首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Comptes Rendus Geoscience》2007,339(3-4):200-211
At the end of the Neoproterozoic, the Earth may have experienced important environmental changes, with a transition between two supercontinents (from Rodinia to Gondwana), extensive glaciations with ice caps reaching the Equator and the beginning of metazoan diversification. In such a context, the palaeomagnetic record can be used to constrain both the palaeogeography and the palaeoclimate (palaeolatitudinal distribution of glacial deposits). Here we present an up-to-date geochronological and palaeomagnetic database for the Neoproterozoic glacial deposits, including poles recently obtained on ‘cap carbonates’ from China, Oman, and Amazonia. The database comprises ten poles (from eight different cratons), obtained directly on the glacial deposits or on the overlying ‘cap carbonate’, and two other palaeolatitudes derived from reference poles coeval to well-dated glacial units in the same craton. The occurrence of glacial deposition at low latitudes (<30 °) is attested by some good-quality poles, two of them well dated at ∼740 and ∼635 Ma. Based on these poles and on reference poles obtained on igneous rocks, tentative palaeogeographic reconstructions for ∼750, ∼620, and ∼580 Ma (ages for which the database has limited but still sufficient entries) were performed in order to investigate the tectonic context within which the glacial events were produced.  相似文献   

2.
ABSTRACT The early Pleistocene Laguna and Turlock Lake Formations and China Hat and Arroyo Seco Gravels along the east side of the San Joaquin Valley, California, were deposited in alluvial fans and marginal lakes. Upward-coarsening sequences of silt-sand-gravel record westward progradation of glacial outwash fans from the Sierra Nevada into proglacial lakes in the San Joaquin Valley. Distinctive sedimentary features delineate lacustrine, prodelta, and delta-front facies within fan-margin deposits and lower, middle, and upper-fan facies within alluvial-fan deposits. The lacustrine facies consists of a few metres of thinly and evenly bedded, rhythmically laminated claystone and clayey siltstone in varved couplets. Draped lamination, sinusoidal lamination, and load and pillar structures occur in some beds. Siltstone and claystone grade upward to slightly thicker wavy beds of siltstone and very fine-grained unconsolidated sand deposited in a prodelta setting. Convolute laminae within deformed steeply dipping foreset beds suggest slumping on the prodelta slope. The prodelta facies grades up to the delta-front facies, which consists of burrowed and bioturbated cross-bedded fine sand. Deltaic deposits are 5–6 m thick. The lower-fan facies forms the base of the fan sequence and consists of several metres of irregularly bedded, laminated, oxidized siltstone and fine sand. The middle-fan facies consists of cross-bedded, medium-grained to gravelly sand-filled channels cut into the lower-fan facies. Interbedded lens-shaped siltstone beds 2 m thick and several metres across were deposited in abandoned channels. The upper-fan facies consists of moderately to strongly weathered clayey gravel and sand containing pebble imbrication and crude stratification. Argillization during post-depositional soil formation has blurred the distinction between mud-supported debris-flow deposits and clast-supported channel deposits, but both are present in this facies. The deposits described here demonstrate the need for additional fan models in order to incorporate the variety of deposits developed in alluvial fan sequences deposited in humid climates. In previous models based on arctic fans, debris flows, abandoned channels, or widespread siltstone beds are not present in fan sequences, nor are marginal lacustrine and deltaic deposits well represented.  相似文献   

