首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Tephra in 31 piston cores from the western Gulf of Mexico and 7 piston cores from the equatorial Pacific were analyzed by electron microprobe. Six ash layers in the western Gulf of Mexico were easily distinguished by TiO2, FeO, and CaO contents and correlated by geochemistry in order to determine the distribution pattern for each ash layer. Correlation by geochemistry is an easier, more accurate method than biostratigraphic correlation; some of the tephras were miscorrelated by biostratigraphy. The six tephras were dated by geochemical identification in a piston core with oxygen-isotope stratigraphy and the ages are Y5 (30,000 yr B.P.), Y6 (65,000 yr B.P.), Y8 (84,000 yr B.P.), X2 (110,000 yr B.P.), W1 (136,000 yr B.P.), and W2 (185,000 yr B.P.). Data from this study corroborated correlations of the Y8 tephra in the western Gulf of Mexico with the D layer in the eastern equatorial Pacific Ocean. None of the other five layers in the Gulf of Mexico, however, were found in the Pacific Ocean. The limited distribution of the Y5, Y6, X2, and W2 ash layers close to Mexico indicates possible sources in Mexico. Tephra from the late Pleistocene La Primavera pumice in Mexico, however, does not correlate with the marine tephra.  相似文献   

2.
Distinct assemblages of Recent deep-sea benthonic foraminifera from the southeast Indian Ocean have been shown to be associated with Antarctic Bottom Water (AABW) and Indian Bottom Water (IBW). The AABW assemblage is divided into two groups. One is dominated by Epistominella umbonifera and is associated with AABW having temperatures between ?0.2° and 0.4°C. The second group is dominated by Globocassidulina subglobosa and is associated with AABW having temperatures between 0.6° and 0.8°C. The IBW assemblage is marked by the strong dominance of Uvigerina spp. and Epistominella exigua. The faunal-water-mass relationships have been used to infer the history of bottom-water circulation over the last 500,000 yr in this region using faunal data from four Eltanin cores. One core was taken from the Southeast Indian Ridge in association with IBW, and three were taken from the flank of the ridge associated with AABW flowing within a western boundary contour current in the South Australian Basin. Little faunal variation exists in the core beneath IBW (E48-22), indicating that IBW was present on the Southeast Indian Ridge during the last 300,000 yr. A record of the intensity of AABW circulation during the last 500,000 yr is inferred from the benthonic foraminiferal data in the three cores located within the western boundary contour current. Marked oscillations in the relative proportions of AABW and IBW faunal assemblages are found in one core, E48-03. The faunal variations are inferred to have resulted from variation in intensity of AABW circulation between 500,000 and 195,000 yr B.P. In E48-03, the AABW assemblage was present most of the time between 500,000 and 195,000 yr B.P., with low intensity of AABW circulation occurring primarily during the equivalent of stages 8 and 7 (t = 305,000 to 195,000 yr B.P.). The intensity of AABW circulation varied, with a maximum occurring during the equivalent of stage 11 (t = 420,000 yr B.P.). Two additional cores, E45-27 and E45–74, show relatively constant intensity of AABW circulation from 195,000 yr B.P. to the present. The intensity of AABW circulation at the present appears to be intermediate between a maximum during the equivalent of stage 11 (t = 420,000 yr B.P.) and the minimum during the equivalent of stage 8 (t = 275,000 yr B.P.). AABW production has occurred during both glacial and interglacial episodes. Bottom-water productivity has been suggested to play an important role in glacial/interglacial oscillations during the late Quaternary (Weyl, 1968; Newell, 1974). In this study, the relationship between bottom-water circulation and climatic fluctuations appears to be more complex than had been previously suggested, since a simple relationship between Quaternary bottom-water circulation and paleoclimatic fluctuations is not shown.  相似文献   

3.
Insect fossils and pollen from late Pleistocene nonmarine peat layers were recovered from cores from the shelf region of the Chukchi Sea at depths of about 50 m below sea level. The peats date to 11,300−11,000 yr B.P. and provide a limiting age for the regional Pleistocene-Holocene marine transgression. The insect fossils are indicative of arctic coastal habitats like those of the Mackenzie Delta region (mean July TEMPERATURES = 10.6–14°C) suggesting that 11,000 yr ago the exposed Chukchi Sea shelf had a climate substantially warmer than modern coastal regions of the Alaskan north slope. The pollen spectra are consistent with the age assignment to the Birch Interval (14,000–9000 yr B.P.). The data suggest a meadow-like graminoid tundra with birch shrubs and some willow shrubs growing in sheltered areas.  相似文献   

