首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jack D. Drummond 《Icarus》1982,49(1):143-153
A compilation of theoretical meteor radiants is presented for all numbered (through 2525) asteroids which approach the Earth's orbit to within 0.20 AU. On the basis of orbital similarity, asteroids associated with current meteor streams and Prairie Network fireballs are listed; plausible associations with medieval fireball radiants are also given. The best defunct comet candidates in terms of meteoric evidence appear to be 2101 Adonis and 2201 1947XC. Asteroids which may be either extinct comets or perturbed main belt asteroids accompanied by collisional debris (represented by fireballs) are 1917 Cuyo, 2202 Pele, 2061 Anza, and 2340 Hathor. 1566 Icarus and 1981 Midas are the only asteroids whose orbits approach to less than 0.07 AU of the Earth's orbit, have a northern radiant, and still show no certain meteoric activity. The majority of Atens, Apollos, and Amors do not pass sufficiently close (<0.07 AU) to the Earth's orbit for a reasonable expectation of meteoric activity, or have radiants south of ?20° declination, requiring southern hemisphere observations.  相似文献   

2.
Results of Ondřejov radar observation of Taurid complex meteor showers, i.e. ζ Perseids, β Taurids, S and N Taurids, performed in 2003, are presented. We have found some mass segregation within ζ Perseid, β Taurid and S Taurid showers. We have also established conspicuous lack of long duration echoes (with T ⩾ 3 s resp. T ⩾ 5 s) in S and N Taurid showers. The lack within remaining showers is not so pronounced but still persists.  相似文献   

3.
Various points are discussed concerning the association of Earth-crossing asteroids (ECAs) with meteoroid streams, including the drawbacks of the techniques used in some previous work. In comparing the theoretical radiants of any ECA (or, indeed, comet) with observed meteor radiants it is necessary that the orbit used be that appropriate for epochs when the ECA has a node at 1 AU; in each precession cycle of the argument of perihelion () there will be four values rendering a node at the Earth's orbit, so that four showers are expected. Precession of the node will result in sets of showers at different times of year from different-precession cycles, whilst for some objects the orbital evolution is more convoluted. For diffuse, low-flux showers a problem is differentiating the meteors associated with any ECA from the sporadic background; a new graphical technique is introduced for illuminating whether such associations exist. A re-evaluation is required of whether ECAs should be thought of as being parent bodies of specific showers. Although this might be the case for some very large ECAs (such as (3200) Phaethon, associated with the Geminid stream), the bodies observed now being extinct or dormant cometary cores, it is suggested that in general the ECAs are better thought of as being large fragments produced in hierarchical cometary disintegrations. That is, some ECAs are just the largest meteoroids in meteoroid streams.  相似文献   

4.
Meteoroids always posed a great hazard to spacecraft security. A meteoroids stream assembled by a large massive body will further enhance the hazard severalfold. For example, the radiant of Northern Taurids (NTA) will be occulted by the Moon on Nov. 12, 2011. Since the gravitational lensing effect of massive bodies can gather together the orbits of meteoroids, the observable flux of meteoroids will increase. In this paper a set of numerical methods was built to discuss the observational effect of this kind of phenomena. The ZHR of NTA is generally small. But it can be local strong on the Earth by the lunar gravitational assembling. The calculated result suggests that a ten times stronger than normal NTA will appear in the sea area of Tristan da Cunha islands during 00h45m UT to 02h00m UT on Nov. 12, 2011.  相似文献   

5.
Šimek  M.  Pecina  P. 《Earth, Moon, and Planets》2000,88(2):115-122
The correlation of sporadic meteor rates from radar observations in January, August, and December non-show-er periods in 1958–2000, and relevant solar activity represented by the solar relative number, R, is investigated. Similar analysis of the December sporadic period was already presented by Simek 1999, and Pecina. Complete analysis indicates high correlation of both phenomena with sporadic meteor counts curve following that of solar activity after 1.5–2 years in the mean eleven year solar cycle with the correlation index exceeding 70%. This result supports the large volume of observing material of the Ondřejov meteor radar in the above mentioned span covering almost four solar cycles. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Efforts to link minor meteor showers to their parent bodies have been hampered both by the lack of high-accuracy orbits for weak showers and the incompleteness of our sample of potential parent bodies. The Canadian Meteor Orbital Radar (CMOR) has accumulated over one million meteor orbits. From this large data set, the existence of weak showers and the accuracy of the mean orbits of these showers can be improved. The ever-growing catalogue of near-Earth asteroids (NEAs) provides the complimentary data set for the linking procedure. By combining a detailed examination of the background of sporadic meteors near the orbit in question (which the radar data makes possible) and by computing the statistical significance of any shower association (which the improved NEA sample allows) any proposed shower–parent link can be tested much more thoroughly than in the past. Additional evidence for the links is provided by a single-station meteor radar at the CMOR site which can be used to dispel confusion between very weak showers and statistical fluctuations in the sporadic background. The use of these techniques and data sets in concert will allow us to confidently link some weak streams to their parent bodies on a statistical basis, while at the same time showing that previously identified minor showers have little or no activity and that some previously suggested linkages may simply be chance alignments.  相似文献   

