首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
湖泊水情遥感研究进展   总被引:1,自引:0,他引:1  
宋春桥  詹鹏飞  马荣华 《湖泊科学》2020,32(5):1406-1420
湖泊作为最直接的淡水资源之一,在人类的生产、生活各方面都占据至关重要的地位.受到全球气候变化与人类活动的影响,湖泊正在发生急剧变化,因而有必要对其进行快速、准确的时空变化监测,从而为水资源管理与保护、未来气候变化预警提供依据.遥感技术的产生与发展为大范围、实时动态的湖泊变化监测提供了难得的契机,它克服了人类对湖泊实地考察的局限性.本文对现有国内外湖泊水情遥感监测技术与方法进行了综合梳理,主要综述了国内外在湖泊水域范围提取、湖泊水位提取、湖泊水量估算、流域水文过程等方面的遥感研究进展情况,重点总结了该领域近年来提出的新方法和新技术.最后,结合当前遥感技术的发展,对未来遥感在湖泊动态变化监测中的应用潜力和趋势进行了简要论述,并对多源遥感数据融合与云计算平台的结合在地表水体连续变化监测中的应用进行了展望.  相似文献   

2.
Ecohydrological processes occurring at or near the Earth's surface are strongly influenced by Eastern hemlock [EH; Tsuga canadensis (L.) Carrière], a foundation tree species of eastern North American forests. EH populations are currently threatened by the invasive hemlock woolly adelgid (HWA; Adelges tsugae Annand). HWA HWA populations have been expanding rapidly throughout the EH's range. Catchment-scale research examining the hydrological consequences of HWA infestation is lacking, and plot-scale studies remain conflicted in their findings. Given the complex relationships between canopy interception, unsaturated and saturated groundwater storage, and root water uptake, it is not immediately clear how EH loss will affect the hydrologic cycle. We investigated the impact of EH mortality on stream discharge characteristics across a regional sample of catchments utilizing both simulation and statistical modelling approaches. We first examined the relationship between various catchment characteristics, including EH health, and three hydrological variables through regression analysis. We then employed a non-parametric statistical test to evaluate differences in hydrologic regime trends between non-infested and infested catchments. Finally, we calibrated a physically based hydrologic model and considered differences in optimal model parameter values and simulated overland runoff between non-infested and infested catchments. HWA presence modified several ecohydrological characteristics and precipitation partitioning between groundwater flows and surface runoff, potentially driving higher stream flashiness and overland flow, lower baseflow contributions and catchment storage, shorter flow-path lengths, and variable source area dilation at infested sites. Our results suggest that EH decline will augment flooding potential associated with the increasing frequency and intensity of Atlantic Basin tropical cyclone events. Further, our physically based simulation provides more determinate results than regression analysis, indicating that a purely statistical methodology, commonly utilized in studying the relationship between landcover characteristics and hydrologic regime, neglects dynamic physical ecohydrologic relationships.  相似文献   

3.
沉水植物是湖泊生态系统的重要组成部分,其生产力和分布格局受环境因子特别是水文情势决定.洞庭湖是长江流域重要的大型通江湖泊,近年来受人为干扰和气候变化影响,水文节律与水质等环境因子发生改变,导致沉水植物出现衰退现象,急需开展科学恢复,因此有必要对洞庭湖沉水植物深入研究.本研究选取西洞庭湖为研究区域,于2018年和2019年夏季调查了12处典型生境、98个样点的沉水植物与水深、透明度等11个环境因子,采用独立样本T检验和冗余分析方法对沉水植物与环境因子的关系进行分析,对比年际水文情势变化的影响.结果表明:1)西洞庭湖沉水植物主要在水深较浅、水质更优、水体更为稳定的半阻隔子湖和自由连通的湖湾区分布,在河道及水位波动较大的区域分布较少,有、无沉水植物分布样点间存在显著差异的环境因子为水深、透明度、底泥总磷和pH;2)在有沉水植物分布的样点,沉水植物生物量与pH、水深和水体总磷呈显著相关关系;3)自然连通的季节性淹没湖泊沉水植物生物量在2018年高于2019年,可能与2019年5—8月沉水植物关键生长期出现的涨水过程有关,持续的高水位对沉水植物的生长产生了不利影响.维持自然水文节律、湖泊生境异质性与自由连通性、健康的水质等是恢复西洞庭沉水植物的关键,建议在水深低于3 m、营养盐浓度适中、流速及风浪较小的湖湾区或半阻隔湖泊开展沉水植物恢复.  相似文献   