4.
The organic deposits derived from the mangrove swamps form reliable stratigraphic markers within the Late Quaternary sequence of Kerala–Konkan Basin. Three generations of such deposits have been identified. The older one is dated to around 43,000–40,000 14C yr B.P., with a few dates beyond the range of radiocarbon. The younger ones date from the Middle Holocene to latest Pleistocene (10,760–4540 14C yr B.P.) and the Late Holocene (<4000 14C yr B.P.). Pollen analyses confirm that the deposits are mostly derived from the mangrove vegetation. Peat accumulation during the period 40,000–28,000 14C yr B.P. can be correlated with the excess rainfall, 40–100% greater than modern values, of the Asian summer monsoon. The low occurrence of mangrove between 22,000 and 18,000 14C yr B.P. can be attributed to the prevailing aridity and/or reduced precipitation associated worldwide with Last Glacial Maximum, because exposure surfaces and ferruginous layers are commonly found in intervals representing this period. The high rainfall of 11,000–4000 14C yr B.P. is found to be the most significant as the mangrove reached an optimum growth around 11,000 14C yr B.P. but with periods of punctuated weaker monsoons. From the present and previous studies, it has been observed that after about 5000 or 4000 14C yr B.P., the monsoons became gradually reduced leading to drying up of many of the marginal marine mangrove ecosystems. A case study of Hadi profile provided an insight to the relevance of magnetic susceptibility (χ) to record the ecological shift in Late Holocene.  相似文献   

5.
Despite the presence of numerous active volcanoes in the northern half of Ecuador, few, if any, distal tephras have been previously recognized in the southern one third of the country. In this article, we document the presence of thin (0.1–1.0-cm-thick) distal tephras comprising glass and/or phenocrysts of hornblende and feldspar in sediment cores from five glacial lakes and one bog in Las Cajas National Park (2°40′–3°00′S, 79°00′–79°25′W). The lake cores contain from 5 to 7 tephras, and each has a diagnostic major element geochemistry as determined from electron microprobe analysis of 710 glass shards and 440 phenocrysts of feldspar and hornblende. The loss of sodium with exposure to the electron microbeam causes a 10±7 wt.% (±1σ) reduction in Na content, which we empirically determined and corrected for before correlating tephras among the sediment cores. We use a similarity coefficient to correlate among the sediment cores; pair-wise comparison of all tephras generally yields an unambiguous correlation among the cores. Six tephras can be traced among all or most of the cores, and several tephras are present in only one or two of the cores. Twenty-six accelerator mass spectrometry 14C dates on macrofossils preserved in the sediment cores provide the basis for establishing a regional tephrochronology. The widespread tephras were deposited 9900, 8800, 7300, 5300, 2500, and 2200 cal yr B.P. The oldest tephras were deposited 15,500 and 15,100 cal yr B.P., but these are not found in all cores. Two of the tephras appear correlative with volcaniclastic strata on the flanks of Volcán Cotopaxi and one tephra may correlate with strata on the flanks of Volcán Ninahuilca; both volcanoes are in central Ecuador. The absence of tephras in sediment cores correlative with the numerous eruptions of active volcanoes of the past two millennia implies that the earlier eruptions, which did deposit tephras in the lakes, must have been either especially voluminous, or southerly winds must have prevailed at the time of the eruption, or both.  相似文献   

