首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Late Pleistocene morainic sequences around Dundalk Bay, eastern Ireland, were deposited in a variety of shallow, glaciomarine environments at the margins of a grounded ice lobe. The deposits are essentially ice-proximal delta-fan and -apron sequences and are divided into two lithofacies associations. Lithofacies association 1 occurs as a series of morainal banks formed at the southern margin of the ice lobe in a body of water open to influences from the Irish Sea. The morainal banks consist mainly of diamictic muds deposited from turbid plumes and by ice-rafting with minor occurrences of turbidites, cross-bedded gravels (subaqueous outwash) and massive boulder gravels (high-density debris flows). Lithofacies association 2 was deposited in a narrow arm of the sea at the north-eastern margin of the ice lobe. The deposits consist mainly of a series of coalescing, ice-proximal Gilbert-type fan deltas which are interbedded distally with tabular and lens-shaped subaqueous deposits. The latter are mainly ice-rafted diamictons, debris-flow deposits and subaqueous sands and gravels. Both lithofacies associations are draped by diamictons formed by a combination of rain-out, debris flow and traction-current activity. At a few localities the upper parts of the sequence have been sheared by minor oscillations of the ice sheet margin. These sequences form part of an extensive belt of glaciomarine deposits which border the drumlin swarms of east-central Ireland. Lithostratigraphic variability is partially related to the arrival of large volumes of debris at the ice lobe margin when the main lowland ice sheet surged during drumlin formation. Complex depositional continua of this type lack any major erosional breaks and should not be used either as climatic proxies or for stratigraphic correlations.  相似文献   

2.
柴波  陶阳阳  杜娟  黄平  王伟 《地球科学》2020,45(12):4630-4639
冰湖溃决型泥石流是高原山区特殊的地质灾害,以西藏聂拉木县嘉龙湖为例,建立了一套冰湖溃决型泥石流危险性评价方法.以喜马拉雅山区1970—2015年气温波动频次和聂拉木冰湖溃决历史事件预测了未来10年嘉龙湖溃决的时间概率.利用遥感影像识别嘉龙湖上方不稳定冰体的范围和规模,采用美国土木工程师协会推荐公式和修正的三峡库区涌浪计算方法分析了冰川滑坡产生的涌浪规模,从涌浪波压力和越顶水流推力两方面预测了冰碛坝发生失稳的可能性.采用FLO-2D模拟冰湖溃决泥石流的运动过程,以最大流速和泥深表达了嘉龙湖溃决泥石流的危险程度.评价结果表明:2002年嘉龙湖溃决事件与当年气温偏高有关,未来嘉龙湖发生溃决概率高;冰川滑坡激起涌浪能够翻越坝顶,并引起坝体快速侵蚀而溃决;冰湖溃决泥石流对聂拉木县城河道两侧54栋建筑造成威胁.评价方法实现了冰湖溃决型泥石流危险性的定量分析,评价结果对聂拉木县城泥石流防灾具有现实意义.   相似文献   

