首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The strontium isotopic compositions have been determined for twelve tholeiitic basalts dredged from the Gordo and Juan de Fuca Rises. Sr87/Sr86 ratios range from 0.7012 to 0.7031 and average 0.7026. These data, combined with other data from the East Pacific Rise indicate that tholeiite basalts being erupted along the active rises, in the Pacific Ocean, contain less radiogenic Sr87 than basalts erupted on the islands. These isotopic differences between the ocean-ridge tholeiite and the more alkali island basalts indicate that variations in Rb/Sr have persisted in the mantle for billions of years. The possible origins and distribution of these heterogeneties are discussed.  相似文献   

2.
Strontium isotopic studies of kimberlites reveal no significant differences between the respective whole-rock Sr87/Sr86 ratios of fissure and pipe kimberlites. Kimberlites from the Swartruggens fissure (calcareous micaceous kimberlite) have Sr87/Sr86 ratios of from 0.709 to 0.716, whilst those from the Wesselton pipe have Sr87/Sr86 ratios of from 0.708 to 0.715. Other kimberlites range from 0.706 to 0.715. Samples are considered to be late Cretaceous to early Tertiary and thus the ratios are approximately initial ratios. The Sr87/Sr86 ratios bear no relation to the Rb or Sr content of individual kimberlite bodies. The high initial ratios are not due to bulk assimilation of granitic material in either a kimberlite or carbonatitic magma. Rb-Sr data for garnet peridotites and eclogite xenoliths in kimberlite are not compatible with production of kimberlite by eclogite fractionation from a melt derived from garnet lherzolite. The Sr isotopic composition of kimberlite is compatible with partial melting of garnet mica peridotite. The isotopic composition of liquids formed by partial melting of this rock can be modified by (i) gross contamination with material of low Sr87/Sr86 ratio or (ii) selective diffusion of material of high Sr87/Sr86 ratio into kimberlitic fluids.  相似文献   

3.
Strontium isotopic differences between the basalts from the East Pacific and the Chile Rises (0.7026–0.7035, average 0.7028) and abyssal hills (0.7025–0.7037, average 0.7033) suggest that these are produced from different source materials. A progressive increase of K/Rb with decrease in Sr87/Sr86 ratio is interpreted in terms of relative depletion of dispersed elements in the source materials.Institute of Marine Sciences Contribution No. 163.  相似文献   

4.
The RbSr age dating method has been applied to a sequence of Carboniferous shales for which some geochemical information was already available. In the marine shales, the Rb/Sr ratio is higher than in the non-marine and brackish water shales. Although the range of values can be attributed to depositional processes, the range of Rb/Sr values is too small to give a depositional isochron, and thus the age of deposition can not be determined. If samples with a variable mineralogy had been selected for the isotope study, the range of Rb/Sr could have been extended. Only by chance, however, would the depositional age have been obtained.A comparison of the RbSr isotope values in the Carboniferous shales with those in probable source rocks shows that a reduction in the Sr87/Sr86 ratio relative to the Rb87/Sr86 ratio may have taken place. Such a reduction could have occurred on the Carboniferous land-mass during the formation of the clay minerals.  相似文献   

5.
Initial Sr87/Sr86 ratios and rubidium and strontium contents have been measured in 83 specimens from 8 suites of alkalic and ultrabasic rocks. The range of initial Sr87/Sr86 ratio observed and the number of specimens (in parentheses) analysed for each suite are: West Kimberley, Australia (8), 0.7125–0.7215; Jumilla, Spain (6), 0.7136–0.7158; Bearpaw Mountains, Montana (9), 0.7062–0.7086; Highwood Mountains, Montana (10), 0.7072–0.7087; Hopi Buttes, Arizona (8), 0.7038–0.7094; Leucite Hills, Wyoming (17), 0.7055–0.7070; Montana diatremes (13), 0.7034–0.7073; Navajo Province, Arizona and New Mexico (12), 0.7052–0.7099.The initial Sr87/Sr86 ratios of the West Kimberley and Jumilla rocks are the highest yet found in strontium-rich basic rocks. Some of the individual specimens from West Kimberley have initial ratios as high as some estimates of the present Sr87/Sr86 ratio of average crustal material. This is interpreted to mean that the West Kimberley and Jumilla rocks contain substantial amounts of radiogenic strontium, and possibly other elements, from a crustal source.  相似文献   

