首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Global environmental change scenarios typically distinguish between about 10–20 global regions. However, various studies need scenario information at a higher level of spatial detail. This paper presents a set of algorithms that aim to fill this gap by providing downscaled scenario data for population, gross domestic product (GDP) and emissions at the national and grid levels. The proposed methodology is based on external-input-based downscaling for population, convergence-based downscaling for GDP and emissions, and linear algorithms to go to grid levels. The algorithms are applied to the IPCC-SRES scenarios, where the results seem to provide a credible basis for global environmental change assessments.  相似文献   

2.
With a range of potential pathways to a sustainable future compatible with the Paris Agreement 1.5 °C target, scenario analysis has emerged as a key tool in studies of climate change mitigation and adaptation. A wide range of alternative scenarios have been created, and core amongst these are five socio-economic scenarios (Shared Socio-economic Pathways or SSPs) and four emission scenarios (Representative Concentration Pathways or RCPs). Whilst mitigation scenarios (the Shared Policy Assumptions, or SPAs) have been developed for each SSP-RCP combination, describing the actions necessary to match the climate pathway of the RCP, there has not yet been a systematic approach to address whether and how these actions can be enabled in practice.We present a novel and transferable framework to understand society’s capacity to achieve the 1.5 °C target, based on four participatory case studies using the SSP-RCP scenarios. The methodology builds on a framework for categorising different types of societal capitals and capacities and assessing their impact on the potential to implement different types of mitigation actions. All four case studies show that SSP1 has the highest potential to reach the target. Although environmental awareness is high in both SSP1 and SSP4, continued social inequalities in SSP4 restrict society’s capacity to transform, despite economic growth. In the two least environmentally-aware SSPs, SSP3 and SSP5, the transformation potential is low, but the view on capitals and capacities nonetheless helps identify opportunities for actors to develop and implement mitigation actions.The study highlights that techno-economic assessments of climate strategies need to be complemented by consideration of the critical role played by social and human capital, and by societal capacity to mobilise and create these capitals despite different socio-economic trends. These capitals and capacities are essential to enable the rapid innovation, behavioural change and international co-ordination needed to achieve the 1.5 °C target.  相似文献   

3.
The appropriate level of spatial resolution for climate scenarios is a key uncertainty in climate impact studies and regional integrated assessments. To the extent that such uncertainty may affect the magnitude of economic estimates of climate change, it has implications for the public policy debates concerning the efficiency of CO2 control options. In this article, we investigate the effects that different climate scenario resolutions have on economic estimates of the impacts of future climate changeon agriculture in the United States. These results are derived via a set of procedures and an analytical model that has been used previously in climate change assessments. The results demonstrate that the spatial scale of climate scenarios affects the estimates of both regional changes in crop yields and the economic impact on the agricultural sector as a whole. An assessment based on the finer scale climatological information consistently yielded a less favorable assessment of the implications of climate change. Regional indicators of economic activity were of opposite sign in some regions, based on the scenario scale. Such differences in economic magnitudes or signs are potentially important in examining whether past climate change assessments may misstate the economic consequences of such changes. The results reported here suggest that refinement of the spatial scale of scenarios should be carefully considered in future impacts research.  相似文献   

4.
The use of modern biomass for energy generation has been considered in many studies as a possible measure for reducing or stabilizing global carbon dioxide (CO2) emissions. In this paper we assess the impacts of large-scale global utilization of biomass on regional and grid scale land cover, greenhouse gas emissions, and carbon cycle. We have implemented in the global environmental change model IMAGE the LESS biomass intensive scenario, which was developed for the Second Assessment Report of IPCC. This scenario illustrates the potential for reducing energy related emission by different sets of fuel mixes and a higher energy efficiency. Our analysis especially covers different consequences involved with such modern biomass scenarios. We emphasize influences of CO2 concentrations and climate change on biomass crop yield, land use, competition between food and biomass crops, and the different interregional trade patterns for modern biomass based energy. Our simulations show that the original LESS scenario is rather optimistic on the land requirements for large-scale biomass plantations. Our simulations show that 797 Mha is required while the original LESS scenario is based on 550 Mha. Such expansion of agricultural land will influence deforestation patterns and have significant consequenses for environmental issues, such as biodiversity. Altering modern biomass requirements and the locations where they are grown in the scenario shows that the outcome is sensitive for regional emissions and feedbacks in the C cycle and that competition between food and modern biomass can be significant. We conclude that the cultivation of large quantities of modern biomass is feasible, but that its effectiveness to reduce emissions of greenhouse gases has to be evaluated in combination with many other environmental land use and socio-economic factors.  相似文献   