3.
New outcrops of Middle Carboniferous glacigenic deposits found in the Guandacol Formation (western Paganzo Basin) are described in this paper. The study locality of Los Pozuelos Creek (northwestern Argentina) includes coarse-grained diamictites, rhythmites, laminated pebbly mudstones and shales that represent an expanded column of the Gondwanic glaciation in this region. Thirteen lithofacies recorded at the measured section have been grouped into three facies associations. Facies Association I is composed of coarse-grained massive and stratified diamictites (lithofacies Dmm, Dms, Dmg, Dcs), laminated siltstones with dropstones (Fld) and interstratified sandstones and mudstones (Fl, Sr). These rocks represent both tillites and resedimented diamictites closely associated to small water bodies where laminated siltstones with dropstones and stratified sandstones and mudstones were deposited. Facies Association II comprises couplets of matrix-supported thinly bedded diamictites (Dmld) and laminated mudstones with dropstones (Fld). This facies association results from the combination of three different processes, subaqueous cohesionless debris flows, coeval rainout of ice-rafted debris and settling of fine-grained particles from supension. Finally, Facies Association III is made up of laminated mudstones without dropstones, thin marl levels and scarce fine- to very fine-grained sandstones. This assemblage clearly suggests sedimentation in a deep marine environment below the wave base.The architecture of the glacigenic deposits has been investigated using photomosaic panels. The geometry of the depositional bodies and facies suggest that Los Pozuelos Creek outcrops exhibit a well preserved three-dimensional example of a grounding-line system. In particular, three different subenvironments of a morainal bank were interpreted: a bank-front, a bank-core and a bank-back. The bank-front assemblage is characterized by coarse-grained, mainly resedimented, diamictites grading laterally to prograding clinoforms composed of interbedded matrix-supported thinly bedded diamictite and mudstones. The bank-core assemblage is formed by a stacking of coarse-grained diamictites where at least five major erosional surfaces, bounding four multistory diamictite bodies, can be recognized. Finally, the bank-back assemblage corresponds to discontinuous intervals of striated lodgement till, and coarse-grained resedimented diamictites showing important post-depositional deformation. The retrogradational stacking of the morainal banks indicate an overall glacial retreat and a glacioeustatic sea-level rise. Erosional surfaces at the base of each morainal bank suggest intervening short term episodes of ice advance.The new data presented here confirm the existence of "true" tillites in western Paganzo Basin and suggest several (at least four) pulses of glacial advance and retreat during the Namurian glaciation in the region and permit a more refined interpretation of the glacial deposits in the Huaco area.  相似文献   

4.
王琼  王欣  雷东钰  殷永胜  魏俊锋  张勇 《冰川冻土》2022,44(3):1041-1052
冰川-冰湖耦合过程是冰冻圈物质与能量循环的重要组成部分,系统刻画冰川演化与冰湖发育过程的相互作用机制,对于完善冰冻圈科学理论体系和认知冰川作用区变化规律、水循环模式和灾害效应具有重要意义。本文立足山地冰川演化和冰湖发育过程,系统归纳了冰川-冰湖相互作用研究进展,剖析了冰川作用与冰湖发育耦合机制及相关模型的应用,并对现有冰川演化与冰湖发育过程耦合机制研究存在的不足与挑战进行解析和总结。冰川-冰湖耦合过程的深入研究有助于提高数值模拟的可信度与精度,为评估冰川-冰湖耦合过程影响、建立灾害监测预警体系和采取适应性措施提供数据与理论基础。  相似文献   

5.
This paper presents a model of late‐glacial and post‐glacial deposition for the late‐Neogene sedimentary succession of the Archipelago Sea in the northern Baltic Sea. Four genetically related facies associations are described: (i) an ice‐proximal, acoustically stratified draped unit of glaciolacustrine rhythmites; (ii) an onlapping basin‐fill unit of rotated rhythmite clasts in an acoustically transparent to chaotic matrix interpreted as debris‐flow deposits; (iii) an ice‐distal, acoustically stratified to transparent, draped unit of post‐glacial lacustrine, weakly laminated to homogeneous deposits; and (iv) an acoustically stratified to transparent unit of brackish‐water, organic‐rich sediment drifts. The debris‐flow deposits of the unit 2 pass laterally into slide scars that truncate the unit 1; they are interpreted to result from a time interval of intense seismic activity due to bedrock stress release shortly after deglaciation of the area. Ice‐berg scouring and gravitational failure of oversteepened depositional slopes may also have contributed to the debris‐flow deposition. Comparisons to other late‐Neogene glaciated basins, such as the Hudson Bay or glacial lakes formed along the Laurentide ice sheet, suggest that the Archipelago Sea succession may record development typical for the deglaciation phase of large, low relief, epicontinental basins. The Carboniferous–Permian glacigenic Dwyka Formation in South Africa may provide an ancient analogue for the studied succession. Chronological control for the studied sediments is provided by the independent palaeomagnetic and AMS‐14C dating methods. In order to facilitate dating of the organic‐poor early post‐glacial deposits of the northern Baltic Sea, the 10 000 year long Lake Nautajärvi palaeomagnetic reference chronology ( Ojala & Saarinen, 2002 ) is extended by 1200 years.  相似文献   

6.
《Geodinamica Acta》2013,26(1-3):41-48
Clastic karst deposits occur at different positions within karst areas, whereas surface karst deposits, sediments of the crack filling facies, the cave entrance facies and the inner cave facies have to be distinguished. The karstification itself is of minor importance for the formation of clastic deposits. Except for incasional debris and impure limestones or marls the contribution of carbonate rocks to clastic karst deposits is low. The majority of clastic material is allogenic and siliciclastic.