6.
The present-day Sr87/Sr86 ratios of 117 representative samplesfrom the Birunga and Toro-Ankole regions vary significantlyand range between 0.7036 and 0.7111. The feldspar-bearing lavashave higher ratios (average = 0.707) than the melilite- andnepheline-bearing varieties (average = 0.705). Samples of carbonatedlavas have slightly lower Sr87/Sr86 ratios. The Sr87/Sr86 ratios show a highly significant, positive, linearcorrelation with Rb/Sr ratio, and a negative correlation withSr, Nb, and Zr abundances. Graphs of Sr87/Sr86 ratios againstelemental abundances in some cases give hyperbolic patterns.Such relationships are true, not only for the volcanic fieldas a whole, but also for lava flows from one extensively sampledvolcano. Hypotheses involving simple fractional crystallization or limestonesyntexis are inconsistent with the isotopic data. The elementaland isotopic abundance patterns are most easily explained bythe mixing of two end members of quite different Sr isotopicand chemical compositions. If mixing is assumed, approximatelimits can be set for the compositions of the two end members.These limits are consistent with the hypothesis of assimilationof sialic material by either a carbonatitic or nepheliniticparent magma.  相似文献   

7.
8.
The Wadi Nesryin gabbroic intrusion is part of the Neoproterozoic Pan-African basement cropping out in southern Western Sinai of Egypt. The intrusion comprises hornblende gabbro, pyroxene–hornblende gabbro, diorite and appinitic varieties. It exhibits chilled margins against the older rocks represented by fine-grained gabbro and dolerite and belongs to what is known throughout Egypt as the “younger gabbro suite”. Mineralogy, mineral chemistry and whole rock geochemistry indicate that these rocks were derived from tholeiitic magmas with minor calc-alkaline affinity. They have chemical signatures of subduction related arc rocks formed at an active convergent plate margin. They were formed by 15–30% of partial melting of a garnet lherzolite and to a minor extent of spinel-garnet lherzolite sources, modified by fluids related to a subducting slab. Pressure estimates using the amphibole geobarometer indicate that the gabbroic rocks crystallized at pressures between 2.8 and 5.6 kbar (average?=?4.3 kbar). Diorites record lower formation pressures between 1.8 and 3.7 kbar (average?=?3.0 kbar). The temperature estimates calculated by several geothermometers yielded crystallization temperatures ranging from 674°C to 961°C, with an average of about 817°C. The whole rock Rb–Sr isochron age of the Nesryin gabbroic intrusion is 617?±?19 Ma with initial 87Sr/86Sr?=?0.70322?±?0.00004. This age indicates that the mafic–ultramafic plutons in the Pan-African belt in southern Sinai belong to the Egyptian younger gabbros and not to the older metagabbro–diorite complexes or ophiolitic suites. The rocks have low 87Sr/86Sr initial ratios ranging from 0.703141 to 0.703338 and negative ? Sr ranging from ?6.34 to ?9.14. The initial 143Nd/144Nd ratios range from 0.511944 to 0.512145 with positive and high ? Nd values (1.93 to 5.86) reflecting a mantle contribution in their petrogenesis.  相似文献   

9.
143Nd/144Nd, 87Sr/86Sr, and REE analyses are presented on a wide variety of Pliocene-Recent volcanic rocks from central Italy. 143Nd/144Nd varies from 0.51214–0.51289 and 87Sr/86Sr from 0.7255-0.7036; while the rare earth elements are characterised by light RE enrichment and a significant negative Eu anomaly. These Italian volcanics are tentatively subdivided into three zones: (1) N. Tuscany where the magmas are believed to reflect crustal anatexis. (2) A central zone in which hybrid (crust/ mantle) rocks have been recognised. (3) A southern zone, south of Rome, where mantle-derived magmas are identified which have been largely unaffected by interaction with continental crust. At Roccamonfina, in zone 3, Rb/Sr and Sm/Nd pseudo isochrons are observed but since the calculated ages are 0.5 and 2.0 b.y. respectively it is argued that a simple isochron model is not applicable and that the data are most easily explained by a recent mixing event within the upper mantle. It is envisaged that this occurred during metasomatism of the upper mantle source region by a fluid that had high 87Sr/86Sr and low 143Nd/144Nd and was enriched in K, Rb, and LREE's but relatively depleted in Sr2+ and Eu2+.  相似文献   