4.
Hilary McMillan 《水文研究》2020,34(6):1393-1409
Hydrologic signatures are metrics that quantify aspects of streamflow response. Linking signatures to underlying processes enables multiple applications, such as selecting hydrologic model structure, analysing hydrologic change, making predictions in ungauged basins, and classifying watershed function. However, many lists of hydrologic signatures are not process-based, and knowledge about signature-process links has been scattered among studies from experimental watersheds and model selection experiments. This review brings together those studies to catalogue more than 50 signatures representing evapotranspiration, snow storage and melt, permafrost, infiltration excess, saturation excess, groundwater, baseflow, connectivity, channel processes, partitioning, and human alteration. The review shows substantial variability in the number, type, and timescale of signatures available to represent each process. Many signatures provide information about groundwater storage, partitioning, and connectivity, whereas snow processes and human alteration are underrepresented. More signatures are related to the seasonal scale than the event timescale, and land surface processes (ET, snow, and overland flow) have no signatures at the event scale. There are limitations in some signatures that test for occurrence but cannot quantify processes, or are related to multiple processes, making automated analysis more difficult. This review will be valuable as a reference for hydrologists seeking to use streamflow records to investigate a particular hydrologic process or to conduct large-sample analyses of patterns in hydrologic processes.  相似文献   

5.
It is a common practice to employ hydrologic models for assessing present and future states of watersheds and assess the degree of alterations for a range of hydrologic indicators. Previous studies indicate that the hydrologic model may not be able to replicate some of the indicators of interest, which raises questions on the reliability of model simulated changes. Hence, we initiated a study to evaluate the replicability of the streamflow changes by employing the widely used variable infiltration capacity hydrologic model for sub‐basins and mainstem of the Fraser River Basin, Canada. Given that the hydrologic regime of the region is known to be influenced by teleconnections to the Pacific Decadal Oscillation (PDO) and El Niño–Southern Oscillation (ENSO), we used hydrologic responses to the PDO and ENSO states as analogues for evaluating the model's ability to simulate climate‐induced changes. The results revealed that the qualitative patterns of response, such as lower flows for the warm PDO state compared to the cool state, and progressively higher flows for the warm, neutral and cool ENSO states, were generally well reproduced for most hydrologic indicators. Additionally, while the directions of change between the different PDO and ENSO states were mostly well replicated, the magnitude of change for some of the indicators showed considerable differences. Hence, replicability of both magnitude and direction of change need to be carefully examined before using the simulated indicators for assessing future hydrologic changes, and a reliable replication increases the confidence of projected changes. Copyright © 2016 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Stream-channel morphologic responses are found to be related to different parameters measuring traditional agricultural land-use patterns and practices in 50 small headwater basins in southwest Nigeria. The problem of intercorrelations among these parameters made it initially difficult to establish their precise channel enlargement effects and to calibrate an impact prediction model. Through factor analysis of the 22 land-use and morphometric parameters, six factors identified as measures of traditional land-use practice, farm size, planting activities, shortened fallow, relief and overland flow, were found to account for 86% of the variance in the data. The factor-defining variables are length of cropping period, areas in short fallow, farm-plot size, length of farm preparation, relief ratio and overland flow. In a multiple regression analysis, only the first three variables were found to be statistically significant in explaining stream-channel morphologic responses. Thus, areas in short fallows, average farm size and length of cropping period adequately described those aspects of the traditional farming practices that affect basin hydrologic and channel responses. Since these variables were orthogonally derived, they formed the basis for the evaluation of the channel impact status of traditional land-use activities. The duplication of information and effects in the original 22-variable full-rank model were removed while utilizing the three-factor reduced model.  相似文献   

