首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrio parahaemolyticus is a common pathogenic bacterium in marine and estuarine waters. To investigate interactions between V. parahaemolyticus and co-occurring redtide dinoflagellates, we monitored the daily abundance of 5 common red tide dinoflagellates in laboratory culture; Amphidinium carterae, Cochlodinium ploykrikoides, Gymnodinium impudicum, Prorocentrum micans, and P. minimum. Additionally, we measured the ingestion rate of each dinoflagellate on V. parahaemolyticus as a function of prey concentration. Each of the dinoflagellates responded differently to the abundance of V. parahaemolyticus. The abundances of A. carterae and P. micans were not lowered by V. parahaemolyticus, whereas that of C. polykrikodes was lowered considerably. The harmful effect depended on bacterial concentration and incubation time. Most C. polykrikoides cells died after 1 hour incubation when the V. parahaemolyticus concentration was 1.4×107 cells ml−1, while cells died within 2 days of incubation when the bacterial concentration was 1.5×106 cells ml−1. With increasing V. parahaemolyticus concentration, ingestion rates of P. micans, P. minimum, and A. carterae on the prey increased, whereas that on C. polykrikoides decreased. The maximum or highest ingestion rates of P. micans, P. minimum, and A. carterae on V. parahaemolyticus were 55, 5, and 2 cells alga−1 h−1, respectively. The results of the present study suggest that V. parahaemolyticus can be both the killer and prey for some red tide dinoflagellates.  相似文献   

2.
3.
In the present study, we have investigated the conditions influencing encystment and excystment in the dinoflagellate Gyrodinium instriatum under laboratory conditions. We incubated G. instriatum in modified whole SWM-3 culture medium and in versions of modified SWM-3 from which NO3 , PO4 3−, NO3 + PO4 3−, or Si had been omitted and observed encystment. Percentage encystment was high in the media without N and without P, while the percentage encystment in the medium lacking both N and P was highest. Moreover, to investigate N or P concentration which induced the encystment, Gyrodinium instriatum was also incubated in media with different concentrations of inorganic N and P; the concentrations of NO2 + NO3 and PO4 3− were measured over time. The precursors of cysts appeared within 2 or 3 days of a decrease in NO2 + NO3 or PO4 3− concentration to values lower than 1 μM or 0.2 μM, respectively. When cysts produced in the laboratory were incubated, we observed excystment after 8–37 days, without a mandatory period of darkness or low temperature. We incubated cysts collected from nature at different temperatures or in the dark or light and observed excystments. Natural cysts excysted at temperatures from 10 to 30°C, in both light and dark, but excystment was delayed at low temperatures. These studies indicate that G. instriatum encysts in low N or P concentration and excysts over a wide temperature range, regardless of light conditions, after short dormancy periods.  相似文献   

4.
The egg production rate (EPR) of Calanus sinicus was measured from March 2007 to April 2010 at three stations along the Korean coast of the Yellow Sea (in coastal waters off Saemangum, Yeongheungdo, and Asan Bay) to estimate in situ maximum egg production rate (MEPR) and to understand whether the females were limited in their growth or fecundity in the field. The mean EPR of C. sinicus at each sampling date ranged from 10.3–34.9 eggs female−1 d−1 (mean 23.4 eggs female−1 d−1), and the EPR of individual copepods ranged from 0–81 eggs female−1 d−1. The mean EPR was positively correlated with the body weight of female copepods. The MEPR at each sampling date ranged from 40–81 eggs female−1 d−1 (mean 50.4 eggs female−1 d−1). Over 84% of eggs spawned hatched successfully. The weight-specific growth rate (WSGR) ranged from 0.038–0.111 d−1 (mean 0.082 d−1), indicating that 3.8–11.1% of the carbon in an adult female was produced daily as female growth. The WSGR was negatively correlated with water temperature. The ratio of mean EPR to observed mean MEPR ranged from 20–70% (mean 46%), indicating that ∼54% of a female’s growth might be limited in the field. We suggest that the ratio of observed EPR to mean MEPR of copepod can be applied to understand how the copepod responds to environmental changes, as well as EPR and hatching success.  相似文献   