7.
We investigated by numerical integrations the long-term orbital evolution of four giant comets or comet-like objects. They are Chiron, P/Schwassmann-Wachmann 1 (SW1), Hidalgo, and 1992AD (5145), and their orbits were traced for 100–200 thousand years (kyr) toward both the past and the future. For each object, 13 orbits were calculated, one for the nominal orbital elements and other 12 with slightly modified elements based on the rms residual of the orbit determination and on the number of observations. As past studies indicate, their orbital evolution is found to be very chaotic, and thus can be described only in terms of probability. Plots of the semi-major axis (a) and perihelion distance (q) of the objects treated here seem to cross each other frequently, suggesting a possibility of their common evolutionary paths. About a half of all the calculated orbits showedq- ora-decreasing evolution. This indicates that, at least on the time scale in question, the giant comet-like objects are possibly on a dynamical track that can lead to capture from the outer solar system. We could hardly find the orbits with perihelia far outside the orbit of Saturn (q>15 AU). This is perhaps because the evolution of the orbits beyond Saturn is so slow that substantial orbital changes do not take place within 100–200 kyr.  相似文献   

8.
A substantial fraction of the Edgeworth-Kuiper belt objects are presently known to move in resonance with Neptune (the principal commensurabilities are 1/2, 3/5, 2/3, and 3/4). We have found that many of the distant (with orbital semimajor axes a > 50 AU) trans-Neptunian objects (TNOs) also execute resonant motions. Our investigation is based on symplectic integrations of the equations of motion for all multiple-opposition TNOs with a > 50 AU with allowance made for the uncertainties in their initial orbits. Librations near such commensurabilities with Neptune as 4/9, 3/7, 5/12, 2/5, 3/8, 4/27, and others have been found. The largest number of distant TNOs move near the 2/5 resonance with Neptune: 12 objects librate with a probability higher than 0.75. The multiplicity of objects moving in 2/5 resonance and the longterm stability of their librations suggest that this group of resonant objects was formed at early formation stages of the Solar system. For most of the other resonant objects, the librations are temporary. We also show the importance of asymmetric resonances in the large changes in TNO perihelion distances.  相似文献   

9.
Recent theoretical and observational work has shown that the asteroids belonging to the Taurid meteoroid complex have a cometary nature. If so, then they might possess related meteoroid streams producing meteor showers in the Earth atmosphere. We studied the orbital evolution of ten numbered Taurid complex asteroids by the Halphen-Goryachev method. It turned out that all of these asteroids are quadruple crossers relative to the Earth's orbit. Therefore their proposed meteoroid streams may in theory each produce four meteor showers. The theoretical orbital elements and geocentric radiants of these showers are determined and compared with the available observational data. The existence of the predicted forty meteor showers of the ten Taurid complex asteroids is confirmed by a search of the published catalogues of observed meteor shower radiants and orbits, and of the archives of the IAU Meteor Data Center (Lund). The existence of meteor showers associated with the Taurid Complex Asteroids confirms that, most likely, these asteroids are extinct comets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
A cluster analysis procedure has been used to estimate the fraction of the sporadic interlopers (sporadis bias) identified as stream members among the observed meteor orbits. Using the artificial meteor orbits with the same distribution as the observed one, the sporadic bias is estimated for the given threshold value of the orbital similarityD c. It has been shown that in case of the radio meteor catalogues theD c values given by the formula proposed in Southworth and Hawkins (1963)and in Lindblad (1971) correspond to the sporadic bias of 8–21%. For the five radio meteor catalogues the values ofD c corresponding to the fixed bias equal to 10% and 15% are given.  相似文献   

11.
Meteors are streaks of light seen in the upper atmosphere when particles from the inter-planetary dust complex collide with the Earth. Meteor showers originate from the impact of a coherent stream of such dust particles, generally assumed to have been recently ejected from a parent comet. The parent comets of these dust particles, or meteoroids, fortunately, for us tend not to collide with the Earth. Hence there has been orbital changes from one to the other so as to cause a relative movement of the nodes of the meteor orbits and that of the comet, implying changes in the energy and/or angular momentum. In this review, we will discuss these changes and their causes and through this place limits on the ejection process. Other forces also come into play in the longer term, for example perturbations from the planets, and the effects of radiation pressure and Poynting–Robertson drag. The effect of these will also be discussed with a view to understanding both the observed evolution in some meteor streams. Finally we will consider the final fate of meteor streams as contributors to the interplanetary dust complex.  相似文献   