7.
Abstract

Reference hydrologic networks (RHNs) can play an important role in monitoring for changes in the hydrological regime related to climate variation and change. Currently, the literature concerning hydrological response to climate variations is complex and confounded by the combinations of many methods of analysis, wide variations in hydrology, and the inclusion of data series that include changes in land use, storage regulation and water use in addition to those of climate. Three case studies that illustrate a variety of approaches to the analysis of data from RHNs are presented and used, together with a summary of studies from the literature, to develop approaches for the investigation of changes in the hydrological regime at a continental or global scale, particularly for international comparison. We present recommendations for an analysis framework and the next steps to advance such an initiative. There is a particular focus on the desirability of establishing standardized procedures and methodologies for both the creation of new national RHNs and the systematic analysis of data derived from a collection of RHNs.

Editor Z.W. Kundzewicz; Associate editor K. Hamed

Citation Burn, D. H., et al., 2012 Whitfield, P.H. 2012. Reference hydrologic networks, I. The status of national reference hydrologic networks for detecting trends and future directions. Hydrological Sciences Journal, 57(8) this issue[Taylor & Francis Online] [Google Scholar]. Reference hydrologic networks II. Using reference hydrologic networks to assess climate-driven changes in streamflow. Hydrological Sciences Journal, 57 (8), 1580–1593.  相似文献   

8.
Most natural disasters are caused by water‐/climate‐related hazards, such as floods, droughts, typhoons, and landslides. In the last few years, great attention has been paid to climate change, and especially the impact of climate change on water resources and the natural disasters that have been an important issue in many countries. As climate change increases the frequency and intensity of extreme rainfall, the number of water‐related disasters is expected to rise. In this regard, this study intends to analyse the changes in extreme weather events and the associated flow regime in both the past and the future. Given trend analysis, spatially coherent and statistically significant changes in the extreme events of temperature and rainfall were identified. A weather generator based on the non‐stationary Markov chain model was applied to produce a daily climate change scenario for the Han River basin for a period of 2001–2090. The weather generator mainly utilizes the climate change SRES A2 scenario driven by input from the regional climate model. Following this, the SLURP model, which is a semi‐distributed hydrological model, was applied to produce a long‐term daily runoff ensemble series. Finally, the indicator of hydrologic alteration was applied to carry out a quantitative analysis and assessment of the impact of climate change on runoff, the river flow regime, and the aquatic ecosystem. It was found that the runoff is expected to decrease in May and July, while no significant changes occur in June. In comparison with historical evidence, the runoff is expected to increase from August to April. A remarkable increase, which is about 40%, in runoff was identified in September. The amount of the minimum discharge over various durations tended to increase when compared to the present hydrological condition. A detailed comparison for discharge and its associated characteristics was discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The objective of this study was to test the practicability of defining hydrologic response units as combinations of soil, land use and topography for modelling infiltration at the hillslope and catchment scales. In an experimental catchment in the East African Highlands (Kwalei, Tanzania), three methods of measuring infiltration were compared for their ability to capture the spatial variability of effective hydraulic conductivity: the constant head (CH) method; the tension infiltration (TI) method; and the mini‐rainfall simulation (RS) method. The three methods yielded different probability distributions of effective hydraulic conductivity and suggested different types of hydrologic response units. Independently from these measurements, the occurrence of infiltration‐excess overland flow was monitored over an area of 6 ha by means of overland flow detectors. The observed pattern of overland flow occurrence did not match any of the patterns suggested by the infiltration measurements. Instead, clusters of spots with overland flow were practically independent from field borders. Geostatistical analysis of the overland flow confirmed the absence of spatial correlation for distances over 40 m. The RS method yielded the pattern closest to the observations, probably because the method simulated better the processes that trigger infiltration‐excess overland flow, i.e. soil sealing and infiltration through macroporosity. The RS hydrologic response unit correlated significantly with observed overland flow frequency. However, the location of clusters and ‘hot spots’ of overland flow remained largely unexplained by land use, soil and topographic variables. It is concluded that using such landscape variables to define hydrologic units may create artificial boundaries that do no correspond to physical realities, especially if the stochastic component within hydrologic units is neglected. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Diatomic complexes from Upper Holocene sediments in Lake Glubokoe (Moscow Province) are analyzed. A unified reconstruction method is first applied to three most important hydrologic characteristics: temperature, cation-anion balance, and the concentration of biogenic substances. The species composition of diatomic complexes is studied with account for the bioindication significance of each species in terms of the above-listed parameters of the aquatic environment. A graphic method elaborated by L. V. Razumovskii is used to compare the structure of different diatomic complexes. A cyclic recurrence is revealed in the lake temperature regime over the last centuries of the lake existence. It is found that in the epoch of neosedimentogenesis, variations in all parameters under study are correlated.  相似文献   