5.
This study investigated the occurrence of Acartia copepods and their environmental characteristics to identify the existence and survival of foreign species at domestic ports in Korea. Copepods samples were collected seasonally, and temperature, salinity, dissolved oxygen (DO), total suspended solids (TSS), and chlorophyll-a (chl-a) were measured at the seaports Incheon, Gwangyang, and Ulsan from 2007 to 2009. No foreign species was found and all of the Acartia copepods observed had been recorded in Korean waters previously. Acartia omorii, A. hongi, and A. pacifica were found at all three seaports, whereas portspecific species were found at Incheon (A. sinjiensis) and Ulsan (A. steueri, A. negligens, and A. danae). When chl-a and DO were not limited, eurythermal and euryhaline A. hongi, A. omorii, and A. hudsonica occurred at TSS concentrations between 38 and 183 mg·L−1, while warm-water copepods (A. pacifica, A. ohtsukai, A. sinjiensis, and A. erythraea) occurred at TSS concentrations <80 mg·L−1. The seasonal distributions of A. omorii, A. hongi, and A. pacifica at the three seaports were most significantly explained by temperature, salinity, DO, and TSS, and not chl-a. The variation in A. hudsonica and A. sinjiensis at Incheon was explained mainly by temperature, DO, and TSS, whereas A. erythraea at Ulsan was influenced only by chl-a. The occurrence of Acartia copepods showed spatiotemporal variation as a result of species-specific preferences or tolerances in each port environment. Multiple regression analysis indicated that temperature, salinity, DO, and TSS were better predictors of the variation in Acartia species at the seaports during the study than chl-a when food was not limiting. These results indicated that the occurrence of Acartia copepods and related environmental characteristics are crucial information for differentiating foreign species from the native community and predicting the potential for foreign copepods to become established after their introduction to a seaport.  相似文献   

6.
Studies of macrophytes in the coastal zone of the Artic Seas, including the White Sea, have shown the essential role of these algae in the activity of the coastal half-latitude ecosystems. In summer, during the macrophyte reproduction period, a great number of reproduction products are released into the water. For a short time, this considerably affects the ratio of the nanoplankton in the populations that inhibit the vast and shallow coastal areas. At different coastal sites in Chernorechenskaya Inlet, Kadalaksha Bay, during the period of intensive reproduction of Ascophyllum nodosum and Fucus vesiculosus, 42 plankton samples were collected in 2005. During this period the concentration of antherozoids in the water reached 55000 cells/ml (216 mg C/m3). The number of eggs was within the range of 0.05–0.7 cells/ml. The proportion of antherozoids in the total biomass of nanoplankton varied at different coastal sites from 0.37 to 99%, with a mean of 46% for the reproduction period of A. nodosum, and only 7% for the reproduction period of F. vesiculosus. As was shown by counts of F. vesiculosus female gametes in sedimentation traps, 1 m2 of the macrophyte bed (assuming 100% coverage) produces 18000–108000 eggs per day (0.33–2 mg C). The calculated flux of the reproductive material from the brown algae beds to the coastal water shows good agreement with the sample counts.  相似文献   

7.
The studies were performed from September 10 to 29 of 2007 in the Kara Sea in transects westward of the Yamal Peninsula, near the St. Anna Trough, in the Ob River’s estuary, and on the adjacent shelf. The concentration of chlorophyll a in the euphotic layer changed from 0.02 to 4.37 mg/m3, amounting on the average to 0.76 mg/m3. The primary production in the water column varied from 10.9 to 148.0 mg C/m2 per day (the mean was 56.9 mg C/m2 per day). It was shown that frontal zones divided the Kara Sea into distinct areas with different productivities. The maximum levels of the primary production were measured in the deep part of the Yamal transect (132.4 mg C/m2 per day) and the shallow Kara Sea shelf near the Ob River’s estuary (74.9 mg C/m2 per day). The characteristics of these regions were the low salinity of the surface water layer (19–25 psu) and the elevated silicon content (12.8–28.1 μg-atom Si/l), which is explainable by the river water inflow. The frontal zones of the Yamal Current in the Yamal and Ob transects displayed high values of the assimilation numbers, amounting to 2.32 and 1.49 mg C/mg of chlorophyll per h, respectively (the maximal for the studied regions).  相似文献   