6.
A new and significant site of organic silty sand has been found beneath the Valders till at Valders Quarry in northeastern Wisconsin. This is now the earliest known late-glacial site associated with red till ice advances in the western Great Lakes area. Leaves of terrestrial plants washed into a small depression provide a date of 12,965 ± 200 yr B.P. (WIS-2293), which is significantly older than the Two Creeks Forest Bed (ca. 11,800 yr B.P.). Percentage and concentration pollen diagrams suggest that the site was open and distant from a closedPiceaforest. No wood orPiceaneedles have been found. This date is statistically indistinguishable from 12,550 ± 233 yr B.P., the mean of three dates for the end of inorganic varve sedimentation at Devils Lake, 160 km southwest at the terminus of the Green Bay Lobe. Assuming that the Green Bay lobe vacated its outermost moraine in the interval from 13,000 to 12,500 yr B.P., only a short time was available for retreat of the ice margin over 350 km, drainage of red sediment from Lake Superior into the Lake Michigan basin, readvance of over 250 km, retreat of at least 80 km, and advance to this site. The time for these events appears to have been too short to resolve by current radiocarbon technique. This extremely rapid collapse of the Green Bay lobe has a calibrated age of about 15,000 cal yr B.P., about that of the dramatic warming seen in the Greenland ice cores.  相似文献   

7.
Continuous pollen and sediment records from two ∼8.5-m-long cores document late Pleistocene and Holocene sedimentation and vegetation change in the Ballston Lake basin, eastern New York State. Pebbles at the base of both cores and the geomorphology of the watershed reflect the presence of the Mohawk River in the basin prior to ∼12,900 ± 70 cal yr B.P. Ballston Lake formed at the onset of the Younger Dryas (YD) by an avulsion of the Mohawk River. The transition from clay to gyttja with low magnetic susceptibility (MS), low bulk density, and high organic carbon indicates rapid warming and increased lake productivity beginning 11,020 cal yr B.P. MS measurements reveal that the influx of magnetic particles, associated with pre-Holocene clastic sedimentation, ceased after ∼10,780 cal yr B.P. The pollen record is subdivided into six zones: BL1 (12,920 to 11,020 cal yr B.P.) is dominated by boreal forest pollen; BL2 (11,020 to 10,780 cal yr B.P.) by pine (Pinus) forest pollen; BL3 (10,780 to 5290 cal yr B.P.) by hemlock (Tsuga) and mixed hardwood pollen; BL4 (5290 to 2680 cal yr B.P.) by mixed hardwood pollen; BL5a (2680 cal yr B.P. to 1030 cal yr B.P.) by conifer and mixed hardwood pollen; and BL5b (1030 cal B.P. to present) by increasing ragweed (Ambrosia) pollen. A 62% decrease in spruce (Picea) pollen in <320 cal years during BL1 reflects rapid warming at the end of the YD. Holocene pollen zones record more subtle climatic shifts than occurred at the end of the YD. One of the largest changes in the Holocene pollen spectra began ∼5300 cal yr B.P., and is characterized by a marked decline in hemlock pollen. This has been noted in other pollen records from the region and may record preferential selection of hemlock by a pathogen or parasites.  相似文献   

8.
Sediments in the caldera of Santorini are receiving a hydrothermal input of iron and manganese from presently active hydrothermal vents off the Kameni Islands, and are enriched in these elements in their surface layer. However, greater Fe-Mn enrichments occur in discrete layers at depth in the cores separated from the surface by Fe-Mn poor sediments, suggesting that a past hydrothermal event may have been more intense than the present one. The buried Fe-Mn enriched layers occur above a turbidite thought to have resulted from sediment slumping due to a major volcanic eruption and earthquake in 1650, and are thought to have formed consequent on the activation of faults related to the magma chamber by the eruption facilitating seawater-rock interaction processes and the formation of metal-rich hydrothermal solutions.  相似文献   

9.
The arguments justifying the revised timing of breakup between Australia and Antarctica (Cande and Mutter, 1982) and the reconstruction of Broken Ridge and Kerguelen Plateau (Mutter and Cande, 1983) are reviewed and considered with respect to new subsidence data. The age of breakup was revised from anomaly 22 time (55 My B.P.) to anomaly 34 time (85 My B.P.). The rough topography of the Diamantina Zone can be attributed to very slow spreading (−5 mm/yr.) beginning between the times of anomaly 34 and anomaly 19. The reconstruction of Broken Ridge and Kerguelen Plateau at anomaly 34 time shows overlap of these two features, but the overlap problem is nearly resolved by anomaly 18 time ( ~ 42 My B.P.). Normal seafloor spreading rates (22 mm/yr.) commenced at anomaly 19 time ( ~ 43 My B.P.). Subsidence patterns calculated from biostratigraphic data from wells drilled along Australia's southern margin are interpreted as more consistent with the revised age of Australia-Antarctic breakup. Subsidence curves systematically show rapid subsidence associated with the rift phase of margin development followed by much slower thermally-controlled subsidence during the drift phase. The timing of the rift-to-drift transition is believed to coincide with the age of breakup ( ~ 60 to 110 My B.P.). In addition, the subsidence curves indicate a west-to-east propagation of breakup along the southern margin. Magnetic anomaly patterns and stratigraphie observations are consistent with this hypothesis.  相似文献   

