共查询到20条相似文献,搜索用时 0 毫秒
1.
R.A. Watson 《Quaternary Research》1980,14(1):50-59
The landform evolution of the Klutlan moraines is described and explained primarily with respect to processes that cause voids in which debris is deposited. Morainal deposits of different ages provide examples of landforms at different stages of development, so that continuous ideal evolutionary sequences can be inferred. Specific features are classified as those on material of the same depositional age that develop mostly in a vertical direction with numerous topographic reversals, and those cross-cutting materials of different depositional age that develop primarily in a horizontal direction. The evolution of slopes is often terminated by their destruction as the underlying ice melts, but former slopes on morainal debris are traceable to ice-ridge slopes on the original glacier surface. The general process of evolution is one of downwasting by surficial icemelt, in which a grand topographic reversal takes place as the original ice mass with a gently convex surface melts to leave a basin floored by a concave mantle of morainal debris. The primary glacial process of melting differs from the primary karst process of solution, but many minor glacial processes and major glacial forms are similar to minor karst processes and major karst forms. 相似文献
2.
Data on soils with six Neoglacial moraines of the Klutlan Glacier have been compared with those from moraines at the warm, moist coastal site of Glacier Bay, 160 km south. Percentage organic matter increases rapidly for the first 100 to 150 yr of soil development and then continues to rise gradually for the next 100 yr. Soil pH falls from 8.0 in recent till to approximately 6.0 in 200-yr-old soils. Nitrogen levels in the mineral soil increase from near zero in recent tills to 0.7% in soils 175–200 yr old; organic horizons of soils associated with spruce forests in later successional stages contain approximately 1% nitrogen. Concentrations of certain inorganic phosphate ions in the different-aged soils increase continually throughout the succession. Data for nine chemical variables were subjected to a principal components analysis; the major pattern in the data reflects the differences between soils of low organic content and high pH present in early successional stages, and nutrient-rich soils with high organic content and low pH present after succession has progressed toward the spruce forest. These trends in soil development with time are strikingly similar to those reported from Glacier Bay, except that the changes in soil properties appear to be delayed by 50–100 yr at the Klutlan terminus. Although numerous signs of nitrogen deficiency have been identified in plants growing on new soils at Glacier Bay, none was observed visually in living plants or in nutrients measured in samples of foliage from three plant taxa (Epilobium latifolium, Salix spp., and Populus balsamifera) taken from the Klutlan moraines. Concentrations of nitrogen and other nutrients (Ca, Mg, K, total P) in the foliage samples show no clear trends with increasing soil development. Low temperatures, a short growing season, and very low mean annual precipitation probably limit plant growth and account for the delayed soil development on the Klutlan moraines. 相似文献
3.
H.J.B. Birks 《Quaternary Research》1980,14(1):60-86
The flora and vegetation of six ice-cored moraines of the Klutlan Glacier were analyzed in 65 plots by European plant-sociological techniques. The age of each plot was estimated from annual growth rings of shrubs or trees in the plots. Nine major vegetation types are distinguished: Crepis nana, Dryas drummondii, Hedysarum mackenzii, Hedysarum-Salix, Salix-Shepherdia canadensis, Picea-Salix, Picea-Arctostaphylos, Picea-Ledum, and Picea-Rhytidium. These contain plants aged 2–6, 9–23, 10–20, 24–30, 32–58, 58–80, 96–178, 177–240, and >163- >339 yr, respectively. Six other vegetation types are described from windthrow areas, drainage channels, volcanic tephra slopes, lake margins, fens, and drained lakes. The major vegetation types reflect a vegetational succession related to moraine age and stability, with the Crepis nana type as the pioneer vegetation developing through the other vegetation types to the Picea-Rhytidium type on the oldest moraines. Changes in species diversity and soil development, particularly humus accumulation, parallel the vegetational succession. This succession differs from patterns of revegetation of deglaciated landscapes in Alaska and British Columbia today and in Minnesota in late-Wisconsin times because of differences in climate, plant migration, and local ecology. 相似文献
4.
