首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
青藏高原中东部第四纪冰碛物暴露年龄的测定及其意义   总被引:4,自引:0,他引:4  
青藏高原上大面积的冰盖通常会对亚洲乃至全球气候产生深远的影响。青藏高原第四纪冰川形成的时间和范围成为人们关注的热点。本研究利用就地成因的宇宙核素暴露年龄测定方法,对唐古拉山和理塘地区的第四纪冰碛物进行了10Be、26Al和21Ne暴露年龄测定,首次获得了青藏高原的第四纪冰川核素暴露年龄。三种核素暴露年龄的一致性显示每期冰碛物沉积有一个确定的暴露时期,测试结果表明唐古拉山和理塘地区出现了两期第四纪冰期,一期形成于距今1·6~8万年,另一期形成于距今16~18万年。  相似文献   

2.
青藏高原第四纪冰川时空演化问题广受关注。应用宇宙成因核素暴露年龄测定方法开展高原古冰川的年代学研究,对青藏高原聂拉木、唐古拉山、义敦海子山和折多山等4个地区的第四纪冰碛物进行了\{10 Be\},26 Al和21 Ne暴露年龄测定,获得了青藏高原不同地点第四纪冰川发育的年代学数据,结果表明青藏高原出现了多期第四纪冰期,分别为YD事件、末次冰期晚阶段、末次冰期早阶段、倒数第2次冰期和倒数第3次冰期。  相似文献   

3.
喜马拉雅山珠穆朗玛峰-希夏邦马峰地区是青藏高原南部现代冰川集中发育区之一,古冰川遗迹亦十分丰富,是研究第四纪青藏高原冰川形成和演化的关键区,一直备受地貌和第四纪环境研究者的关注.应用原地宇宙核素10Be暴露年龄测试技术,对采自希夏邦马峰西北佩枯岗日拉曲谷地冰碛垄上的冰川漂砾进行年代学研究;结合冰川地貌分析方法,对古冰川...  相似文献   

4.
孔屏 《第四纪研究》2012,32(3):388-393
宇宙成因核素埋藏年龄法是继宇宙成因核素暴露年龄法之后发展起来的又一同位素定年法,这一方法主要应用于沉积物定年。宇宙成因核素埋藏年龄法的原理是: 具有不同半衰期的成对宇宙成因核素浓度及比值会随时间而发生变化,这些变化可以表示成时间的函数。因此,通过测定石英中成对宇宙成因核素的含量,可以定量化沉积物的沉积时间。宇宙成因核素埋藏年龄法在实际应用中还存在几方面不确定性: 测量误差、参数引入的误差以及与地质模型的差异所引入的误差,本文对这些不确定因素进行了讨论。在实际采样过程中,应注意采样点及地质背景尽可能符合地质模型; 在样品处理过程中,应保证石英纯度以及选用 10Be含量尽可能低的铍载体。在最后,本文例举了宇宙成因核素埋藏年龄法在昔格达湖相沉积和大邑砾岩定年中的应用,以及 26Al- 10Be-21 Ne联合定年。可以期待,这一方法在中国将被广泛地用于研究大型河流演化、中国早期人类的演化历史、第四纪早期冰川发育以及与青藏高原演化相关的构造和沉积问题。  相似文献   

5.
昆仑山垭口地区"望昆冰期"冰碛宇宙成因核素10Be测年   总被引:2,自引:2,他引:2  
昆仑山垭口地区是东昆仑山现代冰川作用中心之一,在第四纪冰期间冰期旋回中保留了多套较为完整的冰川沉积.位于垭口盆地西侧山脊上的望昆冰碛,是本区已知最老的冰川沉积.应用宇宙成因核素10Be暴露年龄方法对望昆冰碛进行年代测定,5个样品中有4个介于(56.9±5.6)~(38.2±3.5)ka BP之间,相当于MIS3阶段,明显年轻于前人所测ESR和古地磁年代,且与地貌系列不符.这一结果不能代表望昆冰碛的实际年代,而应为所测漂砾后期暴露的年代,反映了MIS3阶段昆仑山垭口地区曾遭受过强烈地表剥蚀过程.望昆冰碛10Be暴露年龄显著地年轻,表明应用宇宙核素暴露年代测定冰碛物形成时代具有复杂性,应充分考虑后期剥蚀等地表过程,并应使用其他测年方法进行相互验证.  相似文献   

