首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Life histories for the dominant, larger copepods of the subartic Pacific have been constructed by sampling from weatherships patrolling Ocean Station P (50°N, 145°W) during 1980 and 1981. Neocalanus plumchrus reproduced at depths below 250 m from July through February. Copepodite stages were present in surface layers from October through August with a large peak in numbers and biomass in spring. Fifth copepodites prepared for diapuse in 38 days during spring and descended to depths below 250 m. They commenced immediately to mature, and the females reproduced without renewed feeding. This schedule contrasts with that of the population in the Strait of Georgia, which remains in diapause from July to January and matures exclusively in January and February. There appears to be a difference between the coastal and oceanic habitats in preparing the diapausing individuals for maturation.Maturation of the diapausing stock of N. plumchrus maintained constant adult populations, averaging 714 males m?2 from June through October and 1,434 females m?2 from August through January. This constancy, together with the exponential pattern of decline in the diapause stock from September through February, suggests that density of adults may regulate maturation of fifth copepodites. Offspring of individuals delaying maturation and, thus, reproduction would benefit from the resulting moderation of intraspecific competition, probably that among copepodites.Reproduction of Neocalanus cristatus also occurred below 250 m, and, while spawning was continuous through the year, there was a substantial peak in November. That resulted in a peak of abundance for early copepodite stages in mid-winter, and a peak for the fifth copepodite stage in June. Stocking of the population of fifth copepodites in diapause below 250 m occurred from July through October. Some fifth copepodites were present in surface layers through the entire summer, and some younger copepodites persisted through the summer in progressively declining abundance just below the mixed layer. In autumn 1980 resurgence of early copepodite populations was rapid, occurring during the course of a prolonged October storm. The storm may have improved the habitat either by cooling the mixed layer or by resupplying nutrients to the euphotic zone.Eucalanus bungii reproduced in the mixed layer in early May and in early July. The first event was a spawning by females that had previously spawned in 1979 and then had returned to diapause. The second, heavier spawning (more females, more eggs per female) was by newly matured females from stocks that had overwintered as fifth copepodites. Nauplii peaked sharply in abundance on 19 July, one week after the peak in spawning. First and second copepodites peaked on 1 August, and all had advanced to the third copepodite stage by September. The diapause stock was established by September, principally between 250 and 500 m, and consisted of copepodite stages from third to sixth. Duration of the E. bungii life cycle appears to be typically two years. New nauplii develop as far as the third or fourth copepodite stage during their first summer, then enter diapause. The second summer they advance to the fifth copepodite stage and reenter diapause. Fifth copepodites mature in their third summer at two years of age. The males remain at depth and mate without subsequent feeding. Females migrate at night to the mixed layer where spawning occurs. About 20% of females that had already spawned in 1980 reentered diapause. They would reproduce again in their fourth summer at three years of age. All aspects of the life cycle suggest low mortality rates for copepodite stages, particularly at depth in the habitat occupied during diapuse. There can be no premium on rapid reproduction for E. bungii in the subartic Pacific, and there must even be benefit from spreading reproduction between years. This iteroparity may amount to a “bet-hedging” tactic, the young from a given mother having more than one chance to find sustaining conditions. It also produces gene flow between the year classes of the biennial life cycle.  相似文献   