10.
The Precambrian trondhjemitic Twilight Gneiss (Twilight Granite of Cross and Howe, 1905b) of the West Needle Mountains, southwestern Colorado, and its interlayered amphibolite and metarhyodacite yield a Rb-Sr isochron of 1,805±35 m.y. A low initial Sr87/Sr86 ratio of 0.7015 implies that metamorphism of these rocks to amphibolite facies took place soon after their emplacement. The mild metamorphism of Uncompahgran age, prior to 1,460 m.y. ago, and Laramide volcanism did not affect the Rb-Sr system in the Twilight. Rb contents of 26.5 to 108 ppm, Sr contents of 114 to 251 ppm, and K2O percentages of 1.23 to 3.64 in the Twilight Gneiss, in conjunction with high K/Rb ratios and the low initial ratio of Sr87/Sr86, lend support to geologic data that suggest the Twilight originated as volcanic or hypabyssal igneous rocks in a basaltic volcanic pile.Publication authorized by the Director, U.S. Geological Survey.  相似文献   

11.
Strontium isotopes are used as tracers of crustal contamination of alpine-type ultramafic rocks from the Basal Gneiss Complex of the Caledonides of southern Norway. Minerals from anhydrous assemblages that occur in the cores of these ultramafic lenses give Sr87/Sr86 ratios (0.7011 to 0.7047) that reflect the expected ambient Sr87/Sr86 conditions of the ancient upper mantle. Rb-Sr evidence for crustal contamination is found in hydrous assemblages that occur within fractures and around the margins of the ultramafio bodies. Olivine, enstatite, amphibole, and magnesite from these assemblages have present-day Sr87/Sr86 ratios (0.7049 to 0.7085) that are significantly higher than those of compositionally equivalent minerals from the interiors of the ultramafic bodies. The high Sr87/Sr86 values were acquired as a result of the reaction between the ultramafic rock and ion-charged hydrous solutions carrying strontium with the ambient Sr87/Sr86 ratio (around 0.713) of the enclosing country rook during the waning phases of the Caledonian Orogeny. Mineral separates from the interiors of these ultramafic bodies can yield useful information on the ancient upper mantle. Wholerock samples, however, will show some evidence of contamination from the crust as a result of the formation of at least trace amounts of secondary hydrous minerals. Most whole-rook Sr87/Sr86 ratios from alpine-type ultramafic rocks from other orogenic belts show evidence of this contamination.  相似文献   

12.
The pegmatites of Eastern Connecticut have a mineralogy consistent with a magmatic origin yet occur in a non-igneous environment. Various theories of genesis have been investigated by the Rb-Sr geochronologic method.Rb-Sr measurements on early stage pegmatite minerals indicate an age of 258±1 m.y. with initial Sr87/Sr86=0.734±0.0096. Previously reported K-Ar and U, Th-Pb ages for pegmatite minerals are 249±8 m.y. and 260±3 m.y. respectively. Rb-Sr whole rock data for the host rocks vary between 285±10 m.y. and 472±15 m.y. in age and between 0.705±002 and 0.7167±0.0016 in initial Sr87/Sr86. A direct genetic relationship between the pegmatites and their host rocks is thus precluded. In addition, whole rock samples of the Brimfield schist taken at variable distances from the Strickland Quarry pegmatite have remained essentially closed systems with respect to Rb and Sr and thus an in situ origin for this pegmatite is unlikely. Mixing of pegmatite and country rock systems has occurred only locally, and isotopic studies of these mixed rocks yield a date of 231±4 m.y. with initial Sr87/Sr86=0.7188±0.004, an age not inconsistent with previously reported K-Ar and Rb-Sr mineral dates on host rock minerals (approximately 220 to 240 m.y.).Late stage cleavelandites are anomalously enriched in radiogenic Sr-87, the source of which was most probably other zones within the crystallizing pegmatite. This is indicated by analyses of pegmatite whole rocks which show both enrichment and depletion of radiogenic Sr-87 in local systems. The conclusion is drawn that there was widespread movement of radiogenic Sr-87 within each pegmatite system, but that pegmatite-host rock reactions were minimal.  相似文献   

