts and migration as climate change impacts increase.  相似文献   

16.
For many countries in the global south the World Bank is a key funder of development. A subset of the activities it funds have the potential to cause harm to biodiversity. Currently, however, little is known about the spatial coincidence of Bank-funded projects and important areas for biodiversity. Using a dataset of World Bank projects funded between 1995 and 2014, we examine the relationship between potentially harmful project activities and the ranges of globally threatened birds, mammals, and amphibians, Key Biodiversity Areas, protected areas, and biodiversity hotspots. We find that 5 by 5 km cells containing a project activity are more likely to contain a Key Biodiversity Area, or a biodiversity hotspot, and have on average greater richness of globally threatened species, than those without. This relationship was statistically significant even after considering human population and country-level socio-economic effects except in the case of Key Biodiversity Areas. We also found limited evidence that activities are systematically placed within countries to avoid the ranges of threatened species or Key Biodiversity Areas. By contrast, we found a negative relationship between project activities and protected areas globally and within most countries, which may be evidence that potentially harmful activities are placed to avoid protected areas. Our findings raise questions about whether the Banks environmental safeguards have adequately translated into avoidance of highly diverse areas. Given the size of the World Bank’s lending portfolio and its role in setting industry best practice our results are concerning for conservation efforts.  相似文献   

17.
Rapidly accelerating climate change in the Himalaya is projected to have major implications for montane species, ecosystems, and mountain farming and pastoral systems. A geospatial modeling approach based on a global environmental stratification is used to explore potential impacts of projected climate change on the spatial distribution of bioclimatic strata and ecoregions within the transboundary Kailash Sacred Landscape (KSL) of China, India and Nepal. Twenty-eight strata, comprising seven bioclimatic zones, were aggregated to develop an ecoregional classification of 12 ecoregions (generally defined by their potential dominant vegetation type), based upon vegetation and landcover characteristics. Projected climate change impacts were modeled by reconstructing the stratification based upon an ensemble of 19 Earth System Models (CIMP5) across four Representative Concentration Pathways (RCP) emission scenarios (i.e. 63 impact simulations), and identifying the change in spatial distribution of bioclimatic zones and ecoregions. Large and substantial shifts in bioclimatic conditions can be expected throughout the KSL area by the year 2050, within all bioclimatic zones and ecoregions. Over 76 % of the total area may shift to a different stratum, 55 % to a different bioclimatic zone, and 36.6 % to a different ecoregion. Potential impacts include upward shift in mean elevation of bioclimatic zones (357 m) and ecoregions (371 m), decreases in area of the highest elevation zones and ecoregions, large expansion of the lower tropical and sub-tropical zones and ecoregions, and the disappearance of several strata representing unique bioclimatic conditions within the KSL, with potentially high levels of biotic perturbance by 2050, and a high likelihood of major consequences for biodiversity, ecosystems, ecosystem services, conservation efforts and sustainable development policies in the region.  相似文献   

18.
In a meta-analysis we integrate peer-reviewed studies that provide quantified estimates of future projected ecosystem changes related to quantified projected local or global climate changes. In an advance on previous analyses, we reference all studies to a common pre-industrial base-line for temperature, employing up-scaling techniques where necessary, detailing how impacts have been projected on every continent, in the oceans, and for the globe, for a wide range of ecosystem types and taxa. Dramatic and substantive projected increases of climate change impacts upon ecosystems are revealed with increasing annual global mean temperature rise above the pre-industrial mean (ΔTg). Substantial negative impacts are commonly projected as ΔTg reaches and exceeds 2°C, especially in biodiversity hotspots. Compliance with the ultimate objective of the United Nations Framework Convention on Climate Change (Article 2) requires that greenhouse gas concentrations be stabilized within a time frame “sufficient to allow ecosystems to adapt naturally to climate change”. Unless ΔTg is constrained to below 2°C at most, results here imply that it will be difficult to achieve compliance. This underscores the need to limit greenhouse gas emissions by accelerating mitigation efforts and by protecting existing ecosystems from greenhouse-gas producing land use change processes such as deforestation.  相似文献   

19.
Recent temperature observations suggest a general warming trend that may be causing the range of tree species to shift to higher latitudes and altitudes. Since biotic interactions such as herbivory can change tree species composition, it is important to understand their contribution to vegetation changes triggered by climate change. To investigate the response of forests to climate change and herbivory by wild ungulates, we used the forest gap model ForClim v2.9.6 and simulated forest development in three climatically different valleys in the Swiss Alps. We used altitudinal transects on contrasting slopes covering a wide range of forest types from the cold (upper) to the dry (lower) treeline. This allowed us to investigate (1) altitudinal range shifts in response to climate change, (2) the consequences for tree species composition, and (3) the combined effect of climate change and ungulate herbivory. We found that ungulate herbivory changed species composition and that both basal area and stem numbers decreased with increasing herbivory intensity. Tree species responded differently to the change in climate, and their ranges did not change concurrently, thus causing a succession to new stand types. While climate change partially compensated for the reductions in basal area caused by ungulate herbivory, the combined effect of these two agents on the mix of the dominant species and forest type was non-compensatory, as browsing selectively excluded species from establishing or reaching dominance and altered competition patterns, particularly for light. We conclude that there is an urgent need for adaptive forest management strategies that address the joint effects of climate change and ungulate herbivory.  相似文献   

20.
Changes in plant phenology will be one of the earliest responses to rapid global climate change and could potentially have serious consequences both for plants and for animals that depend on periodically available plant resources. Phenological patterns are most diverse and least understood in the tropics. In those parts of tropical Asia where low temperature or drought impose a seasonal rest period, regular annual cycles of growth and reproduction predominate at the individual, population, and community level. In aseasonal areas, individuals and populations show a range of sub- to supra-annual periodicities, with an overall supra-annual reproductive periodicity at the community level. There is no evidence for photoperiod control of phenology in the Asian tropics, and seasonal changes in temperature are a likely factor only near the northern margins. An opportunistic response to water availability is the simplest explanation for most observed patterns where water is seasonally limiting, while the great diversity of phenological patterns in the aseasonal tropics suggests an equal diversity of controls. The robustness of current phenological patterns to high interannual and spatial variability suggests that most plant species will not be seriously affected by the phenological consequences alone of climate change. However, some individual plant species may suffer, and the consequences of changes in plant phenology for flower- and fruit-dependent animals in fragmented forests could be serious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号