首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study motions of galaxies in galaxy clusters formed in the concordance Λ cold dark matter cosmology. We use high-resolution cosmological simulations that follow the dynamics of dark matter and gas and include various physical processes critical for galaxy formation: gas cooling, heating and star formation. Analysing the motions of galaxies and the properties of intracluster gas in a sample of eight simulated clusters at z = 0, we study the velocity dispersion profiles of the dark matter, gas and galaxies. We measure the mean velocity of galaxy motions and gas sound speed as a function of radius and calculate the average Mach number of galaxy motions. The simulations show that galaxies, on average, move supersonically with the average Mach number of ≈1.4, approximately independent of the cluster-centric radius. The supersonic motions of galaxies may potentially provide an important source of heating for the intracluster gas by driving weak shocks and via dynamical friction, although these heating processes appear to be inefficient in our simulations. We also find that galaxies move slightly faster than the dark matter particles. The magnitude of the velocity bias,   b v ≈ 1.1  , is, however, smaller than the bias estimated for subhaloes in dissipationless simulations. Interestingly, we find velocity bias in the tangential component of the velocity dispersion, but not in the radial component. Finally, we find significant random bulk motions of gas. The typical gas velocities are of order ≈20–30 per cent of the gas sound speed. These random motions provide about 10 per cent of the total pressure support in our simulated clusters. The non-thermal pressure support, if neglected, will bias measurements of the total mass in the hydrostatic analyses of the X-ray cluster observations.  相似文献   

2.
We present results for a galaxy formation model that includes a simple treatment for the disruption of dwarf galaxies by gravitational forces and galaxy encounters within galaxy clusters. This is implemented a posteriori in a semi-analytic model by considering the stability of cluster dark matter subhaloes at   z = 0  . We assume that a galaxy whose dark matter substructure has been disrupted will itself disperse, while its stars become part of the population of intracluster stars responsible for the observed intracluster light. Despite the simplicity of this assumption, our results show a substantial improvement over previous models and indicate that the inclusion of galaxy disruption is indeed a necessary ingredient of galaxy formation models. We find that galaxy disruption suppresses the number density of dwarf galaxies by about a factor of 2. This makes the slope of the faint end of the galaxy luminosity function shallower, in agreement with observations. In particular, the abundance of faint, red galaxies is strongly suppressed. As a result, the luminosity function of red galaxies and the distinction between the red and the blue galaxy populations in colour–magnitude relationships are correctly predicted. Finally, we estimate a fraction of intracluster light comparable to that found in clusters of galaxies.  相似文献   

3.
We use semi-analytic models of galaxy formation combined with high-resolution N -body simulations to make predictions for galaxy–dark matter correlations and apply them to galaxy–galaxy lensing. We analyse cross-power spectra between the dark matter and different galaxy samples selected by luminosity, colour or star formation rate. We compare the predictions with the recent detection by the Sloan Digital Sky Survey (SDSS). We show that the correlation amplitude and the mean tangential shear depend strongly on the luminosity of the sample on scales below 1  h −1 Mpc, reflecting the correlation between the galaxy luminosity and the halo mass. The cross-correlation cannot, however, be used to infer the halo profile directly because different halo masses dominate on different scales and because not all galaxies are at the centres of the corresponding haloes. We compute the redshift evolution of the cross-correlation amplitude and compare it with those of galaxies and dark matter. We also compute the galaxy–dark matter correlation coefficient and show that it is close to unity on scales above 1  h −1 Mpc for all considered galaxy types. This would allow one to extract the bias and the dark matter power spectrum on large scales from the galaxy and galaxy–dark matter correlations.  相似文献   