5.
Many global land change scenarios are driven by demand for food, feed, fiber, and fuel. However, novel demands for other ecosystem services give rise to nexus issues and can lead to different land system changes. In this paper we explore the effects of including multiple different demands in land change scenarios. Our reference scenario is driven by demands for crop production, ruminant livestock production, and provisioning of built-up area. We then compare two alternative scenarios with additional demands for terrestrial carbon storage and biodiversity protection, respectively. These scenarios represent possible implementations of globally agreed policy targets. The simulated land system change scenarios are compared in terms of changes in cropland intensity and area, as well as tree and grassland area changes. We find that the carbon and biodiversity scenarios generally result in greater intensification and less expansion of cropland, with the biodiversity scenario showing a stronger intensification effect. However, the impact of setting the targets impacts different world regions in different ways. Overall, both scenarios result in a larger tree area compared to the reference scenario, while the carbon scenario also yields more grassland area. The land systems simulated while accounting for these additional demand types show strong patterns of specialization and spatial segregation in the provisioning of goods and services in different world regions. Our results indicate the relevance of including demands for multiple different goods and services in global land change assessments.  相似文献   

6.
Climate scenarios have been widely used in impact, vulnerability and adaptation assessments of climate change. However, few studies have actually looked at the role played by climate scenarios in adaptation planning. This paper examines how climate scenarios fit in three broad adaptation frameworks: the IPCC approach, risk approaches, and human development approaches. The use (or not) of climate scenarios in three real projects, corresponding to each adaptation approach, is investigated. It is shown that the role played by climate scenarios is dependant on the adaptation assessment approach, availability of technical and financial capacity to handle scenario information, and the type of adaptation being considered.  相似文献   

7.
Little research has been done on projecting long-term conflict risks. Such projections are currently neither included in the development of socioeconomic scenarios or climate change impact assessments nor part of global agenda-setting policy processes. In contrast, in other fields of inquiry, long-term projections and scenario studies are established and relevant for both strategical agenda-setting and applied policies. Although making projections of armed conflict risk in response to climate change is surrounded by uncertainty, there are good reasons to further develop such scenario-based projections. In this perspective article we discuss why quantifying implications of climate change for future armed conflict risk is inherently uncertain, but necessary for shaping sustainable future policy agendas. We argue that both quantitative and qualitative projections can have a purpose in future climate change impact assessments and put out the challenges this poses for future research.  相似文献   

8.
This study quantifies the Shared Socioeconomic Pathways (SSPs) using AIM/CGE (Asia-Pacific Integrated Assessment/Computable General Equilibrium). SSP3 (regional rivalry) forms the main focus of the study, which is supposed to face high challenges both in mitigation and adaptation. The AIM model has been selected as the model to quantify the SSP3 marker scenario, a representative case illustrating a particular narrative. Multiple parameter assumptions in AIM/CGE were differentiated across the SSPs for quantification. We confirm that SSP3 quantitative scenarios outcomes are consistent with its narrative. Moreover, four key features of SSP3 are observed. First, as SSP3 was originally designed to contain a high level of challenges to mitigation, mitigation costs in SSP3 were relatively high. This results from the combination of high greenhouse gas emissions in the baseline (no climate mitigation policy) scenario and low mitigative capacity. Second, the climate forcing level in 2100 for the baseline scenarios of SSP3 was similar to that of SSP2, whereas CO2 emissions in SSP3 are higher than those in SSP2. This is mainly due to high aerosol emissions in SSP3. A third feature was the high air pollutant emissions associated with weak implementation of air quality legislation and a high level of coal dependency. Fourth, forest area steadily decreases with a large expansion of cropland and pasture land. These characteristics indicate at least four potential uses for SSP3. First, SSP3 is useful for both IAM and impact, adaptation, vulnerability (IAV) analyses to present the worst-case scenario. Second, by comparing SSP2 and SSP3, IAV analyses can clarify the influences of socioeconomic elements under similar climatic conditions. Third, the high air pollutant emissions would be of interest to atmospheric chemistry climate modelers. Finally, in addition to climate change studies, many other environmental studies could benefit from the meaningful insights available from the large-scale land use change resulting in SSP3.  相似文献   