2.
The present study investigates ecological patterns and relationships to environmental variables among a time-series of larval fish species abundance from late spring surveys (1981–2003) in the northwest Gulf of Alaska (GOA). Links between interannual variation in species abundance and the physical environment were explored using generalized additive modeling (GAM). Trends in larval abundance and connections with physical variables displayed patterns that indicate unique and complex responses among species to environmental forcing during the larval period. In particular, the observed patterns suggest that ontogenetic-specific responses, representing sub-intervals of early life, are important. In addition, a notable degree of synchrony in larval abundance trends, and similarity in links with physical variables, were observed among species with common early life history patterns. The deepwater spawners, northern lampfish, arrowtooth flounder, and Pacific halibut, were most abundant in the study area during the 1990s, in association with enhanced wind-driven onshore and alongshore transport. Years of high abundance for Pacific cod, walleye pollock, and northern rock sole were associated with cooler winters and enhanced alongshore winds during spring. High larval abundance for spring–summer spawning rockfish species and southern rock sole seemed to be favored by warmer spring temperatures later in the time-series. This apparent exposure–response coupling seems to be connected to both local-scale and basin-scale environmental signals, to varying degrees depending on specific early life history characteristics. Understanding such ecological connections contributes to the evaluation of vulnerability and resilience among GOA species’ early life history patterns to fluctuating climate and oceanographic conditions. This investigation also provides crucial information for the identification of “environmental indicators” that may have a broad-spectrum effect on multiple species early life history stages, as well as those that may be more species-specific in exerting control on early life history survival. Of particular interest was the emergence of the EP–NP (East Pacific–North Pacific) teleconnection index as the top-ranked variable in the GAM models exploring the connections between late spring larval abundance and the physical environment. The EP–NP index represents an important and often primary mode of spring–summer atmospheric variability in the northeast Pacific, with a strong expression in the GOA, and its connection with species in this study implies that it may be a climate mode of significant ecological importance.  相似文献   

3.
Neocalanus flemingeri, Neocalanus plumchrus, Neocalanus cristatus and Eucalanus bungii are large and dominant mesozooplankton occurring throughout the subarctic Pacific. They are an important trophic link and transporter of organic matter to the mesopelagic zone. Vertical distributions of these copepods were investigated from March to October 2000 in the Oyashio region of the western subarctic Pacific. Neocalanus plumchrus and N. flemingeri were distributed in the surface layer (0–50 m) and N. cristatus and E. bungii in the subsurface layer (50–100 m). However, when examined in detail, clear seasonal and vertical differences were observed. Neocalanus plumchrus was concentrated in the top 20 m from late April to the end of July, and N. flemingeri showed a little deeper distribution from May to July. Neocalanus cristatus showed a deeper distribution than that of grazing individuals of E. bungii from April to early July, but grazing individuals of E. bungii (C3–C6) showed a deeper distribution than that of N. cristatus from the end of July to October. Early copepodites of E. bungii were distributed much shallower than late copepodite stages and overlapped with copepodites of N. plumchrus and N. flemingeri. These results suggest that the four species of large copepods have established habitat segregation by season, vertical distribution and food resource partitioning in the Oyashio region as well as other regions of the North Pacific.  相似文献   

4.
A mesoscale iron-fertilization experiment was carried out in the western subarctic Pacific during summer 2001. The iron-patch was traced for 14 days after the fertilization, and the abundance and behavior of mesozooplankton were compared with those outside of the patch. The phytoplankton biomass in the patch rapidly increased to over 15 times the initial level by the later half of the observation period, and was composed of large-sized (>10 mm), centric diatoms. Dominant zooplankton species in the upper 200-m depth were large copepods: Neocalanus plumchrus, Neocalanus cristatus, Eucalanus bungii and Metridia pacifica. Mesozoplankton biomass as well as species composition did not change significantly in the patch over the observation period. Furthermore, no changes of vertical distribution or diel vertical migration were observed for any species or stages of mesozooplankton throughout the observation period. However, the abundance of the first copepodite stages of N. plumchrus and E. bungii increased several fold in the patch after the diatom bloom formation compared to the densities outside the patch. The increases of both species are considered to be due to lowered mortality during the egg and nauplius stages. Spawning of N. plumchrus takes place at depth using lipid storage, while spawning of E. bungii takes place in the surface layer supported by grazing. These facts suggest that the relative importance of nauplii in the diets of the large copepods was decreased in the patch by the diatom bloom. Gut-pigment contents of dominant copepods in the patch increased 4–18 times, and the maximum values were observed during the bloom peak. However, the grazing impact on phytoplankton was low throughout the experiment, especially during the bloom period (<6% of the primary production).  相似文献   