Regarding the depositional processes cave sediments can be divided into fluvial cave deposits, gravitative or percolative deposits, decomposition deposits and rock breakdown. An actualistic approach could be a useful tool for the identification of fluvial cave deposits. By means of the depositional features of recent cave sediments and classical sedimentological features cave deposits of unknown origin can be classified.  相似文献   

7.
Eight continuous cores up to 150 m long and spaced an average of 200 m apart yield a detailed local insight into the composition and architecture of an ancient continental margin sequence, the Gowganda Formation (early Proterozoic: Huronian) near Elliot Lake, Ontario. Nearby outcrops of similar facies provide important supplementary data on sedimentary structures. Continental glaciers provided an abundant supply of coarse debris but, apart from rafting of debris by floating ice, played little or no part in Gowganda sedimentation. The basal 50 m of the Gowganda Formation in the drill-hole area represents a continental slope depositional system. It consists mainly of gravelly and sandy sediment gravity flow deposits, interbedded with minor rain-out units of diamictite, and argillite containing dropstones. Ten types of sediment gravity flow deposit are distinguished. An overlying submarine-channel depositional system, 10–50m thick, consists of hemipelagic argillites containing dropstones and showing deformation structures. These are interbedded with well-sorted channel-fill sandstones. Submarine point bars 4·5 m thick (identified in nearby outcrops) demonstrate a meandering channel geometry. This channel-fill sequence probably formed during a period of high sea-level and reduced sediment supply, but the relationship to ice advance-retreat cycles is unclear. The subsurface sequence is completed by a blanket of massive rain-out diamictites up to 55 m thick, and a younger slope sequence of sediment gravity flow diamictites and sandstones. The stratigraphy is quite different in outcrop section 10 km to the west of the drill-holes, suggesting the presence of major lateral facies changes and/or internal erosion surfaces within the Gowganda Formation. This complexity of stratigraphy and depositional processes is probably a feature of many ancient glacial units, and points to the advisability of not making climatic or tectonic interpretations from a few generalized or composite sections.  相似文献   

8.
Ice sheets that advance upvalley, against the regional gradient, commonly block drainage and result in ice‐dammed proglacial lakes along their margins during advance and retreat phases. Ice‐dammed glacial lakes described in regional depositional models, in which ice blocks a major lake outlet, are often confined to basins in which the glacial lake palaeogeographical position generally remains semi‐stable (e.g. Great Lakes basins). However, in places where ice retreats downvalley, blocking regional drainage, the palaeogeographical position and lake level of glacial lakes evolve temporally in response to the position of the ice margin (referred to here as ‘multi‐stage’ lakes). In order to understand the sedimentary record of multi‐stage lakes, sediments were examined in 14 cored boreholes in the Peace and Wabasca valleys in north‐central Alberta, Canada. Three facies associations (FAI–III) were identified from core, and record Middle Wisconsinan ice‐distal to ice‐proximal glaciolacustrine (FAI) sediments deposited during ice advance, Late Wisconsinan subglacial and ice‐marginal sediments (FAII) deposited during ice‐occupation, and glaciolacustrine sediments (FAIII) that record ice retreat from the study area. Modelling of the lateral extent of FAs using water wells and gamma‐ray logs, combined with interpreted outlets and mapped moraines based on LiDAR imagery, facilitated palaeogeographical reconstruction of lakes and the identification of four major retreat‐phase lake stages. These lake reconstructions, together with the vertical succession of FAs, are used to develop a depositional model for ice‐dammed lakes during a cycle of glacial advance and retreat. This depositional model may be applied in other areas where meltwater was impounded by glacial ice advancing up the regional gradient, in order to understand the complex interaction between depositional processes, ice‐marginal position, and supply of meltwater and sediment in the lake basin. In particular, this model could be applied to decipher the genetic origin of diamicts previously interpreted to record strictly subglacial deposition or multiple re‐advances.  相似文献   