9.
《Climate Policy》2001,1(2):189-210
Two different mitigation scenarios for stabilising carbon dioxide concentration at 450 ppmv by 2100 have been developed, based on the recently developed B1 baseline scenario (part of the IPCC Special Report on Emission Scenarios). In both mitigation scenarios, a global uniform carbon tax has been applied as a proxy of pressure on the system to induce a variety of mitigation measures — assuming the presence of some international mechanism for globally cost-efficient implementation of such measures. The two scenarios differ in the timing of mitigation action: early action versus delayed response. Analysis of the scenarios has led to the following findings. First, stabilisation at a carbon dioxide concentration of 450 ppmv from the B1 baseline scenario is technically feasible. In the first quarter/second quarter of this century most of the reduction will come from energy-efficiency and fuel switching options; later on the introduction of carbon-free supply options will account for the bulk of the required reductions. Second, postponing measures foregoes the benefits of learning-by-doing, and, as a result, an early action strategy will at low discount rates lead to reduced mitigation costs compared to delayed response. The most difficult period for the mitigation scenarios is the 2010–2040 period (exact timing depends on early action or delayed response), when ‘bending the curve’ towards a lower carbon emission system will have to be initiated. Finally, while overall costs seems to be limited, there are large differences in costs and benefits for individual regions and sectors for instance in terms of redirection of investments, changing fuel trade patterns and changing energy expenditures.  相似文献   

10.
More often than not, assessments of future climate risks are based on future climatic conditions superimposed on current socioeconomic conditions only. The new IPCC-guided alternative global development trends, the shared socioeconomic pathways (SSPs), have the potential to enhance the integration of future socioeconomic conditions—in the form of socioeconomic scenarios—within assessments of future climate risks. Being global development pathways, the SSPs lack regional and sectoral details. To increase their suitability in sectoral and/or regional studies and their relevance for local stakeholders, the SSPs have to be extended. We propose here a new method to extend the SSPs that makes use of existing scenario studies, the (re)use of which has been underestimated so far. Our approach lies in a systematic matching of multiple scenario sets that facilitates enrichment of the global SSPs with regional and sectoral information, in terms of both storylines and quantitative projections. We apply this method to develop extended SSPs of human vulnerability in Europe and to quantify them for a number of key indicators at the sub-national level up to 2050, based on the co-use of the matched scenarios’ quantitative outputs. Results show that such a method leads to internally consistent extended SSPs with detailed and highly quantified narratives that are tightly linked to global contexts. This method also provides multiple entry points where the relevance of scenarios to local stakeholders can be tested and strengthened. The extended SSPs can be readily employed to explore future populations’ vulnerability to climate hazards under varying levels of socioeconomic development.  相似文献   

11.
This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).  相似文献   

12.
Wilhelm May 《Climatic change》2012,110(3-4):619-644
In this study, the strength of the regional changes in near-surface climate associated with a global warming of 2°C with respect to pre-industrial times is assessed, distinguishing between 26 different regions. Also, the strength of these regional climate changes is compared to the strength of the respective changes associated with a markedly stronger global warming of 4.5°C. The magnitude of the regional changes in climate is estimated by means of a normalized regional climate change index, which considers changes in the mean as well as changes in the interannual variability of both near-surface temperature and precipitation. The study is based on two sets of four ensemble simulations with the ECHAM5/MPI-OM coupled climate model, each starting from different initial conditions. In one set of simulations (1860–2200), the greenhouse gas concentrations and sulphate aerosol load have been prescribed according to observations until 2000 and according to the SRES A1B scenario after 2000. In the other set of simulations (2020–2200), the greenhouse gas concentrations and sulphate aerosol load have been prescribed in such a way that the simulated global warming does not exceed 2°C with respect to pre-industrial times. The study reveals the strongest changes in near-surface climate in the same regions for both scenarios, i.e., the Sahara, Northern Australia, Southern Australia and Amazonia. The regions with the weakest changes in near-surface climate, on the other hand, vary somewhat between the two scenarios except for Western North America and Southern South America, where both scenarios show rather weak changes. The comparison between the magnitude of the regional changes in near-surface climate for the two scenarios reveals relatively strong changes in the 2°C-stabilization scenario at high northern latitudes, i.e., Northeastern Europe, Alaska and Greenland, and in Amazonia. Relatively weak regional climate changes in this scenario, on the other hand, are found for Eastern Asia, Central America, Central South America and Southern South America. The ratios between the regional changes in the near-surface climate for the two scenarios vary considerably between different regions. This illustrates a limitation of obtaining regional changes in near-surface climate associated with a particular scenario by means of scaling the regional changes obtained from a widely used “standard” scenario with the ratio of the changes in the global mean temperature projected by these two scenarios.  相似文献   

