首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Imaging of low-energy neutral atoms (LENAs) in the vicinity of the Moon can provide wide knowledge of the Moon from the viewpoint of plasma physics and planetary physics. At the surface of the Moon, neutral atoms are mainly generated by photon-stimulated desorption, micrometeorite vaporization and sputtering by solar wind protons. LENAs, the energetic neutral atoms with energy range of 10-500 eV, are mainly created by sputtering of solar wind particles. We have made quantitative estimates of sputtered LENAs from the Moon surface. The results indicate that LENAs can be detected by a realistic instrument and that the measurement will provide the global element maps of sputtered particles, which substantially reflect the surface composition, and the magnetic anomalies. We have also found that LENAs around dark regions, such as the permanent shadow inside craters in the pole region, can be imaged. This is because the solar wind ions can penetrate shaded regions due to their finite gyro-radius and the pressure gradient between the solar wind and the wake region. LENAs also extend our knowledge about the magnetic anomalies and associated mini-magnetosphere systems, which are the smallest magnetospheres as far as one knows. It is thought that no LENAs are generated from mini-magnetosphere regions because no solar wind may penetrate inside them. Imaging such void areas of LENAs will provide another map of lunar magnetic anomalies.  相似文献   

2.
Spectral properties, magnetic fields, and dust transport at lunar swirls   总被引:1,自引:0,他引:1  
Lunar swirls are albedo anomalies associated with strong crustal magnetic fields. Swirls exhibit distinctive spectral properties at both highland and mare locations that are plausibly explained by fine-grained dust sorting. The sorting may result from two processes that are fairly well established on the Moon, but have not been previously considered together. The first process is the vertical electrostatic lofting of charged fine dust. The second process is the development of electrostatic potentials at magnetic anomalies as solar wind protons penetrate more deeply into the magnetic field than electrons. The electrostatic potential can attract or repel charged fine-grained dust that has been lofted. Since the finest fraction of the lunar soil is bright and contributes significantly to the spectral properties of the lunar regolith, the horizontal accumulation or removal of fine dust can change a surface’s spectral properties. This mechanism can explain some of the spectral properties of swirls, accommodates their association with magnetic fields, and permits aspects of weathering by micrometeoroids and the solar wind.  相似文献   

3.
We present observations of what may be the inner region of a lunar mini-magnetosphere. If so, these likely represent the first such observations. Previous studies of solar wind interaction with lunar crustal magnetic fields found increased particle fluxes associated with magnetic amplifications, suggesting a shock/sheath region. The central density cavity expected in the inner mini-magnetosphere (if analogous to other planetary magnetospheres) has proven elusive. We now present Lunar Prospector fly-throughs of a density cavity near a strong crustal magnetic source in the solar wind, and compare these unique observations with typical orbits in the solar wind and wake. We observed the density cavity on two consecutive orbits on July 14, 1999 with optimal viewing geometry, downstream from one of the strongest lunar crustal sources (an anomaly centered at 235E, 20S), during very unusual solar wind conditions. We found no other similar features in the solar wind in 7 months of low-altitude orbits, suggesting that fully formed lunar mini-magnetospheres are rare and/or difficult to observe from orbit.  相似文献   

4.
Frozen fields     
Magnetic fields due to permanent magnetization of planetary crusts and interiors have been clearly detected only for the Earth and Moon. However, they are likely to be a ubiquitous property of silicate and partially silicate objects in the solar system. An indication that this is true is the recent indirect evidence from the Galileo flybys that the asteroids Gaspra and Ida have intrinsic magnetic fields. Lunar paleomagnetism differs substantially from terrestrial paleomagnetism in part because the dominant ferromagnetic carriers are metallic Fe-Ni grains rather than iron oxides such as magnetite. The distribution of metallic iron remanence carriers on the Moon is influenced strongly by impact processes. In addition, large-scale lunar impacts may have produced transient magnetic fields capable of imparting magnetization with or without a former core dynamo. An unresolved issue of lunar paleomagnetism is the origin of swirl-like albedo markings associated with the strongest magnetic anomalies detected from orbit. The interpretation of solar wind magnetic field perturbations during the Gaspra and Ida flybys as due to intrinsic asteroidal magnetic fields has been supported by detailed magnetohydrodynamic simulations. The inferred magnetization limits for Gaspra are consistent with a wide variety of meteorite types and do not allow firm constraints to be imposed on Gaspra's bulk composition.  相似文献   