4.
We present the results of a set of numerical simulations evaluating the effect of cluster galaxies on arc statistics.
We perform a first set of gravitational lensing simulations using three independent projections for each of nine different galaxy clusters obtained from N -body simulations. The simulated clusters consist of dark matter only. We add a population of galaxies to each cluster, mimicking the observed luminosity function and the spatial galaxy distribution, and repeat the lensing simulations including the effects of cluster galaxies, which themselves act as individual lenses. Each galaxy is represented by a spherical Navarro, Frenk & White density profile.
We consider the statistical distributions of the properties of the gravitational arcs produced by our clusters with and without galaxies. We find that the cluster galaxies do not introduce perturbations strong enough to significantly change the number of arcs and the distributions of lengths, widths, curvature radii and length-to-width ratios of long arcs. We find some changes to the distribution of short-arc properties in the presence of cluster galaxies. The differences appear in the distribution of curvature radii for arc lengths smaller than 12 arcsec, while the distributions of lengths, widths and length-to-width ratios are significantly changed only for arcs shorter than 4 arcsec.  相似文献   

5.
6.
7.
We investigate the old globular cluster (GC) population of 68 faint  ( M V > −16 mag)  dwarf galaxies located in the halo regions of nearby (≲12 Mpc) loose galaxy groups and in the field environment based on archival Hubble Space Telescope ( HST )/Advanced Camera for Surveys (ACS) images in F606W and F814W filters. The combined colour distribution of 175 GC candidates peaks at  ( V − I ) = 0.96 ± 0.07 mag  and the GC luminosity function turnover for the entire sample is found at   M V ,TO=−7.6 ± 0.11 mag  , similar to the old metal-poor Large Magellanic Cloud (LMC) GC population. Our data reveal a tentative trend of   M V ,TO  becoming fainter from late- to early-type galaxies. The luminosity and colour distributions of GCs in dIrrs show a lack of faint blue GCs (bGCs). Our analysis reveals that this might reflect a relatively younger GC system than typically found in luminous early-type galaxies. If verified by spectroscopy, this would suggest a later formation epoch of the first metal-poor star clusters in dwarf galaxies. We find several bright (massive) GCs which reside in the nuclear regions of their host galaxies. These nuclear clusters have similar luminosities and structural parameters as the peculiar Galactic clusters suspected of being the remnant nuclei of accreted dwarf galaxies, such as M54 and ωCen. Except for these nuclear clusters, the distribution of GCs in dIrrs in the half-light radius versus cluster mass plane is very similar to that of Galactic young halo clusters, which suggests comparable formation and dynamical evolution histories. A comparison with theoretical models of cluster disruption indicates that GCs in low-mass galaxies evolve dynamically as self-gravitating systems in a benign tidal environment.  相似文献   

8.
We follow the evolution of the galaxy population in a ΛCDM cosmology by means of high-resolution N -body simulations in which the formation of galaxies and their observable properties are calculated using a semi-analytic model. We display images of the spatial distribution of galaxies in the simulations that illustrate its evolution and provide a qualitative understanding of the processes responsible for the various biases that develop. We consider three specific statistical measures of clustering at     and     : the correlation length (in both real and redshift space) of galaxies of different luminosity, the morphology–density relation and the genus curve of the topology of galaxy isodensity surfaces. For galaxies with luminosity below L ∗, the     correlation length depends very little on the luminosity of the sample, but for brighter galaxies it increases very rapidly, reaching values in excess of 10  h −1 Mpc. The 'accelerated' dynamical evolution experienced by galaxies in rich clusters, which is partly responsible for this effect, also results in a strong morphology–density relation. Remarkably, this relation is already well-established at     . The genus curves of the galaxies are significantly different from the genus curves of the dark matter, however this is not a result of genuine topological differences but rather of the sparse sampling of the density field provided by galaxies. The predictions of our model at     will be tested by forthcoming data from the 2dF and Sloan galaxy surveys, and those at     by the DEEP and VIRMOS surveys.  相似文献   