6.
云南大理苍山世界地质公园具有较高的美学价值与地学科研价值,在地学研究领域中苍山又被称为点苍山。本次研究的主要区域是点苍山玉局峰北坡和点苍山西北部的罗坪山大小海子地区,本文对点苍山玉局峰北坡冰碛物和罗坪山第四纪沉积物进行了光释光年代测定,讨论了光释光测年方法在点苍山地区第四纪冰碛物测年中的适用性,测得玉局峰北坡搬运距离较远的三条冰碛垄的年龄为(31.68±3.22)~(28.01±1.95)ka BP,属于末次冰期。对罗坪山地区第四纪沉积物进行石英砂扫描电镜分析,观察到大小海子附近第四纪沉积物石英砂表面具有一定的冰川成因特征,推断罗坪山大小海子地区曾发育过第四纪冰川作用,通过光释光测年得到大小海子附近冰川沉积物年代为(136.36±10.16)ka BP,相当于倒数第二次冰期。结合前人研究,推断点苍山地区也具有发育倒数第二次冰期的可能性。  相似文献   

7.
毕伟力  易朝路 《冰川冻土》2016,38(5):1292-1299
近些年,宇宙成因核素暴露年代、光释光和放射性碳埋藏年代等方法在第四纪冰碛物的年代测定中已经取得显著进展.但对于第四纪冰川沉积物10万年甚至百万年以上的冰碛物样品的埋藏年代和暴露年代,由于方法自身问题或沉积物后期地质地貌过程的改造,使上述方法存在定年方面的挑战.而电子自旋共振(ESR)广泛的测年范围,使其在第四纪样品的测年中发挥着不可替代的作用.目前,石英ESR信号的衰退特征已有许多研究进展,但是对于冰碛物中的ESR信号的研究还很少.ESR测年方法由于缺乏测年机理的研究,西方学者和国内一些测年学者对这种方法的定年存有疑虑.因此,我们在典型冰川区开展对冰碛物中石英砂ESR信号变化的机理研究,得到人工研磨可以使ESR信号强度下降到原来值的53%~69%,但并不能使ESR信号完全归零.如果在以后的研究中能够找出这些残留信号值大小,并予以扣除,将会大大提高ESR冰碛物测年精度.在今后的研究中应探求其测年机理,提高测试样品的石英纯度,增强ESR测年信号的精度,使这种方法成为冰碛物交叉测年中独立可信的测年方法之一,为第四纪冰川研究中的老冰碛物的定年提供准确的年代依据.  相似文献   

8.
姜英  陈建军 《地质科学》2009,44(1):159-182
山岳冰川发育是否同步于北半球冰期,西风与季风对山岳冰川发育的控制作用是青藏高原及周边山地的冰川年代学研究的关键.近年来就地宇宙成因核素和光释光测年技术的快速发展为山岳冰川发育规律研究提供了大量的数据支持.本文综合分析了近年来在青藏高原和周边山地获得的冰川年代学数据,发现该地区山岳冰川发育与北半球冰期不同步,冰川发育贯穿于整个MIS 3阶段.在MIS 2阶段冰川活动峰期明显滞后于北半球末次冰期冰盛期.但是,山岳冰川对Heinrich Event 1和Younger Dryas两次快速气候波动事件有显著响应.这可能说明了西风作为纽带可以将北大西洋气候变化与青藏高原联系起来,同时,来自南方的季风对高原冰川的发育也有着重要的控制作用.造山带地区的冰川进退与高原抬升、地貌及气候之间是一个复杂的耦合系统.  相似文献   

9.
从冰川剥蚀作用看念青唐古拉山脉(中段)的隆升   总被引:3,自引:2,他引:1  
通过对念青唐古拉山主峰地区第四纪冰碛地层划分与同位素测年,发现主峰地区的第四纪冰川分别形成于700~600kaBP、200~140kaBP和70~30kaBP三个时段,指示了自中更新世以来念青唐古拉山中段开始大规模隆升,冰川活动加剧,并堆积了相应的冰碛物。根据念青唐古拉山主峰地区基岩地层与岩性的空间分布、不同火成岩和变质岩组合的形成深度和不同冰期冰碛物砾石成分统计研究,发现冰川对基岩剥蚀与念青唐古拉山中段隆升过程有着明显的对应关系。本文从念青唐古拉山主峰地区的基岩地层的岩石成分和分布的研究,及其对山脉隆升与冰碛物成分的关系等方面,分析了念青唐古拉山脉的切割及其对山脉隆升的反映。念青唐古拉山主峰地区的隆升过程可较好地与青藏高原的隆起相对比,它应是青藏高原隆升的响应。  相似文献   