Lakes of the Klutlan moraines originate by down-melting of stagnant ice under a mantle of rock debris and vegetation ranging from scattered herbs and shrubs on the younger moraines to multiple-generation closed spruce forest on the oldest moraines, which are 600–1200 yr old. Lakes on the youngest moraines are temporary, turbid with glacial silt, and marked by unstable ice-cored slopes. On older moraines most lakes have clear water and stable slopes. On the oldest moraines many lakes have brown water caused by dissolved humic materials derived from the thick forest floor, but even here some slopes are unstable because of continued melting of buried ice. Morainic lakes contain bicarbonate waters of moderate alkalinity and conductivity and low levels of nutrients. The highly diverse phytoplankton is dominated by chrysophytes and cryptomonads, with few diatoms. Extremely low values for phytoplankton biomass place most of the lakes in an “ultraoligotrophic” category. Zooplankton is dominated by copepods, which were found even in ice ponds only a few years old, and by the cladoceran Daphnia pulex. Surface-sediment samples contained a total of 16 species of chydorid Cladocera. Of these, Alonella excisa and Alona barbulata are apparently the pioneer species in the youngest lakes. Chydorus sphaericus only appears in lakes of the oldest moraines. A successional pattern is not conspicuous, however, partly because some of the lakes on the older moraines originated by recent collapse over buried ice. Lakes on the upland outside the dead-ice moraines yielded 39 species in the zooplankton. The distinctive assemblage on upland lakes may relate more to different water chemistry than to age. 相似文献
5.
Fletcher G. Driscoll 《Quaternary Research》1980,14(1):19-30
The Klutlan Glacier is a valley glacier 82-km long emerging from the Icefield Ranges of the St. Elias Mountains. It is one of at least 200 surging glaciers identified in western North America. During about the past 1200 yr, the glacier has deposited at its terminus a series of at least 7 surge-related Neoglacial ice-cored moraines. Lithologic characteristics of the Klutlan moraines suggest that they have resulted principally from the surging of the tributary Nesham Glacier, which periodically injects a lobe of medial and lateral moraines and the underlying ice into a more slowly moving Klutlan ice stream. Subsequent surges of the main ice carry the Nesham surge lobes to the Klutlan terminus as discrete geomorphic features. For the past 400 yr a Nesham lobe has reached the Klutlan terminus at approximately 80-yr intervals. 相似文献
6.
Fletcher G. Driscoll 《Quaternary Research》1980,14(1):31-49
A series of ice-cored Neoglacial moraines at the terminus of the Klutlan Glacier covers an area of 90 km2. Studies were made to determine empirically how long ice persisted in the Klutlan moraines and to develop models that can accurately predict wastage rates under current climatic conditions. A meltout curve based on climatological data reflects the sum of three melting processes: surficial melting, melting by lake water, and melting by geothermal heat. About 950 yr are required to melt 180 m of ice with a debris concentration of 1%, or about 1200 yr for a 1.5% debris load. Another meltout curve, based on seismic data, suggests total meltout in about 875 yr. When all geologic factors are considered, the empirical meltout curve is remarkably similar to that derived by considering the major heat-flux parameters. Meltout rates can be predicted if (1) the fundamental climatic parameters can be ascertained, and (2) the sediment concentration in the ice is known. 相似文献
7.
8.
9.
10.
H.J.B. Birks 《Quaternary Research》1980,14(1):101-129
Modern pollen assemblages have been studied from surficial lake muds and moss polsters collected from five vegetated ice-cored moraines of the Klutlan Glacier. The youngest vegetated moraine (K-II) is characterized by high pollen values for Salix and Hedysarum, K-III by high Salix and Shepherdia canadensis and low Hedysarum and Picea, K-IV by high Betula, Salix, and Shepherdia, and K-V and the Harris Creek moraine (HCM) by high Picea. Variations are summarized by canonical variates analysis. A percentage pollen diagram from Gull Lake on the upland east of the glacier records vegetational development since the deposition of the White River volcanic ash 1220 14C yr ago. An initial species-rich treeless vegetation was replaced by birch-alder-willow shrub-tundra, and this by open Picea glauca forest similar to present vegetation around the lake. Sites on HCM show two basic stratigraphies. Triangle Lake reflects vegetational succession from Salix-Shepherdia canadensis scrub similar to that on K-III today, through open Picea woodland of K-IV type, to closed Picea forests of K-V and HCM. Heart Lake and Cotton Pond reflect vegetational development following melting of ice underlying the spruce forests of HCM. These two types are summarized by positioning the fossil spectra on the first two canonical variate axes of the modern surface spectra. 相似文献
11.
