首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Surface waters of Alsea Bay, an unpolluted estuary on the Oregon coast, were analysed for nitrous oxide, nitrate and nitrite on a weekly or biweekly basis during the summer of 1979. The estuary was found to be a variable source of N2O to the atmosphere. Large and rapid increases in the concentrations of N2O, NO3?, and NO2? occurred at the beginning of the sampling period and are attributed to the influx of nutrient-rich upwelling water into the estuary with the tide. The subsequent decline in concentrations of nitrate, nitrite and nitrous oxide over the remainder of the summer is attributed to a decrease in upwelling intensity, a decline in nitrification rates and to assimilatory nitrate reduction. Measurements of nitrous oxide at six stations along the Alsea River were also made in September and October before and after the onset of the rainy season. Samples taken after flood conditions were established were systematically 50% higher than pre-flood samples. The data suggest that soil runoff results in elevated concentrations of N2O in rivers.  相似文献   

2.
The whole core squeezing method was used to simultaneously obtain profiles of nitrous oxide (N2O), nitrogenous nutrients, and dissolved oxygen in sediments of Koaziro Bay, Japan (coastal water), the East China Sea (marginal sea), and the central Pacific Ocean (open ocean). In the spring of Koaziro Bay, subsurface peaks of interstitial N2O (0.5–3.5 cm depth) were observed, at which concentrations were higher than in the overlying water. This was also true for nitrate (NO3) and nitrite (NO2) profiles, suggesting that the transport of oxic overlying water to the depth through faunal burrows induced in situ N2O production depending on nitrification. In the summer of Koaziro Bay, sediment concentrations of N2O, NO3 and NO2 were lower than in the overlying water. In most East China Sea sediments, both N2O and NO3 decreased sharply in the top 0.5–2 cm oxic layer (oxygen: 15–130 μM), which may have indicated N2O and NO3 consumption by denitrification at anoxic microsites. N2O peaks at subsurface depth (0.5–6.5 cm) implied in situ production of N2O and/or its supply from the overlying water through faunal burrows. However, the occurrence of the latter process was not confirmed by the profiles of other constituents. In the central Pacific Ocean, the accumulation of N2O and NO3 in the sediments likely resulted from nitrification. Nitrous oxide fluxes from the sediments, calculated using its gradient at the sediment–water interface and the molecular diffusion coefficient, were −45 to 6.9 nmolN m−2 h−1 in Koaziro Bay in the spring, −29 to −21 nmolN m−2 h−1 in the summer, −46 to 37 nmolN m−2 h−1 in the East China Sea, 0.17 to 0.23 nmolN m−2 h−1 in the equatorial Pacific, and <±0.2 nmolN m−2 h−1 in the subtropical North Pacific, respectively.  相似文献   

3.
Porewater nutrient dynamics during emersion and immersion were investigated during different seasons in a eutrophic intertidal sandflat of Tokyo Bay, Japan, to elucidate the role of emersion and immersion in solute transport and microbial processes. The water content in the surface sediment did not change significantly following emersion, suggesting that advective solute transport caused by water table fluctuation was negligible. The rate of change in nitrate concentration in the top 10 mm of sediments ranged from −6.6 to 4.8 μmol N l−1 bulk sed. h−1 during the whole period of emersion. Steep nutrient concentration gradients in the surface sediment generated diffusive flux of nutrients directed downwards into deeper sediments, which greatly contributed to the observed rates of change in porewater nutrient concentration for several cases. Microbial nitrate reduction within the subsurface sediment appeared to be strongly supported by the downward diffusive flux of nitrate from the surface sediment. The stimulation of estimated nitrate production rate in the subsurface layer in proportion to the emersion time indicates that oxygenation due to emersion caused changes in the sediment redox environment and affected the nitrification and/or nitrate reduction rates. The nitrate and soluble reactive phosphorus pools in the top 10 mm of sediment decreased markedly during immersion (up to 68% for nitrate and up to 44% for soluble reactive phosphorus), however, this result could not be solely explained by molecular diffusion.  相似文献   