9.
In this paper, fluvial deposits of Middle Pleistocene age in the mountain‐foreland area of southern Poland (Eastern Sudetes and Western Carpathians) are studied in order to document the evolution of fluvial systems during the coldest stages of glacial periods when the Scandinavian Ice Sheet advanced far to the south. The focus is on fluvial response to climate change and glacial impact on river system behaviour. Also considered is the tectonic uplift of the mountain part of river catchments and its potential influence on the style of fluvial sedimentation in the fore‐mountain area. Three drainage basins that were active during the Elsterian and Saalian glaciations are investigated. Facies analyses are carried out on thick successions of braided river deposits covered with till or glaciolacustrine sediments, which result in a reconstruction of the fluvial activity synchronous with the ice‐sheet advance. The results suggest that fluvial activity declined prior to ice‐sheet advance into the fore‐mountain area. This climatically induced change is directly recorded in alluvial successions by upward‐decreasing bed thicknesses and grain sizes. River longitudinal profiles were shortened in front of the advancing ice sheet. The base level of the studied rivers, created by the ice‐sheet margin, rose in parallel with glacial advance. As a result, the successive reaches of rivers (degradational, transitional, aggradational) underwent shortening and moved upstream within the catchments. Moreover, tectonically induced local increases of river slopes may have influenced the depositional processes.  相似文献   

10.
The origin of Illinois Episode (OIS 6) glacial ridges (formerly: ‘Ridged Drift’) in the Kaskaskia Basin of southwestern Illinois is controversial despite a century of research. Two studied ridges, containing mostly fluvial sand (OSL ages: ~ 150 ± 19 ka), with associated debris flows and high-angle reverse faults, are interpreted as ice-walled channels. A third studied ridge, containing mostly fine-grained till, is arcuate and morainal. The spatial arrangement of various ridge types can be explained by a glacial sublobe in the Kaskaskia Basin, with mainly fine-grained ridges along the sublobe margins and coarse-grained glaciofluvial ridges in a paleodrainage network within the sublobe interior. Illinois Episode till fabric and striation data demonstrate southwesterly ice flow that may diverge near the sublobe terminus. The sublobe likely formed as glacial ice thinned and receded from its maximum extent. The Kaskaskia Basin contains some of the best-preserved Illinois Episode constructional glacial landforms in the North American midcontinent. Such distinctive features probably result from ice flow and sedimentation into this former lowland, in addition to minimal postglacial erosion. Other similar OIS 6 glacial landforms may exist in association with previously unrecognized sublobes in the midcontinent, where paleo-lowlands might also have focused glacial sedimentation.  相似文献   

11.
冰川泥石流是由冰碛物与冰雪融水混合形成的一种碎屑重力的沉积。综合泥石的砾石成分、冰川擦痕、冰冻痕、巨型漂砾等及其某些沉积特征和源区地质背景,认为鄂尔多斯东北缘早白垩世泥石流沉积为冰川泥石流成因,这一发现暗示了晋北隆起在早白垩世曾有山谷冰川存在,并对我国白垩纪陆地古冰川及其古气候研究具有重要意义。  相似文献   

12.
The Brampton kame belt represents one of the largest glaciofluvial complexes within the UK. It is composed of an array of landform-sediment assemblages, associated with a suite of meltwater channels and situated within a palimpsest landscape of glacial features in the heart of one of the most dynamic parts of the British-Irish Ice Sheet. Glacial geomorphological mapping and sedimentological analysis have allowed a detailed reconstruction of both the morphological features and the temporal evolution of the Brampton kame belt, with processes informed by analogues from modern ice margins. The kame belt demonstrates the development of a complex glacier karst typified by the evolution of subglacial meltwater tunnels into an englacial and supraglacial meltwater system dominated by ice-walled lakes and migrating ice-contact drainage networks. Topographic inversion led to the extensive reworking of sediments, with vertical collapse and debris flows causing partial disintegration of the morphology. The resultant landform comprises a series of kettle holes, discontinuous ridges and flat-topped hills. The Pennine escarpment meltwater network, which fed the Brampton kame belt, is composed of an anastomosing subglacial channel system and flights of lateral channels. The Brampton kame belt is envisaged to have formed during the stagnation of ice in the lee of the Pennines as ice retreated westwards into the Solway Lowlands. The formation of the Brampton kame belt also has particular conceptual resonance in terms of constraining the nature of kame genesis, whereby an evolving glacier karst is a key mechanism in the spatial and temporal development of ice-contact sediment-landform associations.  相似文献   