3.
During the Middle Pleistocene late Saalian glaciation of northern central Europe numerous pro‐glacial lakes formed along the southwestern margin of the Scandinavian Ice Sheet. Little is known about the drainage history of these lakes, the pathways of glacial lake outburst floods and their impacts on erosion, sedimentation and landscape evolution. This study investigated the impact of the late Saalian Weser and Münsterland Lake (Germany) outburst floods. In particular, we reconstructed the routing and flow dynamics of the lake outburst flood and analysed the flood related sediments. We employed one‐dimensional hydraulic modelling to calculate glacial lake outburst flood hydrographs. We modelled the flow pathway and local flow conditions along the pathway based on the boundary conditions of two different hydrographs and two different ice‐margin positions. The modelling results were compared with geomorphological and sedimentological field data in order to estimate the magnitude and impact of the flood on erosion and sedimentation. Two major lake drainage events are reconstructed for the study area, during which approximately 90–50 km3 of water was released. Modelling results indicate that the lake outburst floods created a high‐energy flood wave with a height of 35–50 m in confined valley areas that rapidly spread out into the Lower Rhine Embayment eventually flowing into the North Sea basin. The sedimentary record of the outburst floods comprises poorly sorted coarse‐grained gravel bars, long‐wavelength bedforms and sandy bedforms deposited by supercritical and subcritical flows. Some parts of the sandy flood deposits are rich in reworked mammoth bones or mammoth and horse teeth, pointing to reworking of older fluvial sediments, hydraulic concentration and subsequent re‐sedimentation of vertebrate remains. These deposits are preserved in sheltered areas or at high elevations, well above the influence of postglacial fluvial erosion. The flood‐related erosional features include up to 80‐m‐deep scour pools, alluvial channels and streamlined hills.  相似文献   

4.
Fossil remnants of up-turned debris-rich bands of glacial ice are recorded from three localities in the Polish Lowlands. In each case the fossil debris bands occur in proximal parts of hills built of glacitectonically disturbed sediments. The characteristics of these remnants and of the associated deposits and structures are described, and they are compared to present-day examples from Spitsbergen.  相似文献   

5.
Two previously undocumented Pleistocene marine transgressions on Wrangel Island, northeastern Siberia, question the presence of an East Siberian or Beringian ice sheet during the last glacial maximum (LGM). The Tundrovayan Transgression (459,000–780,000 yr B.P.) is represented by raised marine deposits and landforms 15–41 m asl located up to 18 km inland. The presence of high sea level 64,000–73,000 yr ago (the Krasny Flagian Transgression) is preserved in deposits and landforms 4–7 m asl in the Krasny Flag valley. These deposits and landforms were mapped, dated, and described using amino acid geochronology, radiocarbon, optically stimulated luminescence, electron spin resonance, oxygen isotopes, micropaleontology, paleomagnetism, and grain sizes. The marine deposits are eustatic and not isostatic in origin. All marine deposits on Wrangel Island predate the LGM, indicating that neither Wrangel Island nor the East Siberian or Chukchi Seas experienced extensive glaciation over the last 64,000 yr.  相似文献   

6.
Summary Mercury deposits in western California are near a thrust fault that separates two groups of Mesozoic rocks. The Franciscan Assemblage, a metamorphosed melange with serpentine and graywacke, is structurally overlain by the Great Valley Sequence, a sedimentary series resting on oceanic crust. These Mesozoic rocks are partly covered by volcanic and sedimentary rocks of Cenozoic age. Cinnabar with silica minerals, dolomite, native mercury, and bituminous matter occurs around the fractured margins of serpentine bodies and around hot springs that emanate from the Franciscan Assemblage. Fluid inclusions and hot springs suggest that cinnabar precipitated from CO2-H2O fluids with <2 wt% chlorine at T<250 °C. Prograde metamorphism of Mesozoic sediments expulsed mercury-bearing fluids that migrated up serpentine-related fractures and exhaled onto the surface.  相似文献   

7.
The lithofacies of the uppermost Pleistocene ( ca 11 800 to 10 400 14C yr  bp ), cold-temperate, coarse-grained beach deposits of Lake Algonquin, the precursor of the present Lake Huron of North America, have been studied and interpreted based on analogous features of modern beaches from the same region. Ice foot and ice-cementation develop during winter but, unlike Arctic beaches, ice-related sedimentary features are seldom, if ever, preserved in the Pleistocene and recent deposits of the Great Lakes. Instead, the deposits retain the typical characteristics of wave-dominated, pure gravel and mixed sand and gravel beaches, there including the classical subdivision of infill zone, swash zone/sand run, imbricated zone, coarse flat-clast zone and coastal dunes. These zones form a regular succession on the surface of many modern beaches; however, they seldom occur as quasi-complete vertical successions in older deposits. In the studied uppermost Pleistocene deposits, the various components are separated vertically by erosional contacts (bounding surfaces) readily recognizable on working faces of large sand and gravel pits and mappable in the subsurface by ground-penetrating radar. The lithofacies are sufficiently diagnostic to allow recognition of depositional settings, and the lithofacies architecture allows the deciphering of important geological events, such as: (i) local input of fluvial material onto the shoreface, where it was partially reworked by waves and moved onto the beachface; (ii) occurrence of major storm events; and (iii) repeated rapid transgressions and regressions typical of the glacial-lake precursors of the modern Great Lakes.  相似文献   