12.
In our work, the method that can help to predict the existence of distant objects in the Solar system is demonstrated. This method is connected with statistical properties of a heliocentric orbital complex of meteoroids with high eccentricities. Heliocentric meteoroid orbits with high eccentricities are escape routes for dust material from distant parental objects with near-circular orbits to Earth-crossing orbits. Ground-based meteor observations yield trajectory information from which we can derive their place of possible origin: comets, asteroids, and other objects (e.g. Kuiper Objects) in the Solar system or even interstellar space. Statistical distributions of radius vectors of nodes, and other parameters of orbits of meteoroids contain key information about position of greater bodies. We analyze meteor orbits with high eccentricities that were registered in 1975–1976 in Kharkiv (Ukraine). The orbital data of the Kharkiv electronic catalogue are received from observations of radiometeors with masses 10−6−10−3 g.  相似文献   

13.
two near-earth-asteroids associated with resonances with Jupiter are studied over a time span of 105 yrs. We found that asteroid (887) is temporary trapped in the 3:1 resonance; thus indicating that this resonance could be a source of short-lived NEAs. We also found that asteroid (3552) with a large eccentricity and a high inclination is wandering about the 1:1 resonant region.  相似文献   

14.
Observational evidence is sought that the long-term (104 yr) action of a mean motion resonance with Jupiter can produce structure in a meteoroid stream, concentrating meteoroids in a dense swarm. More specifically, predictions tabulated by Asher & Clube of enhanced meteor and fireball activity from a Taurid Complex swarm in the 7:2 resonance are compared with observational data collected in Japan over several decades. The swarm model was proposed for reasons independent of the observations analysed here, and these newly considered data are shown to be consistent with it. This allows increased confidence in the Taurid swarm theory, and more generally could mean that resonant trapping is a dynamical mechanism affecting a significant amount of meteoroidal material in the inner Solar system.  相似文献   

15.
A central depository for meteor orbits obtained by photographic techniques, as a part of the IAU Meteor Data Center, was moved to the Astronomical Institute of the Slovak Academy of Sciences in Bratislava in 2001. The current version of the catalogue contains data on 4581 meteor orbits obtained by 17 different stations or groups from the period 1936 to 1996. Since 1996 a few huge campaigns were organised including very successful Leonids and Perseids. That is why we would prepare a new more complete version of the database. The main aim of this paper is a call to the observers of meteors having new or recalculated/remeasured data on photographic meteors to send them to the MDC, where after a check and consultations with the observer, the orbits will be included in the database.  相似文献   

16.
17.
We suggest a nonstandard methodology for studying the influence of Jupiter on the secular orbital evolution of a distant satellite of Saturn. This influence is tangible only in short time spans near the times of the smallest separation between Jupiter and Saturn, i.e., when the heliocentric longitudes of the two planets coincide. These times are spaced about 20 years apart. To describe the jumplike behavior of perturbations, we suggest approximating the principal part of the perturbing function averaged over the satellite’s motion by a two-parameter exponential wavelet-type (burst) function. The subsequent averaging (smoothing) of the perturbing function allows us to eliminate the 20-year-period terms and obtain an approximate analytical solution in a special case of the problem. The results are illustrated by plots of the variations in the averaged perturbing function and the orbital eccentricity of Saturn’s outer satellite S/2000 S1, which is most strongly perturbed by Jupiter.  相似文献   

18.
The orbital evolution of model meteoroids ejected from the comet Encke has been investigated. The particles abandon the mother body with velocities 20 and 40 ms-1 perihelion within the interval of the past 10,000 years. Their 10,000 years old osculating orbits were numerically integrated forward, using a dynamical model of the solar system consisting of all planets. Forces from solar electromagnetic and corpuscular radiation effecting the particles are considered, too. Orbital dispersions of the model meteoroids are presented. The importance of nongravitational forces for a long-term orbital evolution of meteoroid streams is shown.  相似文献   

19.
李嘉 《天文学进展》2011,29(1):105-116
采用接近真实太阳系的动力学模型,对主带小行星的动力学演化进行了数值模拟。计算的起始时间是儒略日JD=2.4540005×10~6,计算的时间长度为100万年。力学模型采用n+m体模型,计算程序基于小行星轨道演化的软件Orbit9。对演化结果进行分析可以发现测试粒子与木星的平运动共振对测试粒子稳定性的不同作用,以及在2:3、3:4共振处不同初始ω值对测试粒子演化结果的影响。  相似文献   

20.
The orbital evolutions of the asteroid 3040 Kozai and model asteroids with similar orbits have been investigated. Their osculating orbits for an epoch 1991 December 10 were numerically integrated forward within the interval of 20,000 years, using a dynamical model of the solar system consisting of all inner planets, Jupiter, and Saturn.The orbit of the asteroid Kozai is stable. Its motion is affected only by long-period perturbations of planets. With change of the argument of perihelion of the asteroid Kozai, the evolution of the model asteroid orbits changes essentially, too. The model orbits with the argument of perihelion changed by the order of 10% show that asteroids with such orbital parameters may approach the Earth orbit, while asteroids with larger changes may even cross it, at least after 10,000 years. Long-term orbital evolution of asteroids with these orbital parameters is very sensitive on their angular elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号