11.
This paper explores the predicted hydrologic responses associated with the compounded error of cascading global circulation model (GCM) uncertainty through hydrologic model uncertainty due to climate change. A coupled groundwater and surface water flow model (GSFLOW) was used within the differential evolution adaptive metropolis (DREAM) uncertainty approach and combined with eight GCMs to investigate uncertainties in hydrologic predictions for three subbasins of varying hydrogeology within the Santiam River basin in Oregon, USA. Predictions of future hydrology in the Santiam River include increases in runoff in the fall and winter months and decreases in runoff for the spring and summer months. One‐year peak flows were predicted to increase whereas 100‐year peak flows were predicted to slightly decrease. The predicted 10‐year 7‐day low flow decreased in two subbasins with little groundwater influences but increased in another subbasin with substantial groundwater influences. Uncertainty in GCMs represented the majority of uncertainty in the analysis, accounting for an average deviation from the median of 66%. The uncertainty associated with use of GSFLOW produced only an 8% increase in the overall uncertainty of predicted responses compared to GCM uncertainty. This analysis demonstrates the value and limitations of cascading uncertainty from GCM use through uncertainty in the hydrologic model, offers insight into the interpretation and use of uncertainty estimates in water resources analysis, and illustrates the need for a fully nonstationary approach with respect to calibrating hydrologic models and transferring parameters across basins and time for climate change analyses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Water resources in the arid southwestern United States are frequently the subject of conflict from competing private and public interests. Legal remedies may remove impasses, but the technical analysis of the problem often determines the future success of legal solutions. In Owens Valley, California, the source of water for the Los Angeles Aqueduct (LAA) is flow diverted from the Owens River and its tributaries and ground water from valley aquifers. Future management of ground water delivered to the LAA needs technical support regarding quantity available, interconnection of shallow and confined aquifers, impact on local springs, and rate of recharge. Ground water flow models and ground water composition are tools already in use, but these have large uncertainty for local interpretations. This study conducted targeted sampling of springs and wells to evaluate the hydrologic system to corroborate conceptual and numerical models. The effort included measurement of intrinsic isotopic composition at key locations in the aquifers. The stable isotopic data of boron (delta(11)B), sulfur (delta(34)S), oxygen (delta(18)O), hydrogen (delta D), and tritium ((3)H) supported by basic chemical data provided rules for characterizing the upper and the lower aquifer system, confirmed the interpretation of ground water flow near faults and flow barriers, and detected hydraulic connections between the LAA and the perennial springs at key locations along the unlined reach of the LAA. This study exemplifies the use of forensic isotopic approaches as independent checks on the consistency of interpretations of conceptual models of a ground water system and the numerical hydrologic simulations.  相似文献   