5.
An examination of large archives (1950–1997) of the oceanographic and atmospheric data from the northwestern North Pacific Subtropical Gyre has revealed clear linkages between atmospheric forcing factors, physical processes and biological events. Large changes in the winter and spring biomass of phytoplankton and macroplankton observed over annual, decadal and inter-decadal time scales could clearly be attributed to climate-related changes in oceanographic processes. Interannual changes in the intensity of the winter-time East Asian Monsoon had a significant impact on the extent of convective overturning, on nitrate inputs into the euphotic zone and the concentrations of chlorophyll a in winter and during the following spring. A prolonged period of deeper winter mixed layers observed from the mid-1970s to the mid-1980s led to a sizeable increase in winter mixed-layer nitrate concentrations. This change resulted in a decrease in winter-time phytoplankton biomass. Spring-time chlorophyll a, in contrast, showed a steady increase during this period. The decline in winter phytoplankton biomass could be attributed to the depths of mixed layer. A deeper mixed layer prevents phytoplankton from remaining in the euphotic zone for long enough to photosynthesize and grow, leaving substantial amounts of nutrients unutilised. However, as a result of stratification of the water column in spring following each of these winters, phytoplankton could take advantage of the enhanced ambient concentrations of nutrients and increase its biomass. Another noteworthy observation for the period from the mid-1970s to the early 1980s is that the western subtropical gyre progressively became phosphate limited. The period of diminishing mixed-layer phosphate concentrations was observed in our study area from the early 1990s onwards was consistent with recent observations at Station ALOHA in the eastern subtropical gyre.  相似文献   

6.
As part of a broader field study examining the potentially deleterious effects of diatoms on planktonic food webs, we examined the abundance, stage composition, diet, and feeding success of the chaetognath, Sagitta elegans, and the abundance and morphometric condition of larval Pacific hake, Merluccius productus. Our objective was to look for a relationship between spring phytoplankton blooms and planktonic predators, as mediated by their copepod prey, with special reference to possible deleterious effects of diatoms. Zooplankton were collected weekly during February–May and in mid-summer of 2002 and 2003 in Dabob Bay, Washington State, USA. S. elegans abundance was high in summer of both years and was higher in spring 2003 than spring 2002. Larval chaetognaths dominated the population in early spring and remained present throughout sampling. S. elegans consumed mostly copepods. The abundance of larval S. elegans was correlated with the abundance of copepodites, although no relationship between chaetognath feeding success and prey abundance was found. Larval Pacific hake abundance was high (1200 larvae per square meter) in late February and early March of 2002 and 2003 and decreased rapidly in late spring. The morphometric condition of M. productus was not significantly related to copepod abundance. These results indicate that any deleterious effects of diatoms on copepod abundance, at the scale seen during spring 2002 and 2003 in Dabob Bay, did not greatly affect the next higher trophic level.  相似文献   

7.
An overview of the Oyashio ecosystem   总被引:3,自引:0,他引:3  
The Oyashio shelf region and the seasonally ice-covered areas north of Hokkaido are highly productive, supporting a wide range of species including marine mammals, seabirds and commercially important species in the western subarctic Pacific. The fishes include gadids, such as walleye pollock and Pacific cod, and subarctic migratory pelagic fishes such as chum salmon and pink salmon. It is also an important summer feeding ground for subtropical migrants such as the Japanese sardine, Japanese anchovy, Pacific saury, mackerels, Japanese common squid, whales and seabirds. In recent decades, some components of the Oyashio ecosystem (i.e., phytoplankton, mesozooplankton, gadid fish, and subtropical migrants) have shown changes in species abundance or distribution that are correlated with environmental changes such as the 1976/1977 and 1988/1989 regime shifts. The First Oyashio Intrusion moved northward from the mid-1960s until the late 1970s, when it moved southward until the 1980s, after which it returned to the north again after the mid-1990s. The sea-surface temperature in spring decreased after the late 1970s, increased after the late 1980s, and remained high during the 1990s. The extent of ice cover in the Sea of Okhostk also decreased during the latest warming in the 1980–1990s but has increased again since the late 1990s. This and other variabilities affect the Oyashio ecosystem and the surrounding region.  相似文献   

8.
Discovery that the subarctic Pacific copepods previously grouped as Neocalanus plumchrus belong to two species required reanalysis of the life histories of both. After correction of the abundance estimates for N. plumchrus s.str., our concept of its life history remains much as previously described, because it makes up about 90% of the summed populations. Fifth copepodites of the new species, Neocalanus flemingeri, descend from the surface layer in late May to early June and mature immediately. Males are only present for about two months, and females carrying spermatophores are found during that period. Throughout the summer and autumn the entire population is constituted of females with small, dormant ovaries. This appears to be a diapause phase. Ovarian development begins in November, and spawning occurs at the end of January. Copepodite stages develop in surface layers from February through May.  相似文献   