13.
The isotopic compositions of strontium in 25 basalts and relatedvolcanic rocks from both oceanic and continental localitieshave been determined. The isotopic abundance of Sr87, convenientlyexpressed as the Sr87/Sr86 ratio, was found to vary from 0?7047to 0?7101. The range of variation is outside experimental errorsand is considered to be significant. No consistent differencein the value of the Sr87/Sr86 ratio was observed for basaltsfrom continental and oceanic localities. The average Sr87/Sr86ratio for eleven oceanic basalts was found to be 0?7072?0?0003,whereas fourteen continental basalts and related volcanic rocksaveraged Sr87/Sr86=0?7082?0?0003. The errors are the standarddeviations of the mean. The average Sr87/Sr86 ratio for all25 basalts is 0?7078 with limits of variation of +0?002 and–0?003. The concentrations of rubidium and strontium in a representativenumber of the basalts were determined by isotope dilution. Fiveolivine basalts averaged Rb=17?6 p.p.m., Sr=390?55 p.p.m., Rb/Sr=0?044?0?018;whereas six tholeiitic basalts were found to contain 30?7 p.p.m.Rb, 504?167 p.p.m. Sr, Rb/Sr=0?060?0?024. On the basis of the most reliable rubidium and strontium analysesof igneous and sedimentary rocks available in the literaturethe Rb/Sr ratio of the near-surface part of the continentalcrust is estimated to be 0?25. If its average age is approximately2 billion years and its initial Sr87/Sr86 ratio was 0?704, thepresent average value would be 0?725. This estimate is compatiblewith results obtained for two composites of Palaeozoic shalewhich averaged Sr87/Sr86=0?7215?0?001. The hypothesis is advanced that there is sufficient enrichmentof Sr87 in crustal materials so that the value of the Sr87/Sr86ratio of igneous rocks at the time of crystallization can beused as a criterion for the origin of the material. The initialSr87/Sr86 ratio of an igneous rock formed by assimilation, remelting,or granitization of old crustal material enriched in rubidiumis expected to be measurably higher than that of igneous rockswhich are products of fractional crystallization of basalt magmaor were derived from undifferentiated basaltic material at depthin the crust. The initial Sr87/Sr86 ratio, time of crystallization, and possibleco-magmatic relationships of differentiated intrusive igneousrocks or series of lava flows of different compositions canbe indicated by the convergence of the whole-rock strontiumdevelopment lines. This method is illustrated by the intrusivealkaline rocks of the Monteregian hills, Quebec.  相似文献   

14.
Olivine tholeiites, the youngest Tertiary units (about 8–11 m.y. old) at five widely spaced localities in northeastern Nevada, are geologically related to the basalts of the Snake River Plain, Idaho, to the north and are similar in major element and alkali chemistry to mid-ocean ridge basalts (MORB) and island arc tholeiites. The measured K (1250–3350 ppm), Rb (1·9–6·2 ppm) and Sr (140–240 ppm) concentrations overlap the range reported for MORB. Three of the five samples have low, unfractionated rare earth element (REE) patterns, the other two show moderate light-REE enrichment. Barium concentration is high and variable (100–780 ppm) and does not correlate with the other LIL elements. The rocks have 87Sr/86Sr = 0·7052–0·7076, considerably higher than MORB (~0·702–0·703). These samples are chemically distinct (i.e. less alkalic) from the olivine tholeiites from the adjacent Snake River Plain, but their Sr isotopic compositions are similar. They contain Sr that is distinctly more radiogenic than the basalts from the adjacent Great Basin. About 10 b.y. would be required for the mean measured Rb/Sr (~ 0·02) of these samples to generate, in a closed system, the radiogenic Sr they contain. The low alkali content of these basalts makes crustal contamination an unlikely mechanism. If the magma is uncontaminated, the time-averaged Rb/Sr of the source material must have been ~0·04. A significant decrease in Rb/Sr of the source material (a factor 2?) thus most probably occurred in the relatively recent (1?09 yr) past. Such a decrease of Rb/Sr in the mantle could accompany alkali depletion produced by an episode of partial melting and magma extraction. In contrast, low 87Sr86Sr ratios indicate that the source material of the mid-ocean ridge basalts may have been depleted early in the Earth's history.  相似文献   