10.
赵井东  王杰  殷秀峰 《冰川冻土》2013,35(1):119-125
冰川是塑造地表形态最积极的外营力之一, 对第四纪冰期与间冰期旋回中冰川进退留下的丰富且形态独特的冰川地形的研究, 不仅能重建古冰川时空演化的规律, 在构造活跃的山区还可为山体抬升提供重要的理论参考. 2012年8月, 中国从事冰川地貌与环境变化研究的学者相聚兰州, 总结了以技术定年为主要特征的第四纪冰川研究新阶段取得的成绩与突破, 并探讨了现阶段工作的重点及未来的发展方向. 与会代表认为, 可对冰川地形进行直接定年的测年技术的发展与应用, 促进了我国第四纪冰川研究的发展, 现阶段及今后应着重加强与开展如下几个方面工作: 1)精确年代学框架的建立是现阶段我国第四纪冰川研究的重点; 2)青藏高原及周边山地最老冰碛的追溯及其年代测定是回答我国第四纪冰川开始发育的关键, 也是理解青藏高原构造抬升与冰期气候耦合的内在要求; 3)我国东部(105° E以东)第四纪冰川与环境问题需作进一步的研究与澄清, 科普工作亟待加强.  相似文献   

11.
玉龙雪山冰川沉积序列OSL定年   总被引:3,自引:3,他引:0  
位于青藏高原东南缘的玉龙雪山分布有欧亚大陆纬度最低的海洋型冰川,其主峰及周边地区保存了大量清晰完整的第四纪冰川遗迹。研究该区第四纪冰川作用遗迹及其冰川作用史,具有重要的理论与实际价值。应用光释光(OSL)测年技术对玉龙雪山冰川沉积物进行了定年,结合前人研究资料,重建玉龙雪山冰川作用史。研究结果表明:玉龙雪山东麓的末次冰期冰碛物主要形成于晚更新世末次冰期最盛时期,其平均年代约在25ka,西麓末次冰期冰碛物形成年代约为50ka,对应于深海氧同位素3阶段中期(MIS3b)。而倒数第二次冰期的年代在240ka左右,处于中更新世晚期,对应于MIS8阶段,当时玉龙雪山存在多条复式山谷冰川。该研究可为玉龙雪山第四纪冰川作用历史的重新认识以及光释光测年技术在该区的应用提供基础资料。  相似文献   

12.
冰期与间冰期旋回是第四纪最基本的气候特征.第四纪期间规模较大的冰川进退留下了丰富、形态独特的冰川地形,对其研究可以获得冰川的时空演化规律.“将今论古”是地质学最基本的工作原理,也是第四纪冰川研究的基本思路.从20世纪50年代,在施雅风先生的领导下,以现代冰川研究为契机,开展了青藏高原及周边山地的第四纪冰川研究,使我国第四纪冰川研究达到国际水平.在对我国西部地区(105°E以西)第四纪冰川有了相当认识后,进行了我国东部地区(105°E以东)第四纪冰川与环境问题的拨乱反正,将我国东部地区第四纪冰川与环境变化研究引向正确的方向.目前,我国第四纪冰川研究进入了以定年为特征的定量研究阶段.在此背景下,我国第四纪冰川将在测年技术的综合应用、老冰期冰川地形的定年、构造抬升与冰川发育的耦合关系等几个方面展开研究与探讨.  相似文献   

13.
海螺沟现代冰碛物中的宇生核素10Be浓度分析   总被引:1,自引:1,他引:0       下载免费PDF全文
尽管许多学者都意识到继承性宇生核素对冰碛物暴露年代测量可能会带来一定的误差,然而影响究竟有多大,还缺乏对现代冰碛物宇生核素浓度的研究。对采自贡嘎山海螺沟冰川现代冰碛物碎屑和冰碛砾石的本地生宇生核素 10 Be 浓度的分析表明,即使是海洋性冰川(暖底冰川),其冰碛物碎屑和冰碛砾石都残留一定量的本地生宇生核素; 即使是具有明显磨蚀痕迹的现代冰碛砾石表面,也残留一定量的本地生宇生核素。因此,进行宇生核素测年时要给予充分的重视。当然,其冰碛物基质和具有明显磨蚀痕迹的现代冰碛砾石表面的本地生宇生核素 10 Be 浓度比较低,一般不大于2×104atoms/g。对暴露年代的影响一般不大于0.61ka。尽管其适用范围还有待于更多的研究结果的进一步证实,但是却为残留影响的研究提供了一个研究的实例和一组可以参考的数据。  相似文献   