9.
Hydrographic and plankton surveys were conducted over the basin and slope of the southeastern Bering Sea during April, June/July and September of 1994 and in June/July 1995, and seasonal and spatial variations of zooplankton community were investigated in relation to the oceanographic conditions. In July 1994, sea surface temperature (SST) ranged 5.3–8.7 °C, and the thermocline was between 30 and 50 m. In July 1995, however, SST was warmer (7.3–12.4 °C), and the thermocline was shallower (20–30 m). The thermal front at the shelf was also stronger in July 1995 than in July 1994. Surface salinity was higher in 1994 than 1995. A total of 17 taxonomic groups of zooplankton were identified from the plankton samples. In 1994, the highest density was observed in September. Copepods were the major taxon during all surveys. While some taxa such as euphausiids, ostracods, and Neocalanus spp. were most abundant in spring, others such as Calanus spp., Metridia pacifica, chaetognaths, and pteropods were most abundant in September. Adults and late-stage copepodites of Eucalanus bungii were abundant in spring, and were replaced by 1st–3rd stages of copepodites in summer. Zooplankton density was ca. 4 times higher in 1995 than in 1994, in part because of warm water temperature.  相似文献   

10.
One of the present concerns of fish biologists involves defining and identifying nursery habitats in the context of conservation and resource management strategies. Fish nursery studies usually report upon nursery occupation during the latter juvenile stages, despite the fact that recruitment to nurseries can start early in life, during the larval phase. Here we investigated the use of a temperate estuarine nursery area, the Lima estuary (NW Portugal), by initial development stages of flatfish species before and after metamorphosis, integrating the larval and juvenile phases. The Lima estuarine flatfish community comprised twelve taxa, seven of which were present as pelagic larvae, six as juveniles and three as adults. There was a general trend of increasing spring–summer abundance of both larvae and juveniles, followed by a sharp winter decrease, mainly of larval flatfishes. The Lima estuary was used by Solea senegalensis, Platichthys flesus and Solea solea as a nursery area, with direct settlement for the two first species. In contrast, indirect settlement was suggested for S. solea, with metamorphosis occurring outside the estuarine area. Estuarine recruitment of S. senegalensis varied between years, with young larvae occurring in the estuary throughout a prolonged period that lasted 6–9 months, corroborating the protracted spawning season. P. flesus, the second most abundant species, exhibited a typical spring estuarine recruitment, without inter-annual variations. Developed larvae arrived in the estuary during spring, whereas the 0-group juveniles emerged in the following summer period. The present study contributes new insight to our understanding of the economically important S. senegalensis, and highlights the importance of integrating the planktonic larval phase into traditional flatfish nursery studies.  相似文献   

11.
The copepods Neocalanus plumchrus, N. flemingeri, N. cristatus, and Eucalanus bungii dominate the net zooplankton throughout the subarctic Pacific Ocean. All four species have an extensive seasonal ontogenetic vertical migration, completing most or all of their feeding and somatic growth in spring and early summer. We used stratified tows with MOCNESS and BIONESS instrumented net systems to resolve their upper ocean vertical distributions in May and June of 1984, 1987 and 1988. In each year the feeding copepodite stages of all four species were concentrated above the permanent halocline (roughly from 0 to 150m). However, the four species showed strong vertical species zonation and segregation within this layer. We consistently found a near-surface pair (N. plumchrus and N. flemingeri) and a subsurface pair (N. cristatus and E. bungii). The boundary between these groups shifts vertically, but was sharply defined and was very often coincident with a weak and transient thermocline marking the base of the layer actively mixed by surface wind and wave energy. Diel vertical migration was very limited during our sampling periods.The data suggest that the vertical distribution patterns of the copepods could be set by responses to the local intensity of turbulent mixing in the watercolumn. N. plumchrus and N. flemingeri occupied a stratum characterized by strong turbulence. N. cristatus and E. bungii occupied a stratum that was a local minimum in turbulence profiles. The depth of the boundary between the species pairs was deeper when winds and surface energy inputs were strong. The vertical partition pattern may also be determined by a difference in feeding strategy between the species pairs. N. plumchrus and N. flemingeri may feed on the enhanced protozoan population of the mixed layer, while N. cristatus and E. bungii feed on particle aggregates settling from above.  相似文献   