5.
The spacecraft P1 of the new ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) mission passed the lunar wake for the first time on February 13, 2010. We present magnetic field and plasma data of this event and results of 3D hybrid simulations. As the solar wind magnetic field was highly dynamic during the passage, a simulation with stationary solar wind input cannot distinguish whether distortions were caused by these solar wind variations or by the lunar wake; therefore, a dynamic real-time simulation of the flyby has been performed. The input values of this simulation are taken from NASA OMNI data and adapted to the P1 data, resulting in a good agreement between simulation and measurements. Combined with the stationary simulation showing non-transient lunar wake structures, a separation of solar wind and wake effects is achieved. An anisotropy in the magnitude of the plasma bulk flow velocity caused by a non-vanishing magnetic field component parallel to the solar wind flow and perturbations created by counterstreaming ions in the lunar wake are observed in data and simulations. The simulations help to interpret the data granting us the opportunity to examine the entire lunar plasma environment and, thus, extending the possibilities of measurements alone: A comparison of a simulation cross section to theoretical predictions of MHD wave propagation shows that all three basic MHD modes are present in the lunar wake and that their expansion governs the lunar wake refilling process.  相似文献   

6.
It is suggested that boundary conditions for solar wind/lunar limb interactions are active. The whole-Moon limb does not evoke a shock cone because warm (13 eV/electron) solar wind electrons are replaced by cool (2 eV/electron) photoelectrons that are ejected from the generally smooth areas of the lunar terminator illuminated at glazing angles by the Sun. A localized volume of low thermal pressure is created in the solar wind by these cool photoelectrons. The solar wind expands into this turbulence-suppressive volume without shock production. Conversely, directly illuminated highland areas exchange hot photoelectrons (> 20 eV/electron) for warm solar wind electrons. The hot electrons generate a localized pressure increase (p) in the adjacent solar wind flow which evokes a shock streamer in the solar wind. Shock streamers are identifiable by a coincident increase in the magnitude (B p) of the solar wind magnetic field immediately external to the lunar wake. Shock occurrence is controlled by lunar topography, solar activity in the hard ultraviolet (> 20 eV), solar wind electron density and thermal velocity, and the intensity of the solar wind magnetic field.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.The Lunar Science Institute is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration.  相似文献   

7.
Based on the single-fluid MHD model of Mars space simulation, this paper has studied the magnetic field structure in the near-Mars space and investigated the influence of Martian crustal magnetic anomalies on the magnetic field structure. In the process of the solar wind interaction with Mars, the bow shock and magnetic pile-up region are produced. The interplanetary magnetic lines are curved and deformed while they are towed toward the two poles by the solar wind. The majority of magnetic lines bypass the two poles, then leave behind a ‘V-shaped’ structure in the magnetotail behind Mars. In the crust of Mars, the local magnetic anomalies have a noticeable influence on the magnetic field structure. The magnetic anomalies at different positions and in different intensities interact with the solar wind to form the mini-magnetospheres of different structures and morphologies, such as the towed mini-magnetosphere and the mini-magnetosphere with open magnetic lines. The local magnetic anomalies have changed the near-Mars magnetic field structure, and probably changed the plasma distribution as well.  相似文献   

8.
The Apollo-12 ALSEP solar wind spectrometer obtained data from the lunar surface starting November 20, 1969. To a first approximation, the general features of the positive ion flux depend only on the instrument's orientation and location in space relative to the Sun-Earth system. However, there are some detectable effects of the interaction of the solar wind with the local magnetic field and surface, including the deceleration of incident positive ions and the enhancement of fluctuations in the plasma. The expected asymmetry of sunset and sunrise times due to the motion of the Moon about the Sun is not observed. On one occasion, the solar wind was incident on the ALSEP site as early as 36 hr (18°) before sunrise.  相似文献   

9.
Y. C. Whang 《Solar physics》1970,14(2):489-502
This paper presents a continued study of the two-dimensional guiding-center model of the solar wind interaction with the Moon. The characteristics theory and the computational method are discussed. The magnetic permeability of plasma is (1 + /2)–1 in the solar wind flow upstream of the Moon, and it changes to 1 in the void region of the lunar wake. The gradual change of the magnetic permeability in the penumbral region from the interplanetary condition to the void condition is explained as the source of field perturbations in the lunar wake. Perturbations of the magnetic field propagate as magnetoacoustic waves in a frame of reference moving with the plasma flow. Computer solutions were obtained to show that (i) the two principal perturbations of the magnetic field in the lunar wake (the umbral increase and the penumbral decrease) are confined to a region bounded by a Mach cone tangent to the lunar body, and (ii) the penumbral increases occur outside the lunar Mach cone. Computer solutions are also used to identify the source of field perturbations and to simulate the solar wind-moon interaction under varying interplanetary conditions.  相似文献   