8.
The mitochondrial DNA (mtDNA) control region was sequenced to examine the genetic variability and gene flow of juvenile Siganus spinus and S. guttatus. In total, 461 nucleotide sequences were obtained from 69 specimens of juvenile S. spinus from Okinawa Island and Ishigaki Island, in which 17 variable sites and 22 haplotypes were identified. Haplotype diversity (h) was high (0.9244 in Okinawa and 0.8984 in Ishigaki), whereas nucleotide diversity (π) was low (0.0063 in Okinawa and 0.0059 in Ishigaki). The two populations were not genetically distinct. Siganus guttatus, which do not form large schools at recruitment, in contrast S. spinus, were also analyzed by studying 152 individuals collected off Okinawa Island, Miyako Island, and Ishigaki Island. Of 476 nucleotide sequences, 50 were variable, and 42 haplotypes were identified. Genetic variability values were high (h = 0.8766 and π = 0.0151 in Okinawa; h = 0.9640 and π = 0.0192 in Miyako; h = 0.9161 and π = 0.0199 in Ishigaki). The Okinawa population was genetically isolated from the Miyako and Ishigaki populations. As a result, genetic diversity was high for each of these siganid populations despite their being target species for fisheries; however, the degree of inter-population gene flow was higher for S. spinus than S. guttatus, suggesting that these species exhibit different dispersal strategies.  相似文献   

9.
Fugacity of CO2 (fCO2), temperature, salinity, nutrients, and chlorophyll-a were measured in the surface waters of southwestern East Sea/Japan Sea in July 2005. Surface waters were divided into three waters based on hydrographic characteristics: the water with moderate sea surface temperature (SST) and high sea surface salinity (SSS) located east of the front (East water); the water with high SST and moderate SSS located west of the front (West water); and the water with low SST and SSS located in the middle part of the study area (Middle water). High fCO2 larger than 420 μatm were found in the West water. In the Middle water, CO2 was undersaturated with respect to the atmosphere, with values between 246 and 380 μatm. Moderate fCO2 values ranging from 370 to 420 μatm were observed in the East water. For the East and West waters, estimates of temperature dependency of fCO2 (12.6 and 15.1 μatm °C−1, respectively) were rather similar to a theoretical value, indicating that SST is likely to be a major factor controlling the surface fCO2 distribution in these two regions. In the Middle water, however, the estimated temperature dependence was somewhat lower than the theoretical value, and relatively high concentrations of surface chlorophyll-a coincided with the low surface fCO2, implying that biological uptake may considerably affect the fCO2 distribution. The net sea-to-air CO2 flux of the study area was estimated to be 0.30±4.81 mmol m−2 day−1 in summer, 2005.  相似文献   

10.
Down-core variations in illite, chlorite, smectite and kaolinite (the major clays) in two 14C-dated cores collected along the SW continental margin of India show that illite and chlorite have enhanced abundance during 20–17, 12.5, 11–9.5, and 5–4.8 ka b.p., whereas smectite accumulation is higher between 17 and 12.5, and after 9 ka b.p. The climate may have been predominantly arid at 17 (20–17), 12.5, 10.5 (11–9.5), and 4.8 ka b.p. The first three dates correspond to the last glacial maximum, Bolling-Allerod, and Younger Dryas events, respectively. The SW monsoon was variable between 17 and 15 ka b.p., and it was more stable and intense after the Younger Dryas until about 6 ka b.p. Received: 2 December 1999 / Revision accepted: 11 April 2000  相似文献   