Lakes developed on progressively younger end moraines of the Klutlan Glacier were initially assumed to have originated shortly after moraine emplacement and to have persisted to the present. Limnological differences between lakes on old vs young moraines were thought to result from limnological maturation within the lakes and ponds themselves and in response to the development of soils and vegetation on moraine surfaces. This study represents a paleolimnological test of this hypothesis. If true, the first-formed sediments of lakes on old moraines should be comparable to sediments presently forming in lakes on young moraines. Geochemical and paleontological studies of surface sediment to a series of lakes on progressively older moraines provide baseline information for comparing successive levels of lake sediment cores from older moraines. Results indicate that the time of lake initiation seldom reflects moraine age. Even on the oldest moraine (Harris Creek), lake basins are presently forming. Their sediment character more closely relates to the rapidity of basin formation due to melting of buried ice than to age of the lake itself or of the moraine on which it is situated. Vegetation and soil development play an important but secondary role in determining the character of lake sediments; rapid subsidence can convert humic-water lakes surrounded by second-generation spruce forests into turbid-water lakes with unstable, slumping margins. A detailed paleolimnological study of two lakes, one on the unglaciated upland and another in an outwash channel penetrating the oldest moraine, revealed progressive limnologic changes through time, suggesting that their basins were stable for 1200 and 400 yr, respectively. The changes in diatom stratigraphy of these lakes appear to relate to natural limnological changes associated with lake maturation and accumulation of nutrients as well as to changes in the surrounding vegetation and soils. 相似文献
12.
Lake sediments from four sites in the southwest Yukon Territory, Canada, provided paleotemperature records for the past 2000 yr. An alpine and a forest site from the southeastern portion of the study area, near Kluane Lake, and another alpine-forest pair of lakes from the Donjek River area located to the northwest yielded chironomid records that were used to provide quantitative estimates of mean July air temperature. Prior to AD 800, the southwest Yukon was relatively cool whereas after AD 800 temperatures were more variable, with warmer conditions between ~ AD 1100 and 1400, cooler conditions during the Little Ice Age (~ AD 1400 to 1850), and warming thereafter. These records compare well with other paleoclimate evidence from the region. 相似文献
13.
C. R. Burn 《第四纪科学杂志》1988,3(1):31-38
An examination of soil thermal and hydrologic regimes at several sites near Mayo, Yukon Territory, and the ground-ice stratigraphy of a thaw-slump headwall close to these sites supports the hypothesis that an ice-rich zone, frequently observed at the base of the active layer, may be due to the annual water balance of permafrost. Observations demonstrate that ice lenses have grown at the top of permafrost in soil tubes installed in 1983. In addition, 90 cm of segregated ice are exposed in the thaw-slump headwall above a thaw unconformity, dated at 8870 ± 200 years BP, but below the base of the present active layer. These data suggest that the rate of water incorporation into permafrost over the last 8000 years in the Mayo area has been at least 0.1 mm yr?1. 相似文献
14.