10.
Magnetometer data obtained during the first four lunations after the deployment of the Apollo 15 subsatellite have been used to construct contour maps of the lunar magnetic field referred to 100 km altitude. These contour maps cover a relatively small band on the lunar surface. Within the region covered there is a marked near side-far side asymmetry. The near-side field is generally weaker and less structured than the far-side field. The strongest intrinsic lunar magnetic field detected is between the craters Van de Graaff and Aitken, centered at 20°S and 172°E. The variation in field strength with altitude for this feature suggests that its scale size is on the order of 80 km. A magnetization contrast between this region and its surroundings of the order of 6 × 10–5 emu-cm–3 is obtained assuming a 10-km thick slab. Preliminary Apollo 16 magnetometer data at extremely low altitude (0 to 10 km) show a very structured magnetic field with field strengths up to 56. Large compressions in the magnetic field magnitude, just above the lunar limb regions, are occasionally detected when the Moon is in the solar wind. The occurrence of limb compressions is strongly dependent on the selenographic coordinates of the lunar region on the solar wind terminator beneath the orbit of the sub-satellite. The discovery of remanent magnetization of varying strength over much of the lunar surface and its correlation with limb compression source regions supports the hypothesis that limb compressions are due to the deflection of the solar wind by regions of strong magnetization at the lunar limbs. If this hypothesis is correct, then the map of lunar regions associated with compressions indicates that the northerly equatorial region on the far side is less strongly magnetized than the southerly equatorial region on the far side.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   

11.
During the few days centered about new Moon, the lunar surface is optically hidden from Earth-based observers. However, the Moon still offers an observable: an extended sodium tail. The lunar sodium tail is the escaping “hot” component of a coma-like exosphere of sodium generated by photon-stimulated desorption, solar wind sputtering and meteoroid impact. Neutral sodium atoms escaping lunar gravity experience solar radiation pressure that drives them into the anti-solar direction forming a comet-like tail. During new Moon time, the geometry of the Sun, Moon and Earth is such that the anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting in its focusing into a dense core that extends beyond the Earth. An all-sky camera situated at the El Leoncito Observatory (CASLEO) in Argentina has been successfully imaging this tail through a sodium filter at each lunation since April 2006. This paper reports on the results of the brightness of the lunar sodium tail spanning 31 lunations between April 2006 and September 2008. Brightness variability trends are compared with both sporadic and shower meteor activity, solar wind proton energy flux and solar near ultra violet (NUV) patterns for possible correlations. Results suggest minimal variability in the brightness of the observed lunar sodium tail, generally uncorrelated with any single source, yet consistent with a multi-year period of minimal solar activity and non-intense meteoric fluxes.  相似文献   

12.
The Genesis Discovery mission returned solar matter in the form of the solar wind with the goal of obtaining precise solar isotopic abundances (for the first time) and greatly improved elemental abundances. Measurements of the light noble gases in regime samples demonstrate that isotopes are fractionated in the solar wind relative to the solar photosphere. Theory is required for correction. Measurement of the solar wind O and N isotopes shows that these are very different from any inner solar system materials. The solar O isotopic composition is consistent with photochemical self‐shielding. For unknown reasons, the solar N isotopic composition is much lighter than essentially all other known solar system materials, except the atmosphere of Jupiter. Ne depth profiling on Genesis materials has demonstrated that Ne isotopic variations in lunar samples are due to isotopic fractionation during implantation without appealing to higher energy solar particles. Genesis provides a precise measurement of the isotopic differences of Ar between the solar wind and the terrestrial atmosphere. The Genesis isotopic compositions of Kr and Xe agree with data from lunar ilmenite separates, showing that lunar processes have not affected the ilmenite data and that solar wind composition has not changed on 100 Ma time scales. Relative to Genesis solar wind, ArKrXe in Q (the chondrite noble gas carrier) and the terrestrial atmosphere show relatively large light isotope depletions.  相似文献   

13.
A preliminary model of the internal magnetic field of the Moon is developed using a novel, correlative technique on the low-altitude Lunar Prospector magnetic field observations. Subsequent to the removal of a simple model of the external field, an internal dipole model is developed for each pole-to-pole half-orbit. This internal dipole model exploits Lunar Prospector's orbit geometry and incorporates radial and theta vector component data from immediately adjacent passes into the model. These adjacent passes are closely separated in space and time and are thus characteristic of a particular lunar regime (wake, solar wind, magnetotail, magnetosheath) or regimes. Each dipole model thus represents the correlative parts of three adjacent passes, and provides an analytic means of continuing the data to a constant surface of 30 km above the mean lunar radius. The altitude-normalized radial field from the wake and tail regimes is used to build a model in which 99.2% of the 360 by 360 bins covering the lunar surface are filled. This global model of the radial magnetic field is used to construct a degree 178 spherical harmonic model of the field via the Driscoll and Healy sampling theorem. Terms below about degree 150 are robust, and polar regions are considered to be the least reliable. The model resolves additional detail in the low magnetic field regions of the Imbrium and Orientale basins, and also in the four anomaly clusters antipodal to the large lunar basins. The model will be of use in understanding the sources of the internal field, and as a first step in modeling the interaction of the internal field with the solar wind.  相似文献   