11.
Ocean acidification damages calcareous organisms, such as calcifying algae, foraminifera, corals, and shells. In this study, we made a device equipped with a Clark-type oxygen electrode and a pH-stat to examine how the most abundant calcifying phytoplankton, the coccolithophorid Emiliania huxleyi, responded to acidification and alkalization of the seawater medium. When E. huxleyi was incubated at pH 8.2, close to oceanic pH, the medium was alkalized during photosynthesis, and the alkalization rate [determined as μmol HCl added (mg Chl)−1 h−1] was identical to the activity of photosynthesis [determined as μmol O2 evolved (mg Chl)−1 h−1]. When pH was maintained at 7.2 by the pH-stat, alkalization activity was stimulated and exceeded photosynthetic activity, resulting in an increase in the ratio of alkalization to photosynthesis (Alk/PS). On the other hand, no alkalization and photosynthesis were observed at pH 9.2. In contrast, acidification of seawater was observed in the dark because of the release of respiratory CO2 from cells at pH 8.2–9.2, but not at pH 7.2. When orthophosphate was rapidly depleted within a day in the batch culture, intracellular calcification gradually increased, and both photosynthesis and alkalization decreased gradually. During the period the Alk/PS ratio also decreased gradually. These results indicate that E. huxleyi possesses an ability to compensate for the acidification of seawater when photosynthesis is more actively driven than respiration. These results suggest that the E. huxleyi cells may not be severely damaged by oceanic acidification during photosynthesis because of their homeostatic function to avoid negative effects on cellular activity. Finally, we concluded that E. huxleyi cells possess a buffering ability to reduce acidification effects when photosynthesis is actively driven.  相似文献   

12.
In our attempt to characterize the interaction of trophic coupling between Synechococcus and pigmented nanoflagellates (PNFs), successive size-fraction experiments were performed at a coastal station on the northeast coast of Taiwan from June, 2005 to January, 2006. By estimating the growth rate and grazing rate of Synechococcus in the presence of nanoflagellates of different sizes, we truncated the food web by removing organisms with different body sizes (<2 μm, <5 μm, <10 μm, and <20 μm). The growth rates of Synechococcus ranged from −0.016 to 0.051 h−1 during the experimental period, suggesting that temperature was a primary mechanism controlling Synechococcus growth. In addition to size and relative biomass of pigmented nanoflagellates and Synechococcus, it is suggested that community structures played an important role in trophic link. Furthermore, we conclude that the trophic cascading effect in the northeast coast of Taiwan includes: 1) high grazing rates at night in the warm season; 2) the Synechococcus biomass generally exceeds the grazing threshold (6 × 104 cells mL−1); and 3) the biomass ratio of <5 μm PNFs to >5 μm PNFs should be 1:1 to 2:1.  相似文献   

13.
To explore the effects of temperature changes on dinoflagellate bloom succession in the coastal waters of the East China Sea, changes in the growth, photophysiology, and Rubisco gene expression of Prorocentrum donghaiense and Karenia mikimotoi, two harmful algal species, were investigated at different temperatures (16 to 28°C). The maximal specific growth rate and the maximal mRNA expression of Rubisco gene in P. donghaiense and K. mikimotoi occurred at 20 and 24°C, respectively. The photosynthetic activity of P. donghaiense was generally stable, but K. mikimotoi photosynthesis increased when temperatures rose from 16 to 28°C. The effective photochemical efficiency (F q /F m ) and the maximal relative electron transfer rate (rETRmax) of K. mikimotoi increased significantly with increasing temperature, and the lowest and highest values occurred at 16 and 28°C, respectively. It seems that P. donghaiense has higher photosynthetic capacity than K. mikimotoi due to its higher F q /F m , rETRmax, and photosynthetic efficiency (α). However, K. mikimotoi has a higher growth rate than P. donghaiense. These results suggest that the photosynthetic activity and genetic responses of dinoflagellates are species-dependent. It is likely that temperature changes affect species composition during blooms, leading to the observed patterns of bloom succession.  相似文献   