8.
黑沟源于东天山最大现代冰川作用中心博格达峰的南坡. 在第四纪冰期与间冰期旋回中,该流域的冰川均发生过多次规模较大的进退,在谷中留下了较为完整的冰川沉积序列. 这些冰川地形包含有重要的古气候变化信息,对其研究可重建黑沟流域的冰川演化史. 应用OSL对该流域的冰川沉积物进行定年,测定结果表明冰水沉积物(沙质透镜体)比冰碛物更适宜应用单片再生剂量(SAR)测年技术进行测定. 基于测得的年龄并结合地貌地层学原理可初步得出:晚第四纪期间,黑沟流域共发生了5次规模较大的冰川作用,分别为全新世期间的小冰期(16世纪以来冷期的冰进)与新冰期(距今3~4 ka的冰进),末次冰期晚冰阶(MIS 2)与早冰阶(MIS 4)以及倒数第二次冰期(MIS 6).  相似文献   

9.
On the basis of glacial landforms interpreted by means of Landsat satellite imagery and ice-flow data obtained by other methods, the Scandinavian ice sheet has been observed to have divided at the deglaciation stage into several ice lobes. The ice lobes were more active parts of the uniform ice sheet. They represent parts that had bordered on each other in different directions or on more passive portions of the ice. The reasons for the appearance of separate ice lobes were evidently the Fennoscandian topography, the location of accumulation areas, and regional differences in the amounts of ice generated. In the boundary zones of the different ice lobes, there occur exceptionally large glaciofluvial forms and moraines (interlobate complexes). An area of passive ice was often between ice lobes, and in such areas there occur no noteworthy eskers, marginal formations or streamlined forms. In the part of Finland located on the southern side of the Arctic Circle, six different ice lobes and four major areas of passive ice are interpreted to have existed.  相似文献   

10.
A late Pleistocene morainal bank is sited in a depocentre to the lee of a major rock ridge, near Greystones, in the western Irish Sea Basin. During deglaciation the ridge provided a pinning point during tidewater wastage northwards. Sedimentation patterns and palaeocurrent data show morainal bank growth by discharge from a single basal efflux located to the east or south-east of the ridge during ice marginal re-equilibration. The four lithofacies associations which are recognized from the western part of the formerly more extensive apron are related largely to variable jet and plume sedimentation. At the base of the 1.6 km long exposure, Lithofacies association 1 (massive mud, muddy diamict and laminated mud) was deposited from turbid plumes, variable ice rafting and traction current activity. Lenticular units of gravels within this mud bank record high energy pulses and sediment fluxes from the efflux jet. Lithofacies association 2 (sands, laminated muds and muddy diamict) is discontinuous and occurs within basins along a marked erosion surface cut in Lithofacies association 1. It is associated with a decrease in jet strength, traction currents and suspension sedimentation. Lithofacies association 3 is a tabular body of interbedded diamicts and gravels which is present along the entire section. It documents the decay phase of re-equilibration as the ice margin disintegrated catastrophically and released large volumes of heterogeneous sediment which was resedimented by quasicontinuous mass flow. Lithofacies association 4 consists of stratified and massive gravels within distributary channels cut into underlying facies and represents the last phase of meltwater activity. Sediment geometries, particularly sedimentary contrasts representing erosion surfaces at a variety of scales and abrupt textural contrasts are attributed to jet switching. Lithofacies association 1 (60%) and Lithofacies association 3 (30%) are the dominant facies. In favourable topographic settings this stratigraphic couplet is a signature for re-equilibrated ice margins in isostatically depressed basins dominated by tidewater fronts, rapid ice flux and high relative sea level. Morainal banks document rapid environmental change and in the Irish Sea Basin they form part of a deglacial event stratigraphy related to unstable tidewater margins and high relative sea level. Deglaciation was therefore controlled primarily by high relative sea level rather than climatic forcing. Facies variations should therefore not be used for stratigraphic correlations in place of direct stratigraphy. This type of situation may be more common than hitherto realized in Late Pleistocene, mid-latitude shelves where most of the preserved stratigraphy is characterized by complex, interbedded sequences formed when isostatic depression exceeded sea-level fall.  相似文献   