13.
14.
Bottom-up and top-down models are used to support climate policies, to identify the options required to meet GHG abatement targets and to evaluate their economic impact. Some studies have shown that the GHG mitigation options provided by economic top-down and technological bottom-up models tend to vary. One reason for this is that these models tend to use different baseline scenarios. The bottom-up TIMES_PT and the top-down computable general equilibrium GEM-E3_PT models are examined using a common baseline scenario to calibrate them, and the extend of their different mitigation options and its relevant to domestic policy making are assessed. Three low-carbon scenarios for Portugal until 2050 are generated, each with different GHG reduction targets. Both models suggest close mitigation options and locate the largest mitigation potential to energy supply. However, the models suggest different mitigation options for the end-use sectors: GEM-E3_PT focuses more on energy efficiency, while TIMES_PT relies on decrease carbon intensity due to a shift to electricity. Although a common baseline scenario cannot be ignored, the models’ inherent characteristics are the main factor for the different outcomes, thereby highlighting different mitigation options.

Policy relevance

The relevance of modelling tools used to support the design of domestic climate policies is assessed by evaluating the mitigation options suggested by a bottom-up and a top-down model. The different outcomes of each model are significant for climate policy design since each suggest different mitigation options like end-use energy efficiency and the promotion of low-carbon technologies. Policy makers should carefully select the modelling tool used to support their policies. The specific modelling structures of each model make them more appropriate to address certain policy questions than others. Using both modelling approaches for policy support can therefore bring added value and result in more robust climate policy design. Although the results are specific for Portugal, the insights provided by the analysis of both models can be extended to, and used in the climate policy decisions of, other countries.  相似文献   

15.
根据IPCC提出的共享社会经济路径(SSPs),本文以中国14个乡村振兴核心区为研究区,结合中国当前人口特征设定不同SSPs路径下本地化人口预估参数,采用人口—发展—环境(PDE)模型,预估2020~2040年人口变化特征.结合SSPs-RCPs情景下多模式的干旱评估结果,探讨未来乡村振兴核心区干旱暴露人口较基准期(1...  相似文献   

16.
This study uses a well-established water balance methodology to evaluate the relative impact of global warming and soil degradation due to desertification on future African water resources. Using a baseline climatology, a GCM global warming scenario, a newly derived soil water-holding capacity data set, and a worldwide survey of soil degradation between 1950 and 1980, four climate and soil degradation scenarios are created to simulate the potential impact of global warming and soil degradation on African water resources for the 2010–2039 time period. Results indicate that, on a continental scale, the impact of global warming will be significantly greater than the impact of soil degradation. However, when only considering the locations where desertification is an issue (wet and dry climate regions), the potential effects of these two different human impacts on local water resources can be expected to be on the same order of magnitude. Drying associated with global warming is primarily the result of increased water demand (potential evapotranspiration) across the entire continent. While there are small increases in precipitation under global warming conditions, they are inadequate to meet the increased water demand. Soil degradation is most severe in highly populated, wet and dry climate regions and results in decreased water-holding capacities in these locations. This results in increased water surplus conditions during wet seasons when the soil's ability to absorb precipitation is reduced. At the same time, water deficits in these locations increase because of reduced soil water availability in the dry seasons. The net result of the combined scenarios is an intensification and extension of drought conditions during dry seasons.  相似文献   