9.
We study the stellar mass assembly of the Spiderweb galaxy  (MRC 1138−262)  , a massive   z = 2.2  radio galaxy in a protocluster and the probable progenitor of a brightest cluster galaxy. Nearby protocluster galaxies are identified and their properties are determined by fitting stellar population models to their rest-frame ultraviolet to optical spectral energy distributions. We find that within 150 kpc of the radio galaxy the stellar mass is centrally concentrated in the radio galaxy, yet most of the dust-uncorrected, instantaneous star formation occurs in the surrounding low-mass satellite galaxies. We predict that most of the galaxies within 150 kpc of the radio galaxy will merge with the central radio galaxy by   z = 0  , increasing its stellar mass by up to a factor of ≃2. However, it will take several hundred Myr for the first mergers to occur, by which time the large star formation rates are likely to have exhausted the gas reservoirs in the satellite galaxies. The tidal radii of the satellite galaxies are small, suggesting that stars and gas are being stripped and deposited at distances of tens of kpc from the central radio galaxy. These stripped stars may become intracluster stars or form an extended stellar halo around the radio galaxy, such as those observed around cD galaxies in cluster cores.  相似文献   

10.
The global star formation rate has decreased significantly since   z ∼ 1  , for reasons that are not well understood. Red-sequence galaxies, dominating in galaxy clusters, represent the population that have had their star formation shut off, and may therefore be the key to this problem. In this work, we select 127 rich galaxy clusters at  0.17 ≤ z ≤ 0.36  , from 119 deg2 of the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) optical imaging data, and construct the r '-band red-sequence luminosity functions (LFs). We show that the faint end of the LF is very sensitive to how red-sequence galaxies are selected, and an optimal way to minimize the contamination from the blue cloud is to mirror galaxies on the redder side of the colour–magnitude relation. The LFs of our sample have a significant inflexion centred at     , suggesting a mixture of two populations. Combining our survey with low-redshift samples constructed from the Sloan Digital Sky Survey, we show that there is no strong evolution of the faint end of the LF (or the red-sequence dwarf-to-giant ratio) over the redshift range  0.2 ≲ z ≲ 0.4  , but from   z ∼ 0.2  to ∼0 the relative number of red-sequence dwarf galaxies has increased by a factor of ∼3, implying a significant build-up of the faint end of the cluster red sequence over the last 2.5 Gyr.  相似文献   

11.
The group of galaxies RXJ1340.6+4018 has approximately the same bolometric X-ray luminosity as other bright galaxy groups and poor clusters such as the Virgo cluster. However, 70 per cent of the optical luminosity of the group comes from a dominant giant elliptical galaxy, compared with 5 per cent from M87 in Virgo.The second brightest galaxy in RXJ1340.6+4018 is a factor of 10 fainter (Δ m 12=2.5 mag) than the dominant elliptical, and the galaxy luminosity function has a gap at about L *.
We interpret the properties of the system as a result of galaxy merging within a galaxy group. We find that the central galaxy lies on the Fundamental Plane of ellipticals, has an undisturbed, non-cD morphology, and has no spectral features indicative of recent star formation, suggesting that the last major merger occurred ≳4 Gyr ago. The deviation of the system from the cluster L X− T relation in the opposite sense to most groups may be caused by an early epoch of formation of the group or a strong cooling flow.
The unusual elongation of the X-ray isophotes and the similarity between the X-ray and optical ellipticities at large radii (∼230 kpc) suggest that both the X-ray gas and the outermost stars of the dominant galaxy are responding to an elongated dark matter distribution. RXJ1340.6+4018 may be part of a filamentary structure related to infall in the outskirts of the cluster A1774.  相似文献   