10.
Palaeolimnological investigations in the volcanic highlands of Central Mexico (19°N) have yielded clear evidence of environmental degradation associated with episodes of forest clearance and agricultural expansion during the last 3500 years. Preliminary results are presented from five lake basins situated at altitudes of 1700 to 2575 m a.s.l., along a gradient of decreasing aridity and temperature from north to south: Hoya San Nicolás de Parangueo (Guanajuato); La Piscina de Yuriria (Guanajuato); Pátzcuaro (Michoacán); Zacapu (Michoacán) and Upper Lerma (Estado de México). Samples from sediment cores and pits are being analyzed for loss-on-ignition, magnetic susceptibility (X and Xfd), major cations, total P, C/N, carbonate content, δ13C, δ18O, diatoms, pollen, and charcoal content. Evidence for disturbance is provided by increases in non-arboreal pollen types, especially maize (Zea mays), peaks of X, Xfd and charcoal; increased concentrations of elements associated with soil material such as Al, Fe, Ti, and P, and diatoms indicative of cultural eutrophication. Pátzcuaro, Hoya San Nicolás, Zacapu, and Upper Lerma show an initial phase of disturbance dating from ca. 3500 to 1400 yr B.P., reflecting the widespread adoption of maize cultivation during the Preclassic. A later, more intense phase is recorded in all the basins. In Hoya San Nicolás, La Piscina de Yuriria, Zacapu, and Pátzcuaro, which lay within, or on the margins of the Tarascan state, this episode dates from Postclassic to Hispanic times (<1100 yr B.P.). In contrast, disturbance in the Matlatzincan area (the Upper Lerma Basin) was apparently more continuous, culminating during the late Classic to early Postclassic (ca. 1400-700 yr B.P.).  相似文献   

11.
Holocene evolution and human occupation of the Sixteen Mile Beach barrier dunes on the southwest coast of South Africa between Yzerfontein and Saldanha Bay are inferred from the radiocarbon ages of calcareous dune sand, limpet shell (Patella spp.) manuports and gull-dropped white mussel shells (Donax serra). A series of coast-parallel dunes have prograded seaward in response to an overall marine regression since the mid-Holocene with dated shell from relict foredunes indicating periods of shoreline progradation that correspond to drops in sea level at around 5900, 4500 and 2400 calibrated years before the present (cal yr B.P.). However, the active foredune, extensively covered by a layer of gull-dropped shell, has migrated 500 m inland by the recycling of eroded dune sand in response to an approximate 1 m sea level rise over the last 700 yr. Manuported limpet shells from relict blowouts on landward vegetated dunes indicate human occupation of coastal dune sites at 6200 and 6000 cal yr B.P. and help to fill the mid-Holocene gap in the regional archaeological record. Coastal midden shells associated with small hearth sites exposed in blowouts on the active foredune are contemporaneous (1600-500 cal yr B.P.) with large midden sites on the western margin of Langebaan Lagoon and suggest an increase in marine resource utilisation associated with the arrival of pastoralism in the Western Cape.  相似文献   

12.
Fossil diatom assemblages from a 12-m core from Kirchner Marsh were compared with modern surface assemblages from 159 Minnesota and labrador lakes using cluster analysis. The deepest levels of the core (spruce pollen zone 13,000 to 10,200 yr B.P.) resemble modern diatom assemblages from deep oligotrophic lakes of northeastern Minnesota. Diatom assemblages of the pine pollen zone (about 10,200 to 9500 yr B.P.) have few modern analogs. In the oak zone (9500 yr B.P. to present) after a brief pulse of diatom species indicative of eutrophication, the assemblages are dominated by species characteristic of shallow lakes, suggesting a drop in the lake water level during the prairie period (5500 to 7500 yr B.P.). Macrofossil data of W. A. Watts and T. C. Winter (1966, Geological Society of America Bulletin77, 1339–1360) show that this shift to shallow-water diatoms occurred when aquatic macrophytes appeared at the site in abundance.  相似文献   