15.
Reconnaissance studies of early island-arc intrusions in the Cordillera Central of the Dominican Republic demonstrate that these rocks are mainly hornblende tonalite with lesser amounts of hornblende diorite, quartz diorite, granodiorite and quartz monzonite. Two plutons (El Bao, Medina) are petrographically and chemically homogeneous, whereas two others (El Rio and Loma de Cabrera) are compositionally heterogeneous. Samples from these intrusions range in SiO2 from 49 to 70% with most rocks in the 59 to 62% range. K2O ranges from 0.24 to 3% and averages 1.2%. Cu, Zn, Co, Ni, V and possibly Cr decrease with increasing SiO2. Rb/Sr values for the intrusions are low but variable. Present-day 87Sr/86Sr values range from 0.7031 to 0.7045 for the El Bao and Loma de Cabrera batholiths and 0.7033 to 0.7091 for the Medina stock. These data do not generate isochrons. The Cordillera Central tonalite intrusions are the most abundant plutonic rock type in the Greater Antilles, although small, younger granodiorite and quartz monzonite stocks are present. The Cordillera Central intrusions are lower in SiO2, K2O, Rb, and Sr than the average composition of the Sierra Nevada batholith, but they are similar to the tonalites and trondjhemites from the western margin of the Sierra Nevada batholith. The low Rb/Sr ratios and low initital Sr87/Sr86 ratios for the Cordillera Central intrusions combined with the high liquidus temperatures required for the generation of tonalite magmas strongly favor a subcrustal source for these magmas in an island-arc setting.  相似文献   

16.
Nineteen samples of granites, orthogneisses and paragneisses from the High Himalaya basement nappe(s) of the Mount Everest region have been dated by the Rb/Sr method. The post-metamorphic tourmaline leucogranites of the upper Imja Drangka (Nuptse, Lhotse Glacier) have high initial Sr87/Sr86 characteristic of an anatectic origin from crustal material. A whole-rock isochron age of 52 m. y. (Early Eocene) has been obtained for the samples from the granite body of Lhotse Glacier; apparently Sr isotopic homogenization was not reached throughout the much larger Nuptse granite. The granite precursor of the migmatitic orthogneisses from the upper Dudh Kosi valley has an age of 550 ± 16 m. y. (whole rock isochron) and a high initial Sr87/Sr86 ratio indicating its origin from an older basement complex. The Rb/Sr data on paragneisses from the south face of Lhotse do not define an isochron, possibly reflecting isotopic hetero-geneity in the sedimentary protoliths and incomplete homogenization during a late Precambrian metamorphism. All the mineral ages fall in the time span from 15 to 17 m. y. They represent cooling ages reflecting a regional phase of major uplift in the Middle Miocene and post-dating the peak of the Himalayan metamorphism which the data from the Mt. Everest region place in pre-Eocene times.  相似文献   