13.
Approximately 35 parallel, discontinuous glacial ridges occur in an area of about 100 km2 in north‐central Wisconsin. The ridges are located between about 6 and 15 km north (formerly up‐ice) of the maximum extent of the Wisconsin Valley Lobe of the Laurentide Ice Sheet. The ridges are between 1 and 4 m high, up to 1 km long, and spaced between 30 and 80 m apart. They are typically asymmetrical with a steep proximal (ice‐contact) slope and gentle distal slope. The ridges are composed primarily of subglacial till on their proximal sides and glacial debris‐flow sediment on the distal sides. In some ridges the till and debris‐flow sediment are underlain by sorted sediment that was deformed in the former direction of ice flow. We interpret the ridges to be recessional moraines that formed as the Wisconsin Valley Lobe wasted back from its maximum extent, with each ridge having formed by a sequence of (1) pushing of sorted ice‐marginal sediment, (2) partial overriding by the glacier and deposition of subglacial till on the proximal side of the ridge, and (3) deposition of debris‐flow sediment on the distal side of the ridge after the frozen till at the crest of the ridge melted. The moraines are similar to annual recessional moraines described at several modern glaciers, especially the northern margin of Myrdalsjokull, Iceland. Thus, we believe the ridges probably formed as a result of minor winter advances of the ice margin during deglaciation. Based on this assumption, we calculate the net rate of ice‐surface lowering of the Wisconsin Valley Lobe during the period when the moraines formed. Various estimates of ice‐surface slope and rates of ice‐margin retreat yield a wide range of values for ice‐surface lowering (1.7–14.5 m/yr). Given that ablation rates must exceed those of ice‐surface lowering, this range of values suggests relatively high summer temperatures along the margin of the Wisconsin Valley Lobe when it began retreating from its maximum extent. In addition, the formation of annual moraines indicates that the glacier toe was thin, the ice surface was clean, and the ice margin experienced relatively cold winters.  相似文献   

14.
Despite a long history of glaciological research, the palaeo‐environmental significance of moraine systems in the Kebnekaise Mountains, Sweden, has remained uncertain. These landforms offer the potential to elucidate glacier response prior to the period of direct monitoring and provide an insight into the ice‐marginal processes operating at polythermal valley glaciers. This study set out to test existing interpretations of Scandinavian ice‐marginal moraines, which invoke ice stagnation, pushing, stacking/dumping and push‐deformation as important moraine forming processes. Moraines at Isfallsglaciären were investigated using ground‐penetrating radar to document the internal structural characteristics of the landform assemblage. Radar surveys revealed a range of substrate composition and reflectors, indicating a debris‐ice interface and bounding surfaces within the moraine. The moraine is demonstrated to contain both ice‐rich and debris‐rich zones, reflecting a complex depositional history and a polygenetic origin. As a consequence of glacier overriding, the morphology of these landforms provides a misleading indicator of glacial history. Traditional geochronological methods are unlikely to be effective on this type of landform as the fresh surface may post‐date the formation of the landform following reoccupation of the moraine rampart by the glacier. This research highlights that the interpretation of geochronological data sets from similar moraine systems should be undertaken with caution.  相似文献   

15.
Dispersal patterns of indicator rocks in central Gaspésie reveal that glacial debris is entrained in a basal debris-rich zone of shearing where clast diffusion takes place. The Grand-Volume Till forms a thin till sheet over the high plateaus of Gaspésie Peninsula and resulted from a succession of two Wisconsinan ice flows of distinct orientations (SSE and NE). The lithological composition of this till determined by pebble counts and the three-dimensional dispersal patterns of indicator rocks in it suggest that debris transport occurred principally by simple shear deformation of glacial debris. In addition, the intermixing of clasts at the intersection of two lithologically distinct dispersal trains of SSE and NE orientations, respectively, suggests that extensive mixing takes place during shearing. Physical interactions among the clasts lead to both upward and downward movements which cause the clasts to diffuse across the zone of shearing. This process of shear-diffusion results in continuous incorporation and mixing of the newly encountered rock types during glacial transport.  相似文献   