12.
We develop a coupled model for the evolution of the global properties of the intergalactic medium (IGM) and the formation of galaxies, in the presence of a photoionizing background due to stars and quasars. We use this model to predict the thermodynamic history of the IGM when photoionized by galaxies forming in a cold dark matter (CDM) universe. The evolution of the galaxies is calculated using a semi-analytical model, including a detailed treatment of the effects of tidal stripping and dynamical friction on satellite galaxies orbiting inside larger dark matter haloes. We include in the model the negative feedback on galaxy formation from the photoionizing background. Photoionization inhibits galaxy formation in low-mass dark matter haloes in two ways: (i) heating of the IGM and inhibition of the collapse of gas into dark haloes by the IGM pressure, and (ii) reduction in the rate of radiative cooling of gas within haloes. The result of our method is a self-consistent model of galaxy formation and the IGM. The IGM is reheated twice (during reionization of H  i and He  ii ), and we find that the star formation rate per unit volume is slightly suppressed after each episode of reheating. We find that galaxies brighter than L are mostly unaffected by reionization, while the abundance of faint galaxies is significantly reduced, leading to present-day galaxy luminosity functions with shallow faint-end slopes, in good agreement with recent observational data. Reionization also affects other properties of these faint galaxies, in a readily understandable way.  相似文献   

13.
N -body/hydrodynamical simulations of the formation and evolution of galaxy groups and clusters in a Λ cold dark matter (ΛCDM) cosmology are used in order to follow the building-up of the colour–magnitude relation in two clusters and in 12 groups. We have found that galaxies, starting from the more massive, move to the red sequence (RS) as they get aged over times and eventually set upon a 'dead sequence' (DS) once they have stopped their bulk star formation activity. Fainter galaxies keep having significant star formation out to very recent epochs and lie broader around the RS. Environment plays a role as galaxies in groups and cluster outskirts hold star formation activity longer than the central cluster regions. However, galaxies experiencing infall from the outskirts to the central parts keep star formation on until they settle on to the DS of the core galaxies. Merging contributes to mass assembly until z ∼ 1, after which major events only involve the brightest cluster galaxies.
The emerging scenario is that the evolution of the colour–magnitude properties of galaxies within the hierarchical framework is mainly driven by star formation activity during dark matter haloes assembly. Galaxies progressively quenching their star formation settle to a very sharp 'red and dead' sequence, which turns out to be universal, its slope and scatter being almost independent of the redshift (since at least z ∼ 1.5) and environment.
Differently from the DS, the operatively defined RS evolves more evidently with z , the epoch when it changes its slope being closely corresponding to that at which the passive galaxies population takes over the star-forming one: this goes from z ≃ 1 in clusters down to 0.4 in normal groups.  相似文献   

14.
We examine the evolutionary status of luminous, star-forming galaxies in intermediate-redshift clusters by considering their star formation rates (SFRs) and the chemical and ionization properties of their interstellar emitting gas. Our sample consists of 17 massive, star-forming, mostly disc galaxies with   MB ≲−20  , in clusters with redshifts in the range  0.31 ≲ z ≲ 0.59  , with a median of  〈 z 〉= 0.42  . We compare these galaxies with the identically selected and analysed intermediate-redshift field sample of Mouhcine et al., and with local galaxies from the Nearby Field Galaxy Survey of Jansen et al.
From our optical spectra, we measure the equivalent widths of  [O  ii ]λ3727, Hβ  and [O  iii ]λ5007 emission lines to determine diagnostic line ratios, oxygen abundances and extinction-corrected SFRs. The star-forming galaxies in intermediate-redshift clusters display emission-line equivalent widths which are, on average, significantly smaller than measured for field galaxies at comparable redshifts. However, a contrasting fraction of our cluster galaxies have equivalent widths similar to the highest observed in the field. This tentatively suggests a bimodality in the SFRs per unit luminosity for galaxies in distant clusters. We find no evidence for further bimodalities, or differences between our cluster and field samples, when examining additional diagnostics and the oxygen abundances of our galaxies. This maybe because no such differences exist, perhaps because the cluster galaxies which still display signs of star formation have recently arrived from the field. In order to examine this topic with more certainty, and to further investigate the way in which any disparity varies as a function of cluster properties, larger spectroscopic samples are needed.  相似文献   