12.
To identify seasonal patterns of change in zooplankton communities, an optical plankton counter (OPC) and microscopic analysis were utilised to characterise zooplankton samples collected from 0 to 150 m and 0 to 500 m in the Oyashio region every one to three months from 2002 to 2007. Based on the OPC measurements, the abundance and biomass of zooplankton peaked in June (0–150 m) or August (150–500 m), depending on the depth stratum. The peak periods of the copepod species that were dominant in terms of abundance and biomass indicated species-specific patterns. Three Neocalanus species (Neocalanus cristatus, Neocalanus flemingeri and Neocalanus plumchrus) exhibited abundance peaks that occurred before their biomass peaks, whereas Eucalanus bungii and Metridia pacifica experienced biomass peaks before their abundance peaks. The abundance peaks corresponded to the recruitment periods of early copepodid stages, whereas the biomass peaks corresponded to the periods when the dominant populations reached the late copepodid stages (C5 or C6). Because the reproduction of Neocalanus spp. occurred in the deep layer (>500 m), their biomass peaks were observed when the major populations reached stage C5 after the abundance peaks of the early copepodid stages. The reproduction of E. bungii and M. pacifica occurred near the surface layer. These species first formed biomass peaks of C6 and later developed abundance peaks of newly recruited early copepodid stages. From the comparison between OPC measurements and microscopic analyses, seasonal changes in zooplankton biomass at depths of 0–150 m were governed primarily by E. bungii and M. pacifica, whereas those at depths of 150–500 m were primarily caused by the three Neocalanus species.  相似文献   

13.
Phytoplankton communities, production rates and chlorophyll levels, together with zooplankton communities and biomass, were studied in relation to the hydrological properties in the euphotic zone (upper 100 m) in the Cretan Sea and the Straits of the Cretan Arc. The data were collected during four seasonal cruises undertaken from March 1994 to January 1995.The area studied is characterised by low nutrient concentrations, low 14C fixation rates, and impoverished phytoplankton and zooplankton standing stocks. Seasonal fluctuations in phytoplankton densities, chlorophyll standing stock and phytoplankton production are significant; maxima occur in spring and winter and minima in summer and autumn. Zooplankton also shows a clear seasonal pattern, with highest abundances occurring in autumn–winter, and smallest populations in spring–summer. During summer and early autumn, the phytoplankton distribution is determined by the vertical structure of the water column.Concentrations of all nutrients are very low in the surface waters, but increase at the deep chlorophyll maximum (DCM) layer, which ranges in depth from about 75–100 m. Chlorophyll-a concentrations in the DCM vary from 0.22–0.49 mg m−3, whilst the surface values range from 0.03–0.06 mg m−3. Maxima of phytoplankton, in terms of cell populations, are also encountered at average depths of 50–75 m, and do not always coincide with chlorophyll maxima. Primary production peaks usually occur within the upper layers of the euphotic zone.There is a seasonal succession of phytoplankton and zooplankton species. Diatoms and ‘others’ (comprising mainly cryptophytes and rhodophytes) dominate in winter and spring and are replaced by dinoflagellates in summer and coccolithophores in autumn. Copepods always dominate the mesozooplankton assemblages, contributing approximately 70% of total mesozooplankton abundance, and chaetognaths are the second most abundant group.  相似文献   

14.
Fish scales were used to investigate the interannual variability in chum salmon growth rates at specific ages in relation to climatic/environmental changes during the 1980s–1990s. Scales were obtained from adult salmon returning to the east coast of Korea between 1984 and 1998. Assuming proportionality between scale size increments and fish length, distances between scale annuli were regarded as the growth conditions in different habitat areas with respect to the life stages of chum salmon. In estuarine and coastal areas, growth rates of fingerling salmon were higher in the 1990s than in the 1980s. Zooplankton abundance off the east coast of Korea increased after the late 1980s, which may have provided favorable growth conditions for young salmon in the 1990s. Growth of juvenile chum salmon during the first summer (Okhotsk Sea) was relatively stable, and neither SST nor zooplankton biomass fluctuated significantly during the study period. However, in the Bering Sea, salmon growth rates between age-2 and age-4 (i.e. ocean-phase immature salmon) were higher in the 1980s than in the 1990s. Variability in salmon growth in the Bering Sea was correlated to zooplankton biomass. These results suggest that the climate regime shift of 1988/1989 in the subarctic North Pacific affected salmon growth mediated by changes of zooplankton biomass, revealing a bottom-up process.  相似文献   