16.
Ice marginal ramps are depositional landforms that often developed over several tens of kilometres along the ice margins of large piedmont glaciers in semi-arid environments. The ramps extend with a 7–15° gradient several kilometres or even tens of kilometres into the forelands. They have front slopes that are tens of metres to several hundred metres high and frame the former terminal basins. The front slopes and the underlying bed consist of till; in the latter case, the till thins out towards the periphery. The overlying beds contain ice contact stratified drift, which, with increasing distance from the former ice margin, is succeeded by clearly sorted glaciofluvial layers of gravel. Under semi-ari d environmental conditions, the syngenetic contribution oftwo agents of transport (glacial, glaciofluvial) in formingone accumulation complex produces stratigraphic and phenotypical features that are rare in the glacial morphology of the temperate/humid zones. For this reason, they are often misinterpreted. Being indicators of ice margins, ice marginal ramps permit the accurate reconstruction of extensive piedmont glaciations in the semi-arid highlands of subtropical latitudes. Because of their high radiation values these play a key part in the global energy balance and, thus, in the origin and the evolution of ice ages.The author gratefully acknowledges the translation of this paper rendered by Mrs. Anne Beck, Berlin.  相似文献   

17.
西天山托木尔峰南麓大型山谷冰川冰舌区消融特征分析   总被引:4,自引:3,他引:1  
基于对托木尔峰南麓托木尔型山谷冰川的野外考察和典型冰川的定位观测,对冰面被表碛广泛覆盖的所谓“托木尔型”冰川冰舌区表碛与冰面消融的关系进行了研究. 结果表明:表碛对冰面消融、冰川水文过程、冰川变化等均具有重要影响,当表碛厚度超过3 cm时,表碛对冰面消融就产生明显抑制作用,且随着厚度增加,冰面消融显明减弱. 科其喀尔冰川表面的观测表明,由末端向上,表碛厚度逐渐减薄. 受表碛影响,科其喀尔冰川区最大的消融量出现在海拔3 800~3 900 m之间、表碛物厚度小于10 cm的区域内;冰川消融强度由此向上随着海拔的升高而下降,向下随表碛厚度的增大而减弱. 冰面湖的发育是表碛覆盖冰川的又一主要特征,湖水对冰面的融蚀和快速排泄成为冰面产汇流的主要过程. 科其喀尔冰川研究表明,两三个冰面湖排泄形成的融蚀冰量就相当于冰川末端退缩造成的冰量损失. 因此,冰面湖等热喀斯特地形的形成、扩张融蚀、融穿排泄、形成湖区低地,这一周而复始的过程不仅是其主要消融方式之一,而且也强烈的影响着冰川水文及冰川变化. 托木尔峰南麓地区大型冰川变化主要以厚度减薄为主,而不是像大多数冰川显著的变化主要表现在末端和面积减少方面.  相似文献   

18.
藏东南嘎隆拉冰川表碛冻融过程与零点幕效应   总被引:1,自引:1,他引:0  
冰川表碛区冻融过程的观测分析有助于厘清各层之间能量和水分传输的关系,从而为构建相应的能量平衡模型以及冰川径流模型提供理论支持。基于2015年10月至2016年11月嘎隆拉冰川表碛区自动气象站气象资料,对表碛区冻融过程进行分析,结果表明:表碛中出现冻土中常见的秋季和春季零点幕效应,秋季零点幕持续时间32天,春季零点幕持续58天;春季零点幕期间,气温和地表温度均呈现清晨低,午后高的日变化特征,而表碛层内温度没有明显的日变化特征,其体积含水率呈“脉冲式”变化;春季零点幕效应结束,底层冻结层破坏后,冰川冰消融才开始;嘎隆拉冰川表碛对冰川冰消融的影响不仅是因为表碛较厚,在消融量上抑制了冰川冰的消融,而且更重要的是表碛产生零点幕效应,延迟了表碛下冰川冰开始消融的日期,在时间上抑制了冰川冰消融。  相似文献   

19.
研究目的】碎屑流是深水环境沉积物搬运和分散的重要机制,其相关的砂岩储层是含油气盆地重要的勘探目标,然而,与经典浊流及浊积系统相比,对碎屑流主控型深水体系的发育