14.
The spatial distribution of the primary production (PP) and the chlorophyll a concentration (Chl) were investigated during two research cruises in the Drake Passage area in October–November of 2007 and 2008. The algorithm evaluating the integral PP (PPint) for the water column in this area was developed based on the data on the surface chlorophyll (Chls) and the incident solar irradiance obtained in 2004–2008 in the Atlantic Sector of the Southern Ocean. The results obtained both by the experimental and model approaches suggested that the Polar Front (PF) region of the Drake Passage was characterized by low values of both the PPint (<100 mg C/m2 per day) and Chls (0.08–0.20 mg/m3) in October–November. Low values of the Chls and relatively high phaeophytine a concentrations indicated the winter succession state of the phytoplankton community in the Antarctic Ocean and the southern Polar Frontal Zone (PFZ). The seasonal warming of the surface water layers and the developing pycnocline resulted in a phytoplankton bloom and a Chls concentration of more than 1 mg/m3 in mid-November in this area and the Subantarctic waters.  相似文献   

15.
This study used the dilution method to examine growth and grazing rates of heterotrophic bacteria and an autotrophic picoplankton, Synechococcus spp., from 1 to 11 July 2007 in the East China Sea. The main influence of oceanographic conditions in this aquatic system was the introduction of fresh, high-nutrient water from Changjiang River and the extremely nutrient-poor, high-salinity waters of Kuroshio Water. In these experiments, deviation from linearity in the relationship between dilution factor and net growth rate was significant in a large number of cases. Growth rates for heterotrophic bacteria ranged from 0.024 to 0.24, and for Synechococcus spp. from 0.03 to 0.21 h−1. Grazing rates ranged from 0.02 to 0.19 and 0.01 to 0.13 h−1, respectively. The spatial variations of Synechococcus spp. production to the primary production ratio (SP/PP) were low (<5%) in high Chl a environments and increased exponentially in low Chl a environments, indicating that Synechococcus spp. contributes to a large extent to the photosynthetic biomass in the open sea, especially in the more oligotrophic Kuroshio Water. Furthermore, the results of our dilution experiments suggest that nanoflagellates largely depend on heterotrophic bacteria as an important energy source. On average, heterotrophic bacteria contributes to 76 and 59% of carbon consumed by nanoflagellates within the plume (salinity <31) and outside of it (salinity >31).  相似文献   

16.
We surveyed the distribution of colonies of polyps of Aurelia aurita sensu lato (s.l.) in Mikawa Bay, Japan. First, we surveyed the distribution of ephyrae of A. aurita s.l. at 75 stations encompassing the whole of Mikawa Bay in early 2008. A total of 37 ephyrae were sampled mostly from fishing ports. Ephyrae were most abundant around the islands located near the mouth of the bay, and decreased from the western part to the eastern part of Mikawa Bay. Next, we selected five fishing ports in Mikawa Bay where ephyrae occurred and surveyed the underside of floating piers and underwater overhangs of wharfs. We found dense colonies of polyps of A. aurita s.l. under nearly all of the floating piers at the two islands located near the mouth of the bay. Fitting a logistic regression model to the dataset showed that the percentage coverage of Aurelia polyps was significantly greater at the two islands compared with the other locations. In addition, the coverage of Aurelia polyps was greater when the coverage of other fouling organisms was in the range of 65–90%, and the coverage of Aurelia polyps was lower on floating piers with a vinyl surface and on concrete wharfs. The combined distribution of polyp colonies of A. aurita s.l. in Ise Bay and Mikawa Bay suggested that A. aurita s.l. in the two bays probably forms a single population and shoals of medusae mainly originate from protected harbors along the mouth-part of the bays.  相似文献   