15.
The southeastern Bering Sea shelf ecosystem is an important fishing ground for fin- and shellfish, and is the summer foraging grounds for many planktivorous seabirds and marine mammals. In 1997 and 1998, Northern Hemisphere climate anomalies affected the physical and biological environment of the southeastern Bering Sea shelf. The resulting anomalous conditions provided a valuable opportunity to examine how longer-term climate change might affect this productive ecosystem. We compared historical and recent zooplankton biomass and species composition data for the southeastern Bering Sea shelf to examine whether or not there was a response to the atmosphere–ocean–ice anomalies of 1997 and 1998. Summer zooplankton biomass (1954–1994) over the southeastern shelf did not exhibit a decline as previously reported for oceanic stations. In addition, zooplankton biomass in 1997 and 1998 was not appreciably different from other years in the time series. Spring concentrations of numerically abundant copepods (Acartia spp., Calanus marshallae, and Pseudocalanus spp.), however, were significantly higher during 1994–1998 than 1980–1981; spring concentrations of Metridia pacifica and Neocalanus spp. were not consistently different between the two time periods. Neocalanus spp. was the only taxon to have consistent differences in stage composition between the two time periods—CV copepodites were much more prevalent in May of the 1990s than early 1980s. Since relatively high zooplankton concentrations were observed prior to 1997, we do not attribute the high concentrations observed in the summers of 1997 and 1998 directly to the acute climate anomalies. With the present data it is not possible to distinguish between increased production (control from below) and decreased predation (control from above) to explain the recent increase in concentrations of the species examined.  相似文献   

16.
Measurements of plankton respiration and heterotrophic bacterial abundance and production were made at seven deep water stations within the upper 500 m of the Gulf of Mexico during the summer of 1995. Bacterial abundance [(1.1–4.6)×108 1−1] and rates of bacterial production (2–19 nM C h−1) and plankton respiration (50–245 nM O2 h−1) decreased with depth by four- to nine-fold, and were similar to those reported for oligotrophic waters. Bacterial turnover times increased with depth from approximately 1 to 5 days. Bacterial growth efficiencies decreased from 15% at the surface to 8% at 500 m. Depth-integrated plankton respiration exceeded known estimates of primary production for the region, suggesting that heterotrophic utilization of previously and concurrently produced organic matter (e.g. spring phytoplankton growth, and summer blooms of Trichodesmium sp.) was occurring during the summer. Estimates for the upper 500 m showed that roughly half of the bacterial biomass (56%), bacterial production (49%), and plankton respiration (60%) occurred below the euphotic zone. Routine oceanographic studies have focused exclusively on the metabolic activity occurring within the euphotic zone. Our measurements, however, indicate that mesopelagic plankton also contribute substantially to heterotrophic metabolism and nutrient cycling in the ocean.  相似文献   