13.
14.
The Caspian Sea (CS), the world's largest inland sea, may also be considered as large-scale limnic system. Due to strong fluctuations of its water level during the 20th century and the flooding of vast areas in a highly vulnerable coastal zone, economic and environmental risk potentials have to be considered. Since the major water input into the CS is attributed to the Volga river, the understanding of its long-term flow process is necessary for an appropriate risk assessment for the CS and its coastal area. Therefore, a top-down approach based on statistical analyses of long-term Volga flow series is pursued. For the series of annual mean flow (MQ) of the Volga river basin during the 20th century, a complex oscillation pattern was identified. Analyses for multiple gauges in the Volga river basin and Eurasian reference basins revealed that this oscillation pattern resulted from the superposition of oscillations with periods of ∼30 years (MQ) in the western part of the Volga river basin, and ∼14 years (flow volume of snowmelt events) and ∼20 years (flow volume of summer and autumn) in the eastern part of the Volga river basin (Kama river basin). Almost synchronous minima or maxima of these oscillations occurred just in the periods of substantial changes of the Caspian Sea level (CSL). It can thus be assumed that the described mechanism is fundamental for an understanding of the CSL development during the 20th century. Regarding the global climate change, it is still difficult to predict reliably the development of the CSL for the 21st century. Consequently, we suggest an ongoing, interdisciplinary research co-operation among climatology, hydrology, hydraulics, ecology and spatial data management.  相似文献   

15.
By applying wavelet‐based empirical orthogonal function (WEOF) analysis to gridded precipitation (P) and empirical orthogonal function (EOF) analysis to gridded air temperature (T), potential evapotranspiration (PET), net precipitation (P‐PET) and runoff (Q), this paper examines the spatial, temporal and frequency patterns of Alberta's climate variability. It was found that only WEOF‐based precipitation patterns, possibly modulated by El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation(PDO), delineated Alberta into four major regions which geographically represent northern Alberta Boreal forests, southern Alberta grasslands and Aspen Parklands and the Rocky Mountains and Foothills. The leading mode of wavelet‐based precipitation variability WPC1 showed that between 1900 and 2000, a wet climate dominated northern Alberta with significant 4–8, 11 and 25‐year periodic cycles, while the second mode WPC2 showed that between 1960 and 2000, southern Alberta grasslands were characterized by decreasing precipitation, dominated by 11‐year cycles, and the last two modes WPC3 and WPC4 were characterized by 4–7 and 25‐year cycles and both delineated regions where moisture from the Pacific Ocean penetrated the Rocky Mountains, accounted for much of the sub‐alpine climate. These results show that WEOF is superior to EOF in delineating Alberta precipitation variability to sub‐regions that more closely agree with its eco‐climate regions. Further, it was found that while WPC2 could not explain runoff variations in southern Alberta, WPC1, WPC3 and WPC4 accounted for runoff variability in their respective sub‐regions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Periodicites in hydrologic data are frequently estimated and studied. In some cases the periodic components are subtracted from the data to obtain the stochastic components. In other cases the physical reasons for the occurrence of these periodicities are investigated. Apart from the annual cycle in the hydrologic data, periods corresponding to the 11 year sunspot cycle, the Hale cycle and others have been detected.The conclusions from most of these studies depend on the reliability and robustness of the methods used to detect these periodicities. Several spectral analysis methods have been proposed to investigate periodicities in time series data. Several of these have been compared to each other. The methods by Siddiqui and Wang and by Damsleth and Spjotvoll, which are stepwise procedures of spectrum estimation, have not been evaluated.  相似文献   