13.
A Glacier Peak tephra has been found in the mid-Holocene sediment records of two subalpine lakes, Frozen Lake in the southern Coast Mountains and Mount Barr Cirque Lake in the North Cascade Mountains of British Columbia, Canada. The age–depth relationship for each lake suggests an age of 5000–5080 14C yr B.P. (5500–5900 cal yr B.P.) for the eruption which closely approximates the estimated age (5100–5500 14C yr B.P.) of the Dusty Creek tephra assemblage found near Glacier Peak. The tephra layer, which has not been reported previously from distal sites and was not readily visible in the sediments, was located using contiguous sampling, magnetic susceptibility measurements, wet sieving, and light microscopy. The composition of the glass in pumice fragments was determined by electron microprobe analysis and used to confirm the probable source of this mid-Holocene tephra layer. Using the same methods, the A.D. 1481–1482 Mount St. Helens We tephra layer was identified in sediments from Dog Lake in southeastern British Columbia, suggesting the plume drifted further north than previously thought. This high-resolution method for identifying tephra layers in lake sediments, which has worldwide application in tephrachronologic/paleoenvironmental studies, has furthered our knowledge of the timing and airfall distribution of Holocene tephras from two important Cascade volcanoes.  相似文献   

14.
The geoarchaeological study of the Palaeoeskimo Tayara site on Qikirtaq Island (Nunavik) has led to a better understanding of archaeological site formation in the arctic periglacial environment. The surrounding geomorphology (extra‐site) is characterized by fine‐grained, low plastic and leached postglacial glaciomarine sediments that have been reworked by sheet‐like solifluction. This process buried the northern part of the Tayara site with mean annual rates between 1.68 and 2.86 cm/yr over approximately 350 years (1330–980 yr B.P.). The physicochemical and mineralogical properties of the frost‐susceptible glaciomarine sediments may explain their susceptibility to solifluction. This process was probably enhanced by longer thawing periods or warmer/moister summer months that induced active layer thickening or rapid soil thawing. The dates we obtained in the downstream valley show that solifluction occurred during short warm periods in the Late Holocene between ca. 1500 and 1000 yr B.P., after 1000 yr B.P. (or after 500 yr B.P.) and recently (90–60 yr B.P.). Our data provide insights on the site factors and climate factors that govern site burial by solifluction. Solifluction promoted the preservation of the three superposed archaeological levels in the Tayara site; however, the waterlogging of the site related to solifluction also likely caused the subsequent abandonment of the site by the Palaeoeskimo people. © 2008 Wiley Periodicals, Inc.  相似文献   

15.
A rhyolitic ash 4 to 8 cm thick is well preserved within a thick loess unit in a coastal section 2 km long near Teviotdale, Canterbury district, South Island, New Zealand. The ash (informally named Tiromoana ash) contains fresh glass shards which give a fission-track age of 20,300 ± 7100 yr B.P. The only possible source for such a tephra with this age range is from Taupo Volcanic Zone (TVZ), North Island, some 550 km north of Teviotdale. Within the time span ca. 15,000 to 42,000 yr B.P. five widespread and voluminous rhyolitic tephras (viz. Rerewhakaaitu Ash, Rotoehu Ash, Kawakawa Tephra, Omataroa Tephra, and Mangaone Tephra) were erupted from TVZ. On the basis of the fission-track age, ferromagnesian mineralogy, and electron-microprobe analyses of glass shards and titanomagnetites from Tiromoana ash and the five possible correlatives listed above, Tiromoana ash is correlated with Kawakawa Tephra (dated by 14C at ca. 20,000 yr B.P.). This is the only known occurrence to date of Kawakawa Tephra in the South Island. Its preservation is attributed to special site conditions (low precipitation and minimal sheet erosion) leeward of a prominent terrace. The identification of the ash at Teviotdale as Kawakawa Tephra supports recently revised age assignments for the upper loess sheet in Canterbury. Moreover, it implies that loess enclosing Kawakawa Tephra in nonglaciated districts of southern North Island and Taupo Volcanic Zone is a correlative.  相似文献   