15.
We present detailed predictions for the properties of Lyα-emitting galaxies in the framework of the Λ cold dark matter cosmology, calculated using the semi-analytical galaxy formation model galform . We explore a model that assumes a top-heavy initial mass function in starbursts and that has previously been shown to explain the sub-millimetre number counts and the luminosity function of Lyman-break galaxies at high redshift. We show that this model, with the simple assumption that a fixed fraction of Lyα photons escape from each galaxy, is remarkably successful at explaining the observed luminosity function of Lyα emitters (LAEs) over the redshift range  3 < z < 6.6  . We also examine the distribution of Lyα equivalent widths and the broad-band continuum magnitudes of emitters, which are in good agreement with the available observations. We look more deeply into the nature of LAEs, presenting predictions for fundamental properties such as the stellar mass and radius of the emitting galaxy and the mass of the host dark matter halo. The model predicts that the clustering of LAEs at high redshifts should be strongly biased relative to the dark matter, in agreement with observational estimates. We also present predictions for the luminosity function of LAEs at   z > 7  , a redshift range that is starting to be be probed by near-infrared surveys and using new instruments such as the Dark Ages Z Lyman Explorer (DAzLE).  相似文献   

16.
We investigate the evolution of the star formation rate in cluster galaxies. We complement data from the Canadian Network for Observational Cosmology 1 (CNOC1) cluster survey  (0.15 < z < 0.6)  with measurements from galaxy clusters in the Two-degree Field (2dF) galaxy redshift survey  (0.05 < z < 0.1)  and measurements from recently published work on higher-redshift clusters, up to almost   z = 1  . We focus our attention on galaxies in the cluster core, i.e. galaxies with   r < 0.7  h −170 Mpc  . Averaging over clusters in redshift bins, we find that the fraction of galaxies with strong [O  ii ] emission is ≲20 per cent in cluster cores, and the fraction evolves little with redshift. In contrast, field galaxies from the survey show a very strong increase over the same redshift range. It thus appears that the environment in the cores of rich clusters is hostile to star formation at all the redshifts studied. We compare this result with the evolution of the colours of galaxies in cluster cores, first reported by Butcher and Oemler. Using the same galaxies for our analysis of the [O  ii ] emission, we confirm that the fraction of blue galaxies, which are defined as galaxies 0.2 mag bluer in the rest-frame B – V than the red sequence of each cluster, increases strongly with redshift. Because the colours of galaxies retain a memory of their recent star formation history, while emission from the [O  ii ] line does not, we suggest that these two results can best be reconciled if the rate at which the clusters are being assembled is higher in the past, and the galaxies from which it is being assembled are typically bluer.  相似文献   

17.
An analysis of the environments around a sample of 28 3CR radio galaxies with redshifts 0.6< z <1.8 is presented, based primarily upon K -band images down to K ∼20 taken using the UK Infrared Telescope (UKIRT). A net overdensity of K -band galaxies is found in the fields of the radio galaxies, with the mean excess counts being comparable to that expected for clusters of Abell Class 0 richness. A sharp peak is found in the angular cross-correlation amplitude centred on the radio galaxies that, for reasonable assumptions about the luminosity function of the galaxies, corresponds to a spatial cross-correlation amplitude between those determined for low-redshift Abell Class 0 and 1 clusters.
These data are complemented by J -band images also from UKIRT, and by optical images from the Hubble Space Telescope . The fields of the lower redshift ( z ≲0.9) radio galaxies in the sample generally show well-defined near-infrared colour–magnitude relations with little scatter, indicating a significant number of galaxies at the redshift of the radio galaxy; the relations involving colours at shorter wavelengths than the 4000 Å break show considerably greater scatter, suggesting that many of the cluster galaxies have low levels of recent or on-going star formation. At higher redshifts the colour–magnitude sequences are less prominent owing to the increased field galaxy contribution at faint magnitudes, but there is a statistical excess of galaxies with the very red infrared colours ( J − K ≳1.75) expected of old cluster galaxies at these redshifts.
Although these results are appropriate for the mean of all of the radio galaxy fields, there exist large field-to-field variations in the richness of the environments. Many, but certainly not all, powerful z ∼1 radio galaxies lie in (proto)cluster environments.  相似文献   