Allan C. Ashworth Donald P. Schwert William A. Watts H.E. Wright 《Quaternary Research》1981,16(1):66-79
The Norwood site in Sibley Co., Minnesota, contains 1.6 m of silt resting on till and overlain by peat. The base of the peat has been radiocarbon dated at 12,400 ± 60 and the top at 11,200 ± 250 yr B.P. The pollen, plant macrofossils, and insect remains in the basal silt consist of boreal species inhabiting open environments, but not tundra. No modern analogue exists for the insect assemblage, which includes elements of boreal forest, tundra-forest, and western affinities. The transition from an unstable open environment to a stable coniferous forest is reflected by both plant and insect fossils and is interpreted as a successional rather than a climatic event. During this time of significant biologic change, the climate is inferred to have been relatively uniform, with temperatures similar to those presently existing in the boreal forest south of the tundra-forest transition zone. The geologic and ecologic succession at Norwood is generally similar to that presently associated with ice stagnation of the Klutlan Glacier in the Yukon Territory. Localized successional sequences similar to those at Norwood are conceived to have occurred repeatedly during the melting of the Laurentide ice, and thus the proposed model has potentially broad application to the interpretation of late-glacial sequences. 相似文献
15.
Q- and R-mode factor analytical studies were made of 158 stream sediment samples from the Mount Nansen area, Yukon Territory, analyzed for Cu, Pb, Zn, Mo, Ni, Ag, and Sb. R-mode results were more clear-cut than were Q-mode in terms of ease of interpreting geological significance of individual factors, although results of both methods were very comparable. The 3-factor R-mode model accounted for 79.9 percent of the variation in the data. Factor 1, a Pb-Zn-(Ag) factor correlated with Mount Nansen volcanic rocks and particularly with known Pb-Zn-Ag-Au veins within those rocks. Factor 2, a Cu-Mo factor correlated with porphyric intrusions known to contain Cu-Mo mineralized zones. Factor 3, an Sb-(Ag) factor is, as yet, not adequately explained in terms of geology. The main additional contribution of the Q-mode study is the communalities. Samples that depart from the norm (i.e. do not agree well with the 3-factor model) are readily apparent because of low communalities and must be considered anomalous in the general sense until an adequate explanation for this difference is found. 相似文献
16.
Recently discovered gold-rich mineral deposits in the eastern Nadaleen trend of northeastern Yukon Territory occur in unmetamorphosed Neoproterozoic carbonate and siliciclastic rocks and their location is partly controlled by structures. Regional deformation largely resulted from mid-Cretaceous NNE-vergent, thin-skinned fold-thrust activity. However, structures in the eastern Nadaleen trend are more complex and include strike-slip and reverse faults, and SSW-, W-, and E-plunging folds. Local structures are cospatial with regional geologic features, including (1) an E-striking structural triangle zone defined by oppositely dipping reverse faults that verge toward the eastern Nadaleen trend, (2) a transition zone between Paleozoic Ogilvie platform rocks in the north to Selwyn basin rocks in the south, and (3) a change in regional deformation character from west to east, whereby to the west, rocks in the south are more deformed than rocks in the north, whereas to the east, rocks show no obvious change in deformation style. The structural complexity within the eastern Nadaleen trend probably resulted from these regional geological features and was further complicated by local competency contrasts between rock units. The cospatial location of the regional geological features may have been caused by a pre-existing, W-trending subsurface basement structure. Reverse faults bounding the E-striking triangle zone may have acted as low permeability aquitards that directed mineralizing fluids up-dip into reactive carbonate stratigraphy in the eastern Nadaleen trend. Gold-rich mineral deposits in the eastern Nadaleen trend occur preferentially in SSW-plunging anticlines and near faults, both of which probably influenced the migration of mineralizing fluid. 相似文献
17.
Duncan Large 《Journal of Geochemical Exploration》1981,15(1-3)
A total of 138 samples of the Devonian sediments in the vicinity of the Tom stratiform Pb-Zn-Ba deposit were analysed for major elements and 16 minor and trace elements by X-ray fluorescence.The geochemistry of the footwall argillites is characterised by a concentration of elements that are typically associated with the detrital resistate minerals and feldspars (e.g. Al2O3, Na2O, K2O, TiO2, Ce, Nb, Zr), which are contained within the interbedded silty layers of probable distal turbidite origin.The hanging-wall shales are characterised by high V concentrations. The C-organic data and the V/Cr ratios suggest that sapropelic conditions may have been locally developed in the vicinity of the West zone mineralisation and in the hanging-wall shales. Very high concentrations of Ba were found to be present in the hanging-wall shales (>0.5% Ba).Zn is more widely dispersed than Pb in the sediments around the mineralisation. There is no marked enrichment of Fe, Mn or Cu in the sediments close to the mineralisation. 相似文献
18.