14.
王敏  王猛  赵志中  钱方 《地质论评》2022,68(4):1530-1540
第四纪冰川和冰川地质遗迹的研究,是研究第四纪全球气候变化的重要课题之一。中国第四纪冰川地质遗迹分布很广,类型多。最北的大兴安岭、南部的广西大明山、东部的长白山和台湾玉山、最西的喀喇昆仑山第四纪冰川地质遗迹均有分布,是世界上低纬度地区山岳冰川发育最广泛的国家。本文在前人研究的基础上,系统阐述我国第四纪冰川地质遗迹分布概况,结合开展的全国重要地质遗迹调查,以地质遗迹调查规范为基础,系统开展第四纪冰川地质遗迹调查方法研究。根据冰川在运动过程中对地面的侵蚀、冰碛物的搬运和堆积等不同的地质作用阶段,总结我国第四纪冰川地质遗迹调查方法体系,为开展同类地质遗迹调查提供方法指导依据。  相似文献   

15.
阿尔卑斯山地区第四纪冰川最新研究   总被引:2,自引:1,他引:1  
周尚哲 《冰川冻土》2012,34(5):1127-1133
阿尔卑斯山是冰川学和第四纪冰川学的诞生地. 第四纪冰川学在全球发展, 最初以Penck在阿尔卑斯山建立的模式为脚本. 此后, 阿尔卑斯山一直是欧洲第四纪山地冰川变化研究的核心地区. 笔者以为, 该区研究对中国第四纪冰川研究仍然具有参照意义, 故有必要简要但较为系统地介绍一下其研究概况与最新进展. 百年以来, 欧洲学者根据新发现的冰水砾石层, 将Penck的4次冰期模式发展为7次冰期. 即在贡兹(Günz)冰期之前增加了巴伯尔(Biber)冰期和多瑙(Donau)冰期, 在贡兹冰期和民德(Mindel)冰期之间增加了哈斯兰(Haslach)冰期, 并对其年代学进行了不少探索. 认为多瑙冰期可能在上新世和更新世之间, 但迄今, 这些较老的冰期年代仍存在很大不确定性. 里斯(Riss)冰期、 武木(Würm)冰期已获得较多的宇宙核素暴露年代. 特别是欧洲学者对许多谷地中保留的多道冰川堆积进行年代学研究, 获得大量的宇宙核素暴露年代数据, 揭示末次冰期最盛期以来, 冰川在总体退缩的大趋势下, 发生规模依次减小的冰进事件, 和北欧冰后期历次气候变化的其他记录相呼应.  相似文献   

16.
王敏  王猛  赵志中  钱方 《地质论评》2022,68(2):2022030021-2022030021
第四纪冰川和冰川地质遗迹的研究,是研究第四纪全球气候变化的重要课题之一。中国第四纪冰川地质遗迹分布很广,类型多。最北的大兴安岭、南部的广西大明山、东部的长白山和台湾玉山、最西的喀喇昆仑山第四纪冰川地质遗迹均有分布,是世界上低纬度地区山岳冰川发育最广泛的国家。本文在前人研究的基础上,系统阐述我国第四纪冰川地质遗迹分布概况,结合开展的全国重要地质遗迹调查,以地质遗迹调查规范为基础,系统开展第四纪冰川地质遗迹调查方法研究。根据冰川在运动过程中对地面的侵蚀、冰碛物的搬运和堆积等不同的地质作用阶段,总结我国第四纪冰川地质遗迹调查方法体系,为开展同类地质遗迹调查提供方法指导依据。  相似文献   

17.
青藏高原古里雅冰帽冰碛和冰水沉积物粒度特征及其意义   总被引:1,自引:1,他引:0  
冰冻圈演化不仅与青藏高原水塔变化、地表侵蚀风化及荒漠化密切相关,还深刻影响着亚洲季风系统和全球气候,冰碛物的粒度组成可以为冰冻圈演化提供重要信息,但高原冰碛物的特征粒度组成及其形成机理仍不清楚,高原冰碛物与高原冷黄土及河湖沉积物的关系也不明确。为此,选择青藏高原最大的冰帽——古里雅冰帽的冰碛物及系列冰水沉积物,开展系统粒度组成研究。研究发现:自终碛到冰川前端冰水扇及下游河流冰水沉积均表现出特征的双峰模态,即1~3φ(500~125μm)的中细砂峰和6~8φ(16~4μm)的细粉砂峰,前者可能由冰川压碎、寒冻风化崩裂作用造成,后者由冰川研磨作用形成,并受到源区基岩岩性软弱和组成颗粒大小的影响。冰川磨蚀的细粉砂组分含量,从冰碛物经冰水扇、河流到湖滩沉积物整体呈现减小趋势,粗粉砂在湖滩沉积中几乎完全被风吹走,粗粉砂直接成为下游黄土的物源并富集其中成为黄土特征组分,水流分选在开口湖泊中产生粗、细粉砂的明显富集,这些证据揭示出,无论是与冰川发育相关的尾闾湖沉积还是近源、远源的青藏高原及周边黄土沉积,其粉砂组成和来源,均可为高原冰冻圈的形成演化提供重要信息。  相似文献   