18.
We have measured central line strengths for a complete sample of early-type galaxies in the Fornax cluster, comprising 11 elliptical and 11 lenticular galaxies, more luminous than M B  = −17. In contrast to the elliptical galaxies in the sample studied by González (and recently revisited by Trager) we find that the Fornax ellipticals follow the locus of galaxies of fixed age in Worthey's models and have metallicities varying from roughly solar to three times solar. The lenticular galaxies, however, exhibit a substantial spread to younger luminosity-weighted ages, indicating a more extended star formation history. We present measurements of the more sensitive indices: C4668 and HγA; these confirm and reinforce the conclusions that the elliptical galaxies are coeval and that only the lenticular galaxies show symptoms of late star formation. The inferred difference in the age distribution between lenticular and elliptical galaxies is a robust conclusion as the models generate consistent relative ages using different age and metallicity indicators even though the absolute ages remain uncertain. The young luminosity-weighted ages of the S0s in the Fornax cluster are consistent with the recent discovery that the fraction of S0 galaxies in intermediate-redshift clusters is a factor of 2–3 lower than found locally, and suggest that a fraction of the cluster spiral galaxy population has evolved to quiescence in the 5-Gyr interval from z  = 0.5 to the present. Two of the faintest lenticular galaxies in our sample have blue continua and strong Balmer-line absorption, suggesting starbursts ≲2 Gyr ago. These may be the low-redshift analogues of the starburst or post-starburst galaxies seen in clusters at z  = 0.3, similar to the Hδ-strong galaxies in the Coma cluster.  相似文献   

19.
Using semi-analytic models of galaxy formation set within the cold dark matter (CDM) merging hierarchy, we investigate several scenarios for the nature of the high-redshift     ) Lyman-break galaxies (LBGs). We consider a 'collisional starburst' model in which bursts of star formation are triggered by galaxy–galaxy mergers, and find that a significant fraction of LBGs are predicted to be starbursts. This model reproduces the observed comoving number density of bright LBGs as a function of redshift and the observed luminosity function at     and     with a reasonable amount of dust extinction. Model galaxies at     have star formation rates, half-light radii,     colours and internal velocity dispersions that are in good agreement with the data. Global quantities such as the star formation rate density and cold gas and metal content of the Universe as a function of redshift also agree well. Two 'quiescent' models without starbursts are also investigated. In one, the star formation efficiency in galaxies remains constant with redshift, while in the other, it scales inversely with disc dynamical time, and thus increases rapidly with redshift. The first quiescent model is strongly ruled out, as it does not produce enough high-redshift galaxies once realistic dust extinction is accounted for. The second quiescent model fits marginally, but underproduces cold gas and very bright galaxies at high redshift. A general conclusion is that star formation at high redshift must be more efficient than locally. The collisional starburst model appears to accomplish this naturally without violating other observational constraints.  相似文献   

20.
With the help of a statistical parameter derived from optical spectra, we show that the current star formation rate of a galaxy, falling into a cluster along a supercluster filament, is likely to undergo a sudden enhancement before the galaxy reaches the virial radius of the cluster. From a sample of 52 supercluster-scale filaments of galaxies joining a pair of rich clusters of galaxies within the two-degree Field Redshift Survey region, we find a significant enhancement of star formation, within a narrow range between ∼2 and  3  h −170 Mpc  of the centre of the cluster into which the galaxy is falling. This burst of star formation is almost exclusively seen in the fainter dwarf galaxies  ( M B ≥−20)  . The relative position of the peak does not depend on whether the galaxy is a member of a group or not, but non-group galaxies have on average a higher rate of star formation immediately before falling into a cluster. From the various trends, we conclude that the predominant process responsible for this rapid burst is the close interaction with other galaxies falling into the cluster along the same filament, if the interaction occurs before the gas reservoir of the galaxy gets stripped off due to the interaction with the intracluster medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号