4.
Uranium in coastal sediments of Tokyo Bay and Funka Bay   总被引:2,自引:0,他引:2  
The sediment cores from Tokyo Bay and Funka Bay were analyzed for U and its isotopic ratio,234U/238U, after dissolving them in 0.1 M HCl, and 30% H2O2 in 0.05 M HCl. A small fraction of U in the anoxic sediments was dissolved in 0.1M HCl and even the added yield tracer,232U, was lost. The isotopic ratio of H2O2 soluble U in the sediments was equal to that of seawater, suggesting that the H2O2 soluble U in the sediments is authigenic. The 6M HCl solution dissolved part of the lithogenic U besides the authigenic U. The depth profiles of U from the two bays resembled each other. The authigenic U comprised more than half of the total U even at the surface and increased with depth down to 70 cm, showing small maxima at about 20 cm. The concentration of refractory U was nearly constant with depth and similar to that of the pelagic sediments. The highest U concentration, 6 µg g–1 which was about 5 times that of the pelagic sediments, was observed in the layer between 70 and 160 cm depth in Tokyo Bay. The annual sedimentation rates of U in the Tokyo Bay sediments were 2.6 tons at the surface and 7.0 tons at the 70–160 cm depth. The increase in U with depth should be due to the deposition of interstitial U either diffusing downward from the surface indicating the trapping of seawater U, or otherwise diffusing upward from the deeper layer indicating the internal cycling of U within the sediments.  相似文献   

5.
1 Introduction Estuaries have been subject to intense anthro- pogenic influences over recent decades by inputs of ni- trogen as a consequence of fertilizer usage and sewage/waste input (Howarth et al., 1996). Thus, the capacity of an estuary to buffer or alleviate additional nutrients is of importance in modifying the load of ni- trogen in the marine ecosystem. The role of microor- ganisms in regulating fluxes of nitrogen from land to sea through estuaries has received increased attention (Ni…  相似文献   

6.
大亚湾养殖海区沉积物中营养盐的解吸-吸附   总被引:1,自引:0,他引:1  
研究了天然海水体系大亚湾养殖海区表层沉积物营养盐的解吸 -吸附规律。结果表明 :沉积物中磷酸盐和硅酸盐解吸 2h基本达到平衡 ,而铵盐、硝酸盐和亚硝酸盐 0 5h内基本达到平衡 ;各营养盐的解吸随pH值 (小于 8)降低而增大 ,随pH值 (大于 8)升高略有增加 ;盐度仅在低于 1 0时对各营养盐的解吸有影响。研究了磷酸盐在沉积物上的吸附等温线。  相似文献   

7.
Sinking particles were collected using time-series sediment traps deployed at 350 and 20 mab at Site SB (34° 58.5’N, 139° 20.9’E, 1544 m depth) near the center of Sagami Bay, off Japan with high time resolutions of 5-8 days (March 1997 to August 1998) and 3-4.5 days (March 1998 to August 1998), respectively. The major components (CaCO3, OM, opal, and clay) of these sinking particles and surface bottom sediments were determined using a stepwise leaching method combined with gravimetry. Average total mass fluxes were 1480, 5560 and 3068 mg/m2/year at 350 mab, at 20 mab, and in the surface sediments, respectively, indicating an enhanced collection of sinking particles at 20 mab. Clay was the dominant component and biogenic components (opal+OM+CaCO3) were dominated mainly by opal and secondly by OM. On average, opal and CaCO3 contents decreased gradually as clay content increased with increasing depth from 350 mab-20 mab and in the surface sediments, indicating dissolution of opal and CaCO3 through sinking, rebound, resuspension or sedimentation processes. Thirteen total mass flux peaks at 17--40-day intervals were observed at 350 mab during the period from March 1997 to August 1998 except for winter, while eight peaks were observed at 20 mab for the period from March 1998 to August 1998. Two types of total mass peaks can be distinguished: one with a clear increase in biogenic flux (opal+OM+CaCO3) and little or no increase in clay flux and termed a bloom type (B-type), and the other with a clear increase in clay flux, little increase in biogenic flux and termed a resuspension type (R-type). Some R-type peaks, but not all, coincided with total mass flux peaks observed at the mouth of Tokyo Bay and suggested the possibility of the effect of particulate materials transported from Tokyo Bay to site SB. The enormously large peak observed at 20 mab in late May 1998 and that at 350 mab in early June 1998 were considered to be due to some physical perturbations from an earthquake swarm near site SB during the period from April to June 1998. The 17--40-day periodicity was associated clearly with the change in biogenic flux dominated by opal flux and is thought to reflect the periodicity of biological productivity dominated by diatoms in the euphotic zone of Sagami Bay.  相似文献   