14.
Lunar surface potential and electric field   总被引:1,自引:0,他引:1  
The Moon has no significant atmosphere, thus its surface is exposed to solar ultraviolet radiation and the solar wind. Photoemission and collection of the solar wind electrons and ions may result in lunar surface charging. On the dayside, the surface potential is mainly determined by photoelectrons, modulated by the solar wind;while the nightside surface potential is a function of the plasma distribution in the lunar wake. Taking the plasma observations in the lunar environment as inputs, the global potential distribution is calculated according to the plasma sheath theory, assuming Maxwellian distributions for the surface emitted photoelectrons and the solar wind electrons. Results show that the lunar surface potential and sheath scale length change versus the solar zenith angle, which implies that the electric field has a horizontal component in addition to the vertical one. By differentiating the potential vertically and horizontally, we obtain the global electric field. It is found that the vertical electric field component is strongest at the subsolar point,which has a magnitude of 1 V m-1. The horizontal component is much weaker, and mainly appears near the terminator and on the nightside, with a magnitude of several mV m-1. The horizontal electric field component on the nightside is rotationally symmetric around the wake axis and is strongly determined by the plasma parameters in the lunar wake.  相似文献   

15.
Electromagnetic induction in a stratified Moon with a trailing cavity is discussed. The influence of the Moon wake is studied by using a two-layer lunar model with a perfectly conductive core. The magnetic field is shown to be independent of the wake length when that quantity is greater than 3 lunar radii. Regions on the sunlit and dark sides where the magnetic field may be described in terms of its first spatial harmonic have been distinguished, together with the corresponding errors admitted. It is in these regions that the electrical conductivity of the Moon can be found with very high accuracy, by simultaneous observations on the lunar surface and in the undisturbed solar wind. Results of these observations can be conveniently related to values of the apparent resistivity. Translated by Miss Eva Vokálová of the Astronomical Institute, Charles University, Prague, Czechoslovakia.  相似文献   

16.
《Planetary and Space Science》2006,54(13-14):1482-1495
Venus has no internal magnetic dynamo and thus its ionosphere and hot oxygen exosphere dominate the interaction with the solar wind. The solar wind at 0.72 AU has a dynamic pressure that ranges from 4.5 nPa (at solar max) to 6.6 nPa (at solar min), and its flow past the planet produces a shock of typical magnetosonic Mach number 5 at the subsolar point. At solar maximum the pressure in the ionospheric plasma is sufficient to hold off the solar wind at an altitude of 400 km above the surface at the subsolar point, and 1000 km above the terminators. The deflection of the solar wind occurs through the formation of a magnetic barrier on the inner edge of the magnetosheath, or shocked solar wind. Under typical solar wind conditions the time scale for diffusion of the magnetic field into the ionosphere is so long that the ionosphere remains field free and the barrier deflects almost all the incoming solar wind. Any neutral atoms of the hot oxygen exosphere that reach the altitude of the magnetosheath are accelerated by the electric field of the flowing magnetized plasma and swept along cycloidal paths in the antisolar direction. This pickup process, while important for the loss of the Venus atmosphere, plays a minor role in the deceleration and deflection of the solar wind. Like at magnetized planets, the Venus shock and magnetosheath generate hot electrons and ions that flow back along magnetic field lines into the solar wind to form a foreshock. A magnetic tail is created by the magnetic flux that is slowed in the interaction and becomes mass-loaded with thermal ions.The structure of the ionosphere is very much dependent on solar activity and the dynamic pressure of the solar wind. At solar maximum under typical solar wind conditions, the ionosphere is unmagnetized except for the presence of thin magnetic flux ropes. The ionospheric plasma flows freely to the nightside forming a well-developed night ionosphere. When the solar wind pressure dominates over the ionospheric pressure the ionosphere becomes completely magnetized, the flow to the nightside diminishes, and the night ionosphere weakens. Even at solar maximum the night ionosphere has a very irregular density structure. The electromagnetic environment of Venus has not been well surveyed. At ELF and VLF frequencies there is noise generated in the foreshock and shock. At low altitude in the night ionosphere noise, presumably generated by lightning, can be detected. This paper reviews the plasma environment at Venus and the physics of the solar wind interaction on the threshold of a new series of Venus exploration missions.  相似文献   