19.
Stephen C. Porter 《Quaternary Research》1978,10(1):30-41
Pumiceous tephra, resulting from multiple eruptions of Glacier Peak volcano in late-glacial time, mantles much of the landscape in the eastern North Cascade Range and extends eastward beyond the Columbia River as a thinner discontinuous deposit. Within about 25 km of the source, the tephra is divisible into as many as nine layers, distinguishable in the field on the basis of color, grain size, thickness, and stratigraphic position. Three principal layers, designated G (oldest), M, and B, are separated from one another by thinner, finer layers. Layer G has been found as far east as Montana and southern Alberta, whereas layer B has been identified as far as western Wyoming. By contrast, layer M trends nearly south, paralleling the crest of the Cascade Range. Available 14C dates indicate that the tephra complex was probably deposited between about 12,750 and 11,250 years ago. Glacier Peak tephra overlies moraines and associated outwash east of the Cascade Crest that were deposited about 14,000 years ago. Unreworked tephra occurs within several kilometers of many valley heads implying that major valley glaciers had nearly disappeared by the time of the initial tephra fall. Distribution of tephra indicates that the southern margin of the Cordilleran Ice Sheet had retreated at least 80 km north of its terminal moraine on the Waterville Plateau by the time layer G was deposited. Late-glacial moraines of the Rat Creek advance lie within the fallout area of layer M but lack the tephra on their surface implying that they were built subsequent to the eruption of this unit. Moraines of the Hyak advance at Snoqualmie Pass, which are correlated with the Rat Creek moraines farther north, were constructed prior to 11,000 14C years ago. The late-glacial advance along the Cascade Crest, therefore, apparently culminated between about 12,000 and 11,000 14C years ago and was broadly in phase with the Sumas readvance of the Cordilleran Ice Sheet in the Fraser Lowland which occurred between about 11,800 and 11,400 14C years ago. 相似文献
20.
Y.T. John Kwong 《中国地球化学学报》2006,25(B08):229-230
Naturally acidic drainage associated with pyritic black shale has been observed in many locations in the Yukon Territory. While not necessarily linked to known mineral deposits, most of these natural acid rock drainage occurrences show elevated dissolved concentrations of trace elements, especially zinc, nickel, copper, cadmium and arsenic. Based on field observations, microbial investigation, chemical analyses and geochemical modeling, the fate and transport of potentially deleterious elements at two natural acid drainage occurrences with slightly different settings are examined. The Macintosh Creek is a small, acidic stream (pH 2.98-3.40), 2 km long, located in the Macmillan Pass area of east-central Yukon amidst known sedimentary exhalative massive sulfide mineralization but remains undisturbed by exploration activities. Its trace metal content is apparently derived from groundwater discharges, which gave as much as 5.0, 2.5, 0.7, 0.13 and 0.03 mg/L ofZn, Ni, Cu and As, respectively. Interaction and sorption reactions with algal mats, biofilms and iron oxyhydroxides appear to be the dominant mechanisms attenuating aqueous contaminant transport along the stream. Cryogenic precipitation further consolidates the ferricrete formation and reduces the mobility of the sorbed metals. The tributaries of the Engineering Creek along the Dempster Highway in northern Yukon drain through a series of dolomite, phyllite, argillite, limestone, black shale, sandstone and conglomerate with no known concentration of mineralization. In this area, the water chemistry fully reflects the local geology with acidic streams invariably associated with black shale occurrences. Groundwater seeps in the headwaters area of the km-180 Creek completely enclosed in black shale gave pH 3.0 and as much as 148, 39, 2.9 and 9.1 mg/L of Zn, Ni, Cu and As, respectively. Sorption with iron oxyhydroxide and organic matter appear to dominate the attenuation of contaminant transport along the stream. However, once entered into carbonate-dominated terrains, secondary carbonate minerals exercise additional geochemical control on the local water chemistry as a result of neutralization. 相似文献