17.
The aim of the research was to investigate the diet of herring at different stages of its life cycle. For that purpose feeding of 0-group and immature herring in the Barents Sea, as well as of mature fish from the Norwegian Sea, was studied. 0-Group herring was sampled in the Barents Sea in August–September 2002–2005 during the international 0-group and trawl-acoustic survey of pelagic fish, as well as during the trawl-acoustic survey of demersal fish in November–December 2003–2004. Stomach samples of immature herring (1–3 years) were collected in late May and early of June 2001 and 2005 in the south-western part of the Barents Sea during the trawl-acoustic survey for young herring. Stomach samples of mature herring were collected in the Norwegian Sea in 1996, 1998, 1999, 2001, and 2002 in the course of the international trawl-acoustic survey of pelagic fish. Feeding intensity of herring of all age groups varied considerably between years and this was probably associated with availability and accessibility of their prey. The 0-group herring was found to have the most diverse diet, including 31 different taxa. In August–September, copepods, euphausiids, Cladocera, and larvae Bivalvia were most frequent in the diet of 0-group herring, but euphausiids and Calanus finmarchicus were the main prey taken. In November–December, euphausiids and tunicates were major prey groups. It was found that C. finmarchicus in the diet of 0-group herring was replaced by larval and adult euphausiids with increasing fish length. C. finmarchicus was the principal prey of immature herring and dominated in the diet of both small and large individuals and mainly older copepodites of C. finmarchicus were taken. Larval and adult euphausiids were found in stomachs of immature herring as well, but their share was not large. The importance of different prey for mature herring in the Norwegian Sea varied depending on the feeding area and length of the herring. On the whole C. finmarchicus and 0-group fish were the most important prey for mature herring diet, but fish prey were only important in a small sampling area. Hyperiids, euphausiids, tunicates, and pteropods were less important prey, and in 2002 herring actively consumed herring fry and redfish larvae.  相似文献   

18.
The vertical and temporal distribution of two calycophoran siphonophores, Chelophyes appendiculata (Eschscholtz, 1829) and Abylopsis tetragona (Otto, 1823) in the Bay of Villefranche (northwestern Mediterranean) was investigated by an analysis of three different planktonic time series. A daily series (1993–1995) showed seasonal peaks of the nectophores of C. appendiculata during spring and particularly in late summer, while the abundance of A. tetragona remained similar throughout the year. A weekly series (1994–1995) showed that C. appendiculata (nectophores and eudoxids) became concentrated above the thermal discontinuity, in the most stratified and warm waters, whereas A. tetragona was collected in large numbers below this discontinuity. A 27-year survey (1966–1993) showed long-term fluctuations of these siphonophore populations, which became abundant in the Bay starting from 1980 and especially after 1984, when the water column grew warm and hypersaline, corresponding to a less rainy period. Temporal (seasonal and long-term) and bathymetric (between 10 and 60 m depth) successions of these two siphonophores were noted in this shallow coastal bay.  相似文献   

19.
Neocalanus tonsus, C. macrocarinatus, and C. australis, three calanids which potentially occur together in New Zealand waters, were raised from eggs and their developmental stages described. All naupliar stages apparently have identical setation. Naupliar stages I—III are very similar. Neocalanus tonsus can be easily identified from naupliar stage IV onwards, whereas C. macrocarinatus and C. australis can be identified with certainty only in the copepodite stages, because their nauplii overlap in size and body proportions. Development at 15 °C from egg to copepodite V took 24 days for N. tonsus, 20.2 days for C. macrocarinatus, and 23.8 days for C. australis. Neocalanus tonsus is the smallest species during early developmental stages but by copepodite III stage is larger than the other two species.  相似文献   

20.
左涛  王俊  王秀霞 《海洋学报》2016,38(10):94-104
拟哲水蚤是莱州湾桡足类中周年出现的优势种;是上层鱼类幼鱼早期开口饵料的重要贡献者;掌握其种群动态分布特点;有利于了解湾内生物环境状况、次级生产力生产水平。基于2011年5月至20 12年4月采集的浮游生物资料的分析结果显示;莱州湾拟哲水蚤的发育期丰度组成和个体大小均表现了明显的季节变化。调查季节中;4-6月以成体居多;其他季节以桡足幼体CⅢ-CⅤ较多;其中10-11月和3月主要由后期桡足幼体CⅣ和CⅤ期构成。成体中以雌体为主导;雌/雄比介于1.46~9.62;该比值在3-4月最低;10-11月最高。拟哲水蚤各期桡足幼体和成体个体大小以4-5月最大、8月最小;并与水温表现出明显的负相关。拟哲水蚤桡足幼体和成体的总生物量月变化与丰度变化相同;即以8月值最高;3-5月值最低;月均值为2.69 mg/m3(以碳计);日生产力估算值为0.74 mg/(m3·d)(以碳计)。由上述结果;推测莱州湾拟哲水蚤的种群结构周年变化主要可分3个阶段;4-6月是莱州湾拟哲水蚤开始繁殖期;7-8月为种群数量快速增长期;9月之后为种群增长相对停滞期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号