11.
12.
13.
第四纪巨型堰塞湖溃决产生的高能洪水是地球及其他星球上已知规模最大的陆地淡水事件.越来越多的研究证明高能洪水事件具有普遍性,广泛发育于欧亚大陆、北美洲和南美洲等地区.研究者发现不同地区高能洪水事件的沉积特征具有一定的共性,但其典型沉积序列却依然缺失.本文首先回顾了全球已报道高能洪水案例并介绍了高能洪水的定义,总结了高能洪...  相似文献   

14.
I. Rod Smith 《Sedimentology》2000,47(6):1157-1179
Sediment cores from six small lake basins in the Canadian high Arctic reveal a gravel‐rich (≤30% by weight) to gravel‐poor (≥2%) diamict facies underlying massive, post‐glacial, clayey silt. Ten other lakes contain a second diamict facies within what are interpreted to be glaciolacustrine sedimentary assemblages. The sedimentology, clast fabrics and fossil remains (diatoms, ostracodes and chironomid head capsules) within both diamict facies suggest that these deposits are not tills. Clast fabrics yielded low S1 (0·41–0·57) and high S3 (0·09–0·22) eigenvalues, placing them within the range of ice‐rafted diamictons and glacigenic sediment flows. The high percentage of clast dip angles >45° (15–61%), random clast azimuth and lower diamict contacts conformable to underlying current‐bedded sediment favours an origin as a rain‐out or settling deposit. Samples of the matrix and scrapings of clasts from the diamicts revealed a diatom assemblage dominated by littoral and planktonic forms, such as are found in the littoral regions of the lakes today. This contrasts sharply with the assemblages within the overlying clayey silt, in which benthic forms predominate. Clasts are thus interpreted to have been rafted from the littoral areas of the lake. The process proposed to explain this is rafting by the lake ice cover in a glacial‐marginal environment. Early season meltwater, impounded along the lateral margin of retreating cold‐based glaciers, would buoyantly lift the lake ice cover and any adfrozen lake sediment. Higher lake levels and increased areal extent of seasonal freeze‐on between the lake ice cover and the lake bed would allow the redeposition of littoral sediments to the benthic regions through greater lateral shifting of the ice cover as it broke up. Incision by meltwater streams into the lateral glacial margins would later isolate the lake, allowing seasonal warming of lake water, enough to support the growth and maturation of the ostracode and chironomid species found as fossils within the diamicts.  相似文献   