18.
札达盆地及周缘高山区的第四纪冰川遗迹分布广泛,类型齐全、发育连续.特征的冰碛及冰水堆积地貌有:冰水堆积平原或冰水堆积平台、冰碛丘陵等.挤压构造遗迹有:褶皱、断裂表皮构造、压坑、压裂构造、变形砾石等.ESR年代测定结果表明,冰碛形成的最大年龄为2.33Ma.依据冰碛、冰水堆积的特征、分布和形成年代等,区域冰川发育由老到新可划分出:7次冰期、6次间冰期、1次冰缘期、1次新冰期.该区是目前所知青藏高原第四纪冰川遗迹发现最多、保存最全和发育最连续的地区,为青藏高原地区的第四纪冰川演化研究、冰期的划分和对比、古气候古环境的研究,提供了重要的实际资料和依据.   相似文献   

19.
易朝路 《第四纪研究》2018,38(3):537-561

一百多年来,新技术的运用和认识水平的不断提高,给第四纪冰川研究带来重大变化,研究方法和内容大致经历了两个阶段:早期的研究者采用野外地质地貌调查方法,定性描述冰川地貌和冰碛物沉积特征及其分布,根据冰川遗迹的相对位置和风化程度划分了4~6次经典冰期;20世纪80年代开始到21世纪初的近30年间,采用放射性碳、光释光和电子自旋共振、宇宙成因核素暴露年代,以及火山灰钾氩法/裂变径迹等测年技术测定冰川地貌及其相关沉积物的数值年代。其他新技术的不断涌现,定量化描述冰川遗迹,解决了许多以往第四纪冰川研究不能解决的问题,还发现了不少新的科学问题。结果表明:1)相当于深海氧同位素3阶段的大规模冰进、末次冰盛期(Last Glacial Maximum,简称LGM)、末次冰期早阶段的时代和倒数第二冰期的时代在全球范围内可以对比;北美洲、南美洲和青藏高原最老的冰期时代大约1 Ma。2)采用3S技术(GPS、GIS和RS)并结合野外调查,发现海洋性冰川作用区冰下磨蚀量与冰流速成2次方的定量关系,定量描述古冰川分布和平衡线的空间变化,最近和未来将采用数值模型并结合野外调查模拟山地冰川的面积、体积和平衡线等对气候变化的响应和反馈作用,并进一步提高实验室测年水平,对冰碛物精细测年,以利全球冰期对比和古冰川气候模拟。

  相似文献   

20.
关于青藏高原和周边山地第四纪冰川作用及其气候响应存在不同观点。一些学者认为老冰期主要发生在氧同位素奇数阶段; MIS 3和早全新世存在规模较大的冰川前进; 南亚季风对青藏高原冰川作用起主导作用(水汽驱动)。另一些学者则认为青藏高原冰川作用主要对应于氧同位素偶数阶段; 冰川发育是构造隆升-冰期气候耦合的产物(低温驱动)。本文基于现有的陆地生成宇宙核素(TCN)和光释光(OSL)等年代结果总结了不同时间尺度和不同类型冰川波动与气候变化历史的对比, 并对几个关键的争议问题做了讨论。结果表明, 在不同类型冰川区和不同时间尺度下, 冰川作用在湿润期和低温期都有可能发生, 但总体上主要与低温相对应。青藏高原冰川对气温的响应似乎更为敏感。MIS 3冰进规模较大可能是降水较多结合冷期(或冷事件)降温所致, 显示了印度季风降水和气温波动对高原冰川的共同作用。早全新世冰进也与印度季风和北半球冷事件关系密切。目前的测年数据还没有推翻"冰期发生在氧同位素偶数阶段"这种传统认识。当前急需更多精确的数字定年工作, 以不断更新对青藏高原冰期时代及其气候响应机制的了解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号