17.
The RCP2.6 emission and concentration pathway is representative of the literature on mitigation scenarios aiming to limit the increase of global mean temperature to 2°C. These scenarios form the low end of the scenario literature in terms of emissions and radiative forcing. They often show negative emissions from energy use in the second half of the 21st century. The RCP2.6 scenario is shown to be technically feasible in the IMAGE integrated assessment modeling framework from a medium emission baseline scenario, assuming full participation of all countries. Cumulative emissions of greenhouse gases from 2010 to 2100 need to be reduced by 70% compared to a baseline scenario, requiring substantial changes in energy use and emissions of non-CO2 gases. These measures (specifically the use of bio-energy and reforestation measures) also have clear consequences for global land use. Based on the RCP2.6 scenario, recommendations for further research on low emission scenarios have been formulated. These include the response of the climate system to a radiative forcing peak, the ability of society to achieve the required emission reduction rates given political and social inertia and the possibilities to further reduce emissions of non-CO2 gases.  相似文献   

18.
Carbon capture and storage (CCS) could achieve drastic cuts in the CO2 emissions associated with fossil fuels in the near to medium term and has been promoted as a significant climate change mitigation option. As the profile of this family of technologies grows rapidly, there remain many uncertainties relating to its viability, effectiveness and desirability. In this paper we begin to map out some of the key issues associated with CCS, using a multi-criteria approach to explore how an (admittedly small) selection of stakeholders perceive alternative storage options and energy scenarios. We present five long-term scenarios describing alternative ways in which the UK energy system could develop and which deploy different levels of carbon storage. The key storage options considered are oil and gas fields (both disused and with enhanced oil recovery), traps in saline aquifers, saline aquifers outside traps and on-shore sites. The relative performance of the scenarios and the storage reservoirs included within them have been assessed against a set of socio-economic, technical and environmental criteria by a small selection of stakeholders to the carbon storage debate. Whilst we cannot make strong conclusions regarding precise stakeholder opinions at this stage due to the small size of the sample, the broad delineation of the arguments for and against CCS are evident. Multi-criteria assessment (MCA) appears to hold much potential as a useful tool for characterising and better understanding differences in stakeholder assessments of CCS and its implications, and for identifying options around which greater consensus on the desirability (or otherwise) of CCS as a mitigation strategy might emerge.  相似文献   

19.
The exploration of alternative socioeconomic futures is an important aspect of understanding the potential consequences of climate change. While socioeconomic scenarios are common and, at times essential, tools for the impacts, adaptation and vulnerability and integrated assessment modeling research communities, their approaches to scenario development have historically been quite distinct. However, increasing convergence of impacts, adaptation and vulnerability and integrated assessment modeling research in terms of scales of analysis suggests there may be value in the development of a common framework for socioeconomic scenarios. The Shared Socioeconomic Pathways represents an opportunity for the development of such a common framework. However, the scales at which these global storylines have been developed are largely incommensurate with the sub-national scales at which impacts, adaptation and vulnerability and, increasingly, integrated assessment modeling studies are conducted. The objective of this study was to develop sub-national and sectoral extensions of the global SSP storylines in order to identify future socioeconomic challenges for adaptation for the U.S. Southeast. A set of nested qualitative socioeconomic storyline elements, integrated storylines, and accompanying quantitative indicators were developed through an application of the Factor–Actor–Sector framework. In addition to revealing challenges and opportunities associated with the use of the SSPs as a basis for more refined scenario development, this study generated sub-national storyline elements and storylines that can subsequently be used to explore the implications of alternative sub-national socioeconomic futures for the assessment of climate change impacts and adaptation.  相似文献   

20.
This paper presents an approach to estimating world-regional carbon mitigation cost functions for the years 2020, 2050, and 2100. The approach explicitly includes uncertainty surrounding such carbon reduction costs. It is based on the analysis of global energy-economy-environment scenarios described for the 21st century. We use one baseline scenario and variants thereof to estimate cumulative costs of carbon mitigation as a function of cumulative carbon emission reductions. For our baseline for estimating carbon mitigation cost curves, we use the so-called IIASA F scenario. The F scenario is a high-growth, high-emissions scenario designed specifically to be used as a reference against which to evaluate alternatives. Carbon emissions and energy systems costs in the F scenario are then compared with (reduced) emissions and (higher) costs (including macroeconomic adjustment costs) of alternative scenarios taken from the IIASA scenario database. As a kind of sensitivity analysis of our approach, we also present the results of a scenario involving assumptions on particularly rapid technological progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号