17.
Periodicites in hydrologic data are frequently estimated and studied. In some cases the periodic components are subtracted from the data to obtain the stochastic components. In other cases the physical reasons for the occurrence of these periodicities are investigated. Apart from the annual cycle in the hydrologic data, periods corresponding to the 11 year sunspot cycle, the Hale cycle and others have been detected.The conclusions from most of these studies depend on the reliability and robustness of the methods used to detect these periodicities. Several spectral analysis methods have been proposed to investigate periodicities in time series data. Several of these have been compared to each other. The methods by Siddiqui and Wang and by Damsleth and Spjotvoll, which are stepwise procedures of spectrum estimation, have not been evaluated.Two of the methods of spectral analysis proposed by Siddiqui and Wang and by Damsleth and Spjotvoll are investigated in this study by using generated and observed data. Siddiqui and Wang's method is found to be superior to the Damsleth and Spjotvoll's method.  相似文献   

18.
The potential of applying shifting level (SL) models to hydrologic processes is discussed in light of observed statistical characteristics of hydrologic data. An SL model and an ARMA (1, 1) model are fitted to an actual hydrologic series. Computer simulation experiments with these models are carried out to compare maximum accumulated deficit and run properties. Results obtained indicate that the mean maximum accumulated deficit, mean longest negative run length, and mean largest negative run sum for both models are similar while there are differences in their corresponding variances.  相似文献   

19.
As continental to global scale high-resolution meteorological datasets continue to be developed, there are sufficient meteorological datasets available now for modellers to construct a historical forcing ensemble. The forcing ensemble can be a collection of multiple deterministic meteorological datasets or come from an ensemble meteorological dataset. In hydrological model calibration, the forcing ensemble can be used to represent forcing data uncertainty. This study examines the potential of using the forcing ensemble to identify more robust parameters through model calibration. Specifically, we compare an ensemble forcing-based calibration with two deterministic forcing-based calibrations and investigate their flow simulation and parameter estimation properties and the ability to resist poor-quality forcings. The comparison experiment is conducted with a six-parameter hydrological model for 30 synthetic studies and 20 real data studies to provide a better assessment of the average performance of the deterministic and ensemble forcing-based calibrations. Results show that the ensemble forcing-based calibration generates parameter estimates that are less biased and have higher frequency of covering the true parameter values than the deterministic forcing-based calibration does. Using a forcing ensemble in model calibration reduces the risk of inaccurate flow simulation caused by poor-quality meteorological inputs, and improves the reliability and overall simulation skill of ensemble simulation results. The poor-quality meteorological inputs can be effectively filtered out via our ensemble forcing-based calibration methodology and thus discarded in any post-calibration model applications. The proposed ensemble forcing-based calibration method can be considered as a more generalized framework to include parameter and forcing uncertainties in model calibration.  相似文献   

20.
The era of ‘big data’ promises to provide new hydrologic insights, and open web-based platforms are being developed and adopted by the hydrologic science community to harness these datasets and data services. This shift accompanies advances in hydrology education and the growth of web-based hydrology learning modules, but their capacity to utilize emerging open platforms and data services to enhance student learning through data-driven activities remains largely untapped. Given that generic equations may not easily translate into local or regional solutions, teaching students to explore how well models or equations work in particular settings or to answer specific problems using real data is essential. This article introduces an open web-based module developed to advance data-driven hydrologic process learning, targeting upper level undergraduate and early graduate students in hydrology and engineering. The module was developed and deployed on the HydroLearn open educational platform, which provides a formal pedagogical structure for developing effective problem-based learning activities. We found that data-driven learning activities utilizing collaborative open web platforms like CUAHSI HydroShare and JupyterHub to store and run computational notebooks allowed students to access and work with datasets for systems of personal interest and promoted critical evaluation of results and assumptions. Initial student feedback was generally positive, but also highlighted challenges including trouble-shooting and future-proofing difficulties and some resistance to programming and new software. Opportunities to further enhance hydrology learning include better articulating the benefits of coding and open web platforms upfront, incorporating additional user-support tools, and focusing methods and questions on implementing and adapting notebooks to explore fundamental processes rather than tools and syntax. The profound shift in the field of hydrology toward big data, open data services and reproducible research practices requires hydrology instructors to rethink traditional content delivery and focus instruction on harnessing these datasets and practices in the preparation of future hydrologists and engineers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号