15.
Osmium isotope composition (187Os/188Os) and concentrations of Os, Ir and Pt are reported for an early Pleistocene section from the ODP Site 849 in the eastern equatorial Pacific. Using the data obtained in this study, the contributions from detrital and extraterrestrial particulate matter to Os concentration and 187Os/188Os of sediment are estimated. Our calculations show that detrital contributions to sedimentary Os are too small (<2%) to significantly shift measured bulk sediment 187Os/188Os away from seawater values. A moderate but significant negative correlation between 187Os/188Os and 3He/188Os indicate that the average particulate extraterrestrial Os flux to this site is 1.21 ± 0.47 pg cm−2 kyr−1, which constitutes ?3% of total Os burial flux. The estimates of detrital and extraterrestrial Os are used to calculate the seawater 187Os/188Os in the early Pleistocene. The most notable features of this early Pleistocene 187Os/188Os record are: (1) glacial-interglacial 187Os/188Os differences are insignificant within errors of estimates, (2) glacial 187Os/188Os values are higher compared to those reported for the late Pleistocene glacials. Comparison of 187Os/188Os values at Site 849 to the late Pleistocene records suggests that average seawater 187Os/188Os change has been modest (∼5%) since the early Pleistocene. Assuming that 187Os/188Os difference between the glacial periods of the late and the early Pleistocene results solely from temperature dependence of weathering rates, it has been calculated that average surface temperature during the late Pleistocene glacials was 0.8 ± 0.2 °C lower than glacials in the early Pleistocene. This inference is consistent with temperature estimates based on a recent study of pCO2 reconstruction in the Pleistocene. This observation based on limited studies of marine 187Os/188Os records seems to suggest that temperature played an important role in influencing chemical weathering during the Pleistocene glacials. However, more studies are needed to confirm if this temperature-weathering feedback was operational throughout the Pleistocene. A significant down core Ir-3He co-variation coupled with similar burial fluxes of Ir at Site 849 and at LL44 GPC-3 in the north Pacific point to the utility of Ir concentration as a point paleoflux tracer. However, a twofold difference in Ir burial fluxes between the eastern and the western equatorial Pacific suggests that calibration in space and time is required to use Ir concentration as a robust indicator of paleoflux through time. Significant co-variation of concentrations of Os and total alkenone during the glacials coupled with lighter δ13C of benthic foraminifera indicates that productivity and carbon burial played a dominant control on scavenging of Os at Site 849. In a broader context, this data set encourages future investigation of response of PGE behavior to paleoceanographic processes.  相似文献   

16.
《Sedimentary Geology》2007,193(1-4):105-129
The blocking of major river valleys in the Leinebergland area by the Early Saalian Scandinavian ice sheet led to the formation of a large glacial lake, referred to as “glacial Lake Leine”, where most of the sediment was deposited by meltwater. At the initial stage, the level of glacial Lake Leine was approx. 110 m a.s.l. The lake level then rose by as much as 100 m to a highstand of approx. 200 m a.s.l.Two genetically distinct ice-margin depositional systems are described that formed on the northern margin of glacial Lake Leine in front of the retreating Scandinavian ice sheet. The Bornhausen delta is up to 15 m thick and characterized by a large-scale tangential geometry with dip angles from 10°–28°, reflecting high-angle foreset deposition on a steep delta slope. Foreset beds consist of massive clast-supported gravel and pebbly sand, alternating with planar-parallel stratified pebbly sand, deposited from cohesionless debris flows, sandy debris flows and high-density turbidity flows. The finer-grained sandy material moved further downslope where it was deposited from low-density turbidity currents to form massive or ripple-cross-laminated sand in the toeset area.The Freden ice-margin depositional system shows a more complex architecture, characterized by two laterally stacked sediment bodies. The lower part of the section records deposition on a subaqueous ice-contact fan. The upper part of the Freden section is interpreted to represent delta-slope deposits. Beds display low- to high-angle bedding (3°–30°) and consist of planar and trough cross-stratified pebbly sand and climbing-ripple cross-laminated sand. The supply of meltwater-transported sediment to the delta slope was from steady seasonal flows. During higher energy conditions, 2-D and 3-D dunes formed, migrating downslope and passing into ripples. During lower-energy flow conditions thick climbing-ripple cross-laminated sand beds accumulated also on higher parts of the delta slope.  相似文献   

17.
18.
The last glacial maximum (LGM) of the Scandinavian ice sheet in the Arkhangelsk region has been identified morphologically as ridges and hummocks in an otherwise flat topography. Stratigraphically the limit is marked by the presence of till above Mikhulinian (last interglacial) sediments inside the ridges and by the absence of till outside the ridges. During the LGM, ice flowed into the region from the north and northwest forming a lobe in the Dvina-Vaga depression. The continuation northward, northeast of Arkhangelsk, is still somewhat uncertain, but evidence suggests that the outer margin of the Scandinavian ice sheet was situated in the Mezen drainage basin. Luminescence and radiocarbon dates suggest that the maximum position was attained after some 17 ka ago, and that deglaciation started close to 15 ka ago. This age for the maximum position is younger than the maximum position in the western peripheral areas of the Scandinavian ice sheet. This may be accounted for by initial ice build-up in the west followed by a successive migration of the ice divide(s) to the east as ice growth continued. Deglaciation was either by lateral retreat or isolation of dead ice masses causing areal downwasting.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号