17.
Imaging and spectroscopy of the solar corona, coupled with polarimetry, are the only tools available at present to capture signatures of physical processes responsible for coronal heating and solar wind acceleration within the first few solar radii above the solar limb. With the recent advent of improved detector technology and image processing techniques, broad-band white light and narrow-band multi-wavelength observations of coronal forbidden lines, made during total solar eclipses, have started to yield new views about the thermodynamic and magnetic properties of coronal structures. This paper outlines these unique capabilities, which until present, have been feasible primarily with observations during natural total solar eclipses. This work also draws attention to the exciting possibility of greatly increasing the frequency and duration of solar eclipse observations with Moon orbiting observatories utilizing lunar limb occultation of the solar disk for coronal measurements.  相似文献   

18.
Mars Express (MEX) Analyser of Space Plasmas and Energetic Atoms (ASPERA-3) data is providing insights into atmospheric loss on Mars via the solar wind interaction. This process is influenced by both the interplanetary magnetic field (IMF) in the solar wind and by the magnetic ‘anomaly’ regions of the martian crust. We analyse observations from the ASPERA-3 Electron Spectrometer near to such crustal anomalies. We find that the electrons near remanent magnetic fields either increase in flux to form intensified signatures or significantly reduce in flux to form plasma voids. We suggest that cusps intervening neighbouring magnetic anomalies may provide a location for enhanced escape of planetary plasma. Initial statistical analysis shows that intensified signatures are mainly a dayside phenomenon whereas voids are a feature of the night hemisphere.  相似文献   

19.
Wenzhe Fa 《Icarus》2007,190(1):15-23
3He (helium-3) in the lunar regolith implanted by the solar wind is one of the most valuable resources because of its potential as a fusion fuel. The abundance of 3He in the lunar regolith is related to solar wind flux, lunar surface maturity and TiO2 content, etc. A model of solar wind flux, which takes account of variations due to shielding of the nearside when the Moon is in the Earth's magnetotail, is used to present a global distribution of relative solar wind flux over the lunar surface. Using Clementine UV/VIS multispectral data, the global distribution of lunar surface optical maturity (OMAT) and the TiO2 content in the lunar regolith are calculated. Based on Apollo regolith samples, a linear relation between 3He abundance and normalized solar wind flux, optical maturity, and TiO2 content is presented. To simulate the brightness temperature of the lunar surface, which is the mission of the Chinese Chang-E project's multichannel radiometers, a global distribution of regolith layer thickness is first empirically constructed from lunar digital elevation mapping (DEM). Then an inversion approach is presented to retrieve the global regolith layer thickness. It finally yields the total amount of 3He per unit area in the lunar regolith layer, which is related to the regolith layer thickness, solar wind flux, optical maturity and TiO2 content, etc. The global inventory of 3He is estimated as 6.50×108 kg, where 3.72×108 kg is for the lunar nearside and 2.78×108 kg is for the lunar farside.  相似文献   

20.
Images returned by the MESSENGER spacecraft from the Mercury flybys have been examined to search for anomalous high-albedo markings similar to lunar swirls. Several features suggested to be swirls on the basis of Mariner 10 imaging (in the craters Handel and Lermontov) are seen in higher-resolution MESSENGER images to lack the characteristic morphology of lunar swirls. Although antipodes of large impact basins on the Moon are correlated with swirls, the antipodes of the large impact basins on Mercury appear to lack unusual albedo markings. The antipodes of Mercury’s Rembrandt, Beethoven, and Tolstoj basins do not have surface textures similar to the “hilly and lineated” terrain found at the Caloris antipode, possibly because these three impacts were too small to produce obvious surface disturbances at their antipodes. Mercury does have a class of unusual high-reflectance features, the bright crater-floor deposits (BCFDs). However, the BCFDs are spectral outliers, not simply optically immature material, which implies the presence of material with an unusual composition or physical state. The BCFDs are thus not analogs to the lunar swirls. We suggest that the lack of lunar-type swirls on Mercury supports models for the formation of lunar swirls that invoke interaction between the solar wind and crustal magnetic anomalies (i.e., the solar-wind standoff model and the electrostatic dust-transport model) rather than those models of swirl formation that relate to cometary impact phenomena. If the solar-wind standoff hypothesis for lunar swirls is correct, it implies that the primary agent responsible for the optical effects of space weathering on the Moon is solar-wind ion bombardment rather than micrometeoroid impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号