17.
Twenty representative rocks ranging from lamprophyric to granitic composition, from the Spanish Peaks igneous Complex, south-central Colorado, were analyzed for Sr isotopic compositions and their concentrations of K, Rb, Sr and Ba. The various igneous rocks from this Cenozoic complex do not have a comagmatic relationship from the evidence of their Sr isotopic compositions. Due to the generally low Sr87/Sr86 isotopic ratios, the possibility of the highly radiogenic underlying Precambrian basement as the source of magma generation can be ruled out. The sources for the magmas of this igneous complex must be in the upper mantle or the lower crust. Model calculations using elemental distribution coefficients and assumed mantle materials suggest that the abundant lamprophyric magmas in this region could be derived from a phlogopite-bearing hornblende peridotite by a small degree of partial melting (<5%) at lower pressure environment (<50 km). Other possibilities for lamprophyric magma generation were also examined. The slightly higher Sr87/Sr86 ratios observed in the granitic rocks are interpreted as reflecting the nature of this source-the lower crust. Alternatively, they may suggest a limited contamination of the original liquid by upper crustal material. For the entire igneous complex, mixing of two independent magmas, lymprophyric and granitic, is suggested to be the mechanism responsible for the complicated and diverse chemical characteristics.  相似文献   

18.
Initial 87Sr/86Sr rations were determined for more than 80 plutonic rocks in Japan. The 87Sr/86Sr ratios of gabbroic and granitic rocks show no significant difference in plutonic terranes where both rocks occur closely associated, implying a genetic relationship between them (e.g., Green Tuff belt) or reequilibration at deep level (e.g., Ryoke belt). Wherever granitic rocks occur independently from gabbroic rocks, the granites have higher ratios than the gabbros.Initial 87Sr/86Sr ratios of the granitic rocks are low (<0.706) in Northeast Japan but high (<0.706) in Southwest Japan, the boundary being the Tanakura Tectonic Line. Within Southwest Japan, the ratios are low along the Japan Sea side of the southernmost area. This regional variation is generally correlated with thickness of the continental crust as deduced from the Bouguer anomaly.Initial 87Sr/86Sr ratios of the granitic rocks vary from 0.7037 to 0.7124. The low group (<0.706) is considered to consist of essentially mantle-derived magmas contaminated by crustal material in lesser but varying degree, because of its geological setting and initial 87Sr/86Sr values. The high group may have been formed by contamination of a deep-seated magmas by crustal material or by generation of the main part of the magmas within the continental crust. The ratios of individual belts reflect their own history depending upon age and Rb/Sr ratio of the crustal material.Initial 87Sr/86Sr ratios of granitic rocks are generally low for the magnetite-series but high for the ilmenite-series. Thus, a negative correlation is observed between initial ratios and 34S for most Cretaceous-Paleogene granites. However, Neogene ilmenite-series granites are low in both initial 87Sr/86Sr and 34S indicating interaction of the granitic magma with young sedimentary rocks enriched in 32S.  相似文献   

19.
Within the Pilbara Block of Western Australia, a complex of migmatite, gneissic and foliated granite near Marble Bar is intruded by a stock of younger massive granite (the Moolyella Granite) with which swarms of tin‐bearing pegmatites are associated. The age of the older granite has been determined by the Rb‐Sr method as 3,125 ± 366 m.y., and that of the Moolyella Granite as 2,670 ± 95 m.y. Initial Sr87/Sr86 ratios suggest that the older granite is close to primary crustal material, but that the Moolyella Granite consists of reworked material. It probably formed by partial remelting of the older granite.  相似文献   

20.
Rocks enriched in iron oxide and mafic silicates are commonly present as minor volumes of Proterozoic anorthosite complexes. In the Laramie Range, Wyoming, anorthositic rocks, gabbros, and iron oxide ore have been chemically analyzed to determine if the spatial association is a result of genetic relationships between the rock types.Variations in abundances of REE, Th, Sc, and Sr in whole-rock and in mineral separates from anorthositic rocks provide evidence for the presence of trapped intercumulus liquid. Initial 87Sr/86Sr ratios in apatites separated from iron oxide ore (0.70535±0.00004) are analogous to initial 87Sr/86Sr ratios in Laramie Range anorthosite (0.70531 and 0.70537). In addition, REE abundances in calculated parental liquids for both anorthositic rocks and iron ore are similar, providing further evidence for a comagmatic relationship.Trace element and textural characteristics of spatially associated Laramie Range gabbros indicate that they are not mixtures of the trapped liquid and cumulus components which formed anorthositic rocks. It is suggested that gabbros are early differentiation products of a high-Al gabbroic magma which subsequently crystallized large volumes of plagioclase to produce the anorthosite massif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号