16.
Downcore studies of planktonic and benthonic foraminifera and δ18O and δ13C in the planktonic foraminifer Neogloboquadrina pachyderma (sin.) in two piston cores from the southern part of the Norwegian Sea suggest large changes in the oceanic circulation pattern at the end of oxygenisotope stage 2 and in the early part of stage 1. Prior to oxygen-isotope Termination IA (16,000–13,000 yr B.P.), an isolated watermass with lower oxygen content and temperature warmer than today existed below a low salinity ice-covered surface layer in the Norwegian Sea. Close to Termination IA, well-oxygenated deep water, probably with positive temperatures, was introduced. This deep water, which must have had physical and/or chemical parameters different from those of present deep water in the Norwegian Sea, could have been introduced from the North Atlantic or been formed within the basin by another mechanism than that which forms the present deep water of the Norwegian Sea. A seasonal ice cover in the southern part of the Norwegian Sea is proposed for the period between Termination IA and the beginning of IB (close to 10,000 yr B.P.). The present situation, with strong influx of warm Atlantic surface-water and deep-water formation by surface cooling, was established at Termination IB.  相似文献   

17.
According to recent dating by several methods, the impressive cave sediments at Locality 1 at Zhoukoudian, about 40 m thick, have not only allowed the age of Peking Man to be established, but have calibrated the general course of cave development, permitted correlation with events both within China and farther afield, and placed the sequence in the global frameword of late Cenozoic climatic change. The cave deposits can be divided into 17 layers which are correlated with the great loess sequence (L9–L4) in China and with deep-sea-core oxygen-isotope stages 16-6. The 14th layer upward (730,000–230,000 yr B.P.) represents at least four glacial cycles.  相似文献   

18.
Calculations confirm that the uplift of Barbados during the past 130,000 yr has been at nearly constant relative rates in the Clermont and Christ Church standard traverses, and that sea levels responsible for Barbados terraces I (82,000 yr B.P.) and II (105,000 yr B.P.) attained approximately the same level which was 20–25 m below the level represented by Barbados III (125,000 yr B.P.).Preference for the correlation of Barbados III with the prominent first interglacial 18O peak in stage 5 is stated once again. Further, correlation with Eemian and Pangaion of the European pollen record is suggested.  相似文献   

19.
The Y-5 ash is the most widespread layer in deep-sea sediments from the eastern Mediterranean. This ash layer was previously correlated with the Citara-Serrara tuff on Ischia Island and dated at approximately 25,000 yr B.P. New data on the glass chemistry of the Y-5 ash and pyroclastic deposits from the Neopolitan volcanic province suggest that the layer is correlative with the large-volume Campanian ignimbrite and not with the deposit from Ischia Island. The volume of the Y-5 ash is approximately 65 km3 which is comparable in magnitude to the volume of the Campanian ignimbrite. An interpolated age of approximately 38,000 yr B.P. is estimated based on sedimentation rates derived from δ18O stratigraphy. There is a discrepancy between this estimate and previously reported radiocarbon ages which range from 24,000 to 35,000 yr B.P. We propose that the “Campanian tuff ash layer” should be adopted as the full stratigraphic name for the Y-5 ash. The deep-sea ash layer is divisible into two units in proximal localities, probably correlating with two major phases of the eruption: plinian and ignimbrite.  相似文献   

20.
Eight box cores from the tropical Atlantic were studied in detail with regard to foraminiferal oxygen isotopes, radiocarbon, and Globorotalia menardii abundance. A standard Atlantic oxygen-isotope signal was reconstructed for the last 20,000 yr. It is quite similar to the west-equatorial Pacific signal published previously. Deglaciation is seen to occur in two steps which are separated by a pause. Onset of deglaciation is after 15,000 yr B.P. The pause is centered between 11,000 and 12,000 yr B.P., but may be correlative with the Younger Dryas (10,500 yr B.P.) if allowance is made for a scale shift due to mixing processes on the sea floor. Step 2 is centered near 10,000 yr B.P. and is followed by a brief excursion toward light oxygen values. This excursion (the M event) may correlate with the Gulf of Mexico meltwater spike.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号