17.
We compared the genetic diversity of three dominant myctophid fishes in the North Pacific Ocean that have different diel vertical migration patterns on the basis of the nucleotide sequences of the mitochondrial gene for cytochrome b. No genetic structure was detected for each of these three species. The genetic diversity progressively increased for Diaphus theta, a diel migrant species showing clear diel vertical migration; Stenobrachius leucopsarus, a semi-diel migrant, in which only part of the population migrates vertically; S. nannochir, a non-diel migrant. All three species were suggested to have experienced a recent, sudden population expansion. Interspecific differences in genetic diversity might be attributable to differences in the degree of population size reduction during the glacial periods; this degree in turn corresponds to the energy demand of the fishes.  相似文献   

18.
The seasonal abundance of the dominant dinoflagellate, Ceratium fusus, was investigated from January 2000 to December 2003 in a coastal region of Sagami Bay, Japan. The growth of this species was also examined under laboratory conditions. In Sagami Bay, C. fusus increased significantly from April to September, and decreased from November to February, though it was found at all times through out the observation period. C. fusus increased markedly in September 2001 and August 2003 after heavy rainfalls that produced pycnoclines. Rapid growth was observed over a salinity range of 24 to 30, with the highest specific rate of 0.59 d−1 measured under the following conditions: salinity 27, temperature 24°C, photon irradiance 600 μmol m−2s−1. The growth rate of C. fusus increased with increasing irradiance from 58 to 216 μmol m−2s−1, plateauing between 216 and 796 μmol m−2s−1 under all temperature and salinity treatments (except at a temperature of 12°C). Both field and laboratory experiments indicated that C. fusus has the ability to grow under wide ranges of water temperatures (14–28°C), salinities (20–34), and photon irradiance (50–800 μmol m−2s−1); it is also able to grow at low nutrient concentrations. This physiological flexibility ensures that populations persist when bloom conditions come to an end.  相似文献   

19.
The current study was carried out from May 2014 to April 2015 to estimate the stock status of P. viridis in Marudu Bay. The gonad development was monitored by histological examination, while the population parameters including asymptotic length (L), growth coefficient (K), mortality rate (Z, F and M), exploitation level (E) and recruitment of P. viridis were estimated using the lengthfrequency data. Results of the current study demonstrated that P. viridis in Marudu Bay spawned throughout the year with two major peaks, one in April to May and another one in October to December. The recruitment pattern was continuous with the peak in May to June 2014, which corresponded to the first spawning peak in April. However, no significant recruitment was observed from the second spawning peak due to the difference in spawning timing between male and female populations. The estimated asymptotic length (L), growth coefficient (K), total mortality (Z), natural mortality (M), fishing mortality (F) and growth performance (ф) of P. viridis in Marudu Bay were estimate to be 117 mm, 0.97 yr-1, 4.39 yr-1, 1.23 yr-1, 3.16 yr-1 and 4.123, respectively. The exponent b of the lengthweight relationship was 2.4 and exploitation level (E) was 0.72. The high mortality, low condition indices and negative allometric of P. viridis in Marudu Bay is caused by a lack of suitable food in the surrounding water.  相似文献   

20.
The food habits of the dominant myctophid Stenobrachius leucopsarus were examined in the central basin of the Bering Sea in relation to oceanographic conditions, in summer 2002 and 2003 and spring 2006. S. leucopsarus exhibited an ontogenetic and seasonal dietary shift. In spring, small fish (≤40 mm) preyed mainly on Neocalanus flemingeri/plumchrus whereas large fish fed mainly on Neocalanus cristatus. In summer, small fish preyed mainly on Metridia pacifica whereas large fish fed mainly on euphausiids (Thysanoessa spp.). In the summer of 2003, when water temperature in the epipelagic layer (≤100 m) was warmer, reflecting the prevalence of the Alaskan Stream, small-sized S. leucopsarus showed a higher stomach content index, perhaps reflecting the greater abundance of M. pacifica. Thus, the present study shows that the physical variability in the epipelagic layer affects not only diets but also feeding performance of micronekton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号