8.
采用实时荧光定量PCR、高通量测序等方法对湛江湾沉积物中四个月份的反硝化细菌与厌氧氨氧化细菌的多样性和丰度进行了分析。结果表明:湛江湾沉积物中反硝化细菌和厌氧氨氧化细菌丰度在四个月份的变化和空间分布趋势为:nirS型反硝化细菌在二月份最高,四月份最低,且其平均丰度有从湛江湾湾内向湾口附近呈现先升高再降低的趋势;nirK型反硝化细菌丰度在九月份最高,十一月份最低;nosZ型反硝化细菌在四月份最高,其余月份变化不大;厌氧氨氧化细菌丰度在九月份最高,二月份最低。通过相关性分析结果表明,亚硝酸盐、铵盐等共同调控着湛江湾沉积物中反硝化和厌氧氨氧化细菌丰度变化。系统发育分析表明:湛江湾中存在着一些广泛分布的反硝化细菌,但也生活着一些新奇的nirK型和nosZ型反硝化细菌。对于厌氧氨氧化细菌而言,其主要属于浮霉菌门及Candidatus Scalindua属,具有较高的耐盐性,另外湛江湾海区的厌氧氨氧化细菌也生活着一类在其他地方没有的新分支。典范对应分析分析结果表明:硝酸盐显著影响湛江湾反硝化细菌和厌氧氨氧化细菌的群落结构。湛江湾沉积物中反硝化细菌和厌氧氨氧化细菌存在特殊的竞争与共存的关系,且由亚硝酸盐、硝酸盐、pH等多种环境因子共同驱动。  相似文献   

9.
During 1985~1987,the concentration of nitrate nitrogen was higher in the Laizhou Bay and the Bohai Bay while that of nitrite nitrogen was higher in the Liaodong Bay and the Bohai Bay,The concentration of nitrate nitrogen was highest in winter and lowest in summer while that of nitrite nitrogen was highest in autumn and lowest in spring .the seasonal variation of the concentration of nitrate nitrogen was maximum in the Laizhou Bay and the Bohai Bay while that of the concentration of nitrite nitrogen was maximum in the Liaodong Bay.There was a great difference in the concentration of nitrate nitrogen between the surface and the bottom in autumn and in the concentration of nitrite nitrogen between the surface and the bottom in summer.The main reason for the seasonal variations of the concentration of nitrate nitrogen and nitrite nitrogen was the marine biochemical process.The nitrate nitrogen and nitrite nitrogen in the Bohai Sea basically maintained a quasi-equilibrium state seasonal cycle,The quesi-equilibrium state seasonal cycle of nitrate nitrogen and nitrite nitrogen at the bottom was stable while that at the surface was liable to variations caused by other factors.  相似文献   

10.
Benthic Nutrient Recycling in Port Phillip Bay, Australia   总被引:8,自引:0,他引:8  
Benthic chamber measurements of the reactants and products involved with biogenic matter remineralization (oxygen, ammonium, nitrate, nitrite, phosphate, silicate, TCO2and alkalinity) were used to define solute exchange rates between the sediment and overlying water column of Port Phillip Bay, Australia. Measurements at various sites throughout the bay, conducted during the summers of 1994 and 1995, indicate that the variability in flux values within a site is comparable to year-to-year variability (±50%). Four regions of the bay were distinguished by sediment properties and the northern region was identified as having 3–30 times greater nutrient regeneration rates than the other regions. Benthic recycling accounted for 63 and 72% of the annualized N and P input, respectively, to the entire bay as determined by summing benthic, dissolved riverine, atmospheric and dissolved effluent sources. However, bay-wide sedimentary denitrification accounted for a loss of 63% of the potentially recyclable N. This fraction is higher than many other coastal regions with comparable carbon loading. Denitrification efficiency is apparently not enhanced by benthic productivity nor by bio-irrigation. The rate of bio-irrigation is negatively correlated with denitrification efficiency. Bio-irrigation was studied using radon-222 and CsCl spike injection chamber measurements. Radon fluxes from sediments in Port Phillip Bay were enhanced over the diffusive flux by 3–16 times. The modelled rate of loss of Cs from chamber water was positively correlated with radon flux enhancement results. Both methods identify regions within Port Phillip Bay that have particularly high rates of non-diffusive pore-water overlying water solute exchange.  相似文献   

11.
The historical trend of pollution sources of Pb in Tokyo Bay, Japan was investigated on the basis of Pb isotope ratios in a sediment core. The isotope ratios of anthropogenic Pb decreased gradually with increasing Pb concentration in the 1900s–1970s, suggesting a combination of Pb sources with various isotope ratios. In contrast, the isotope ratios of anthropogenic Pb in the 1980s–2000s showed no significant trend, and corresponded to the Pb isotope ratios in the three principal rivers flowing into the bay. It is probable that river bottom sediments contaminated with Pb are principal sources of anthropogenic Pb in Tokyo Bay.  相似文献   

12.
Sediment and water column data from four sites in North, Central and South San Francisco Bays were collected monthly from November 1999 through November 2001 to investigate the seasonal variation of benthic organic matter and chlorophyll in channel sediments, the composition and quality of sediment organic matter (SOM), and the relationship between seasonal patterns in benthic organic matter and patterns in water column chlorophyll. Water column chlorophyll peaked in the spring of 2000 and 2001, characteristic of other studies of San Francisco Bay phytoplankton dynamics, however an unusual chlorophyll peak occurred in fall 2000. Cross-correlation analysis revealed that water column chlorophyll at these four channel sites lead sediment parameters by an average of 2 to 3 months. Sediment organic matter levels in the San Francisco Bay channel showed seasonal cycles that followed patterns of water column production: peaks in water column chlorophyll were followed by later peaks in sediment chlorophyll and organic matter. Cyclical, seasonal variations also occurred in sediment organic matter parameters with sediment total organic carbon (TOC) and total nitrogen (TN) being highest in spring and lowest in winter, and sediment amino acids being highest in spring and summer and lowest in winter. Sediment chlorophyll, total organic carbon, and nitrogen were generally positively correlated with each other. Sediment organic matter levels were lowest in North Bay, intermediate in Central Bay, and highest in South Bay. C:N ratio and the ratio of enzyme hydrolyzable amino acids to TOC (EHAA:TOC) data suggest that SOM quality is more labile in Central and northern South Bay, and more refractory in North Bay and southern South Bay.  相似文献   

13.
A time-series sediment trap was deployed from December 1994 to February 2002 at the mouth of Tokyo Bay (35°03′ N, 139°40′ E; water depth, 850 m). Sinking particles were obtained with a time interval of one week at a depth of approximately 100 m above the sea floor. Observed total mass fluxes varied from 3.3 to 226.7 g/m2/day with an average of 28.0 g/m2/day. Concentrations of rare earth elements, Al, Ca and Si in particulate materials were measured. The combustible fraction at 450°C is assumed to be equivalent to the organic matter content. Contents of biogenic materials, namely organic matter, opal and calcium carbonate, were about 30% and the content of lithogenic material was about 70%. Using La/Yb ratios of particles from the sediment trap and Tama-gawa River and surface sediment of Tokyo Bay, it was estimated that about 50% of the lithogenic particles collected in the sediment trap at the mouth of Tokyo Bay originated from resuspended surface sediment in Tokyo Bay. An increasing trend of Opal/CaCO3 ratio in the sinking particles was found in the spring season. It is suggested that the relative increase of diatoms is due to the decreasing dissolved inorganic nitrogen input into Tokyo Bay.  相似文献   

14.
To understand the behavior of manganese in diagenetic processes in sediments of an enclosed bay which is similar to those of an estuary, chemical analyses have been carried out on both sediment and interstitial water of a core sample collected from Tokyo Bay. The results suggest that redistribution of manganese takes place within the sediment as a result of the dissolution of buried manganese oxides and hydroxides under reducing condition, the downward diffusion of Mn2+ through the interstitial water toward lower layers and then the precipitation of carbonate. The carbonate formed in the sediment contains managanese carbonate probably as a solid solution between calcitic calcium carbonate and manganese carbonate.  相似文献   

15.
Sagami Bay is a deep-water foreland basin with an average sedimentary rate of approximately 0.1 g/cm2/year. It is an appropriate area to study for better understanding of sedimentary processes in a setting with a high sedimentation rate. Seven multiple core samples, 30-50 cm thick, were obtained from Sagami Bay. Four of the core samples were taken from the Tokyo submarine fan system (Tokyo canyon floor, Tokyo fan valley and its levee, the distal fan margin). Two samples were obtained from the Sakawa fan delta and the adjacent topographic high. The remaining one was from an escarpment of the Sagami submarine fault. Variations in chemical composition can be recognized at every coring site. They show two different sediment sources: the sediments of the Tokyo submarine fan system and those from Sakawa fan delta. Further, there are differences in chemical composition between canyon floor and levees even within the Tokyo submarine fan system. The results suggest that the sedimentary process is strongly controlled not by vertical particle settling but by a hyperpycnal flow process. The proxies obtained from the core samples do not reflect conditions in the water column immediately overlying the sea floor. Rather, they are controlled by conditions on the adjacent continental shelf or/and shallow basins, which are the areas of primary accumulation.  相似文献   

16.
Phytoplankton distribution in a frontal region of Tokyo Bay was investigated in relation to hydrography in November 1985. The frontal region was observed from the central to the mouth area of the bay and consisted of a series of fine scale discontinuities of salinity and temperature. Among them the Kenzaki offshore front (KOF) and the Yokosuka inshore front (YIF) were most prominent in terms of the duration and the magnitudes of the hydrographic gaps. Three major phytoplankton assemblages were observed: (A) neritic and offshore diatoms in the mouth area of Tokyo Bay, (B) a diatomLeptocylindrus danicus and dinoflagellates in the central area, and (C) bloom forming cryptophyceans, dinoflagellates andL. danicus from the inner Tokyo Bay. The KOF was an approximate boundary of the outside assemblage (A) and the intermediate population (B), and the YIF was that of (B) and the inner bay population (C). Species changes across the fronts were rather gradual in the KOF making a strong contrast to distinct jumps in temperature, salinity,in vivo chlorophyll fluorescence and nitrate plus nitrite. An outward surface flow of the inside population along the western coast off Yokosuka was detected.  相似文献   

17.
The seasonal fluctuations of the concentration of nitrogenous compounds in sediments was investigated for three regions of the Seto Inland Sea in Japan; the variation of nitrogenous compounds in sediments was also studied in a laboratory experiment.The amounts of ammonium, dissolved organic nitrogen, nitrite and nitrate, as percentages of the dissolved total nitrogen of the interstitial water, were in the ranges of 47–99%, 10–50%, 0·1–0·6% and 0·3–4·1%, respectively. Ammonium was the major component and organic nitrogen was the next most important. The concentrations of these nitrogenous compounds changed seasonally: dissolved total nitrogen was higher in the warm month of September than in May; ammonium increased in warm months and decreased in cold months, but nitrite and nitrate increased in cold months. It was possible to explain the seasonal fluctuation of nitrogenous compounds in terms of the rates of the metabolic pathways of nitrogen in the sediments.Ammonium was not necessarily correlated with dissolved organic nitrogen. From this, it was considered that ammonium did not occur from solubilization of particulate organic nitrogen followed by mineralization, but from direct mineralization of particulate organic nitrogen in sediments.For the sediments of Suho Nada, Hiuchi Nada and station B-47 in Beppu Bay, the ratio of dissolved ammonium to adsorbed ammonium in the sediments was in the range 10–25%, but the ratio was 60–70% of adsorbed ammonium in the considerably anaerobic sediments at station B-45 in Beppu Bay. The ratio of dissolved ammonium to adsorbed ammonium increased with the increase of the concentration of sulfide in sediments. It was recognized that the anaerobic conditions of the sediments led to the dissolution of adsorbed ammonium.  相似文献   

18.
The purpose of this study was to provide general information on the chemical, physical and structural properties of estuarine ice and show how it compares with sea ice found at higher latitudes in order to determine whether the ice in Great Bay can be used as an analog in the study of arctic sea ice.Ice cores and water samples were collected during the 1983–1984 winter season at Adams Point in Great Bay, New Hampshire. Concentrations of chloride, nitrogen (as nitrate and nitrite), bromide, phosphate, sulfate and silicate were determined for samples chosen on the basis of identifiable stratigraphic layers (i.e. bubble size and shape, sediment layers, etc.).Similarities between ice formation in Great Bay and those in the arctic regions include the nature of the freezing process and the ice types produced. In addition, the distribution and concentration of chemical constituents were found to be similar to those observed in arctic sea ice. Factors affecting the chemistry of the ice in Great Bay include rainfall during the freezing season, the presence of sediment layers in the ice cores, the nature of incorporation of brine into the crystal structure of the ice and the drainage of brine.  相似文献   

19.
本研究在长江口附近海域采集表层沉积物,采用实验室模拟培养与分子生物学手段相结合的方法,通过测定纳米氧化锌(ZnO NPs)和菲(Phe)胁迫下沉积物中NO-3-N和NO-2-N浓度和反硝化还原酶活性及反硝化细菌基因丰度和群落多样性变化,目的是比较研究ZnO NPs和Phe对河口区沉积物反硝化作用及功能菌群落结构的影响,并探讨其作用过程和可能的作用机制。结果表明:ZnO NPs和Phe对沉积物硝酸盐还原能力和亚硝酸还原能力均产生抑制作用,浓度越高,抑制作用越强,其中亚硝酸盐还原过程受到2种污染物抑制更强烈,加重了沉积物亚硝酸盐的累积。ZnO NPs对沉积物硝酸盐还原能力、硝酸还原酶活性、narG基因丰度的抑制程度大于Phe,Phe对沉积物亚硝酸盐还原能力、亚硝酸还原酶和nirS基因丰度的抑制程度大于ZnO NPs,表明对反硝化还原酶和反硝化功能基因的抑制是外源污染物胁迫影响反硝化过程的主要机制。ZnO NPs和Phe降低了沉积物反硝化菌群落多样性水平,增加沉积物中Halomonas的优势度,降低了Bacillus的优势度,但Phe对沉积物群落多样性和组成的影响更加明显,说明Phe对长江口海区的生态影响大于ZnO-NPs。  相似文献   

20.
Denitrification may play a major role in inorganic nitrogen removal from estuarine ecosystems, particularly in those subjected to increased nitrate and organic matter loads. The Douro estuary (NW Portugal) suffers from both problems: freshwater input of nitrate and organic load from untreated wastewater discharges. To assess how these factors might control sediment denitrification, a 12-month survey was designed. Denitrification potential and nitrous oxide (N2O) production were measured at different locations using the slurry acetylene blockage technique. Denitrification rate ranged from 0.4 to 38 nmol N g−1 h−1, increasing towards the river mouth following an urban pollution gradient. N2O production, a powerful greenhouse gas implicated on the destruction of the ozone layer, was significantly related with sediment organic matter and accounted for 0.5–47% of the N gases produced. Additional enrichment experiments were consistent with the results found in the environment, showing that sediments from the upper less urban stretch of the estuary, mostly sandy, respond positively to carbon and, inversely, in organic rich sediments from the lower estuary, the denitrification potential was limited by nitrate availability. The obtained results confirmed denitrification as an important process for the removal of nitrate in estuaries. The presence of wastewater discharges appears to stimulate nitrogen removal but also the production of N2O, a powerful greenhouse gas, exacerbating the N2O:N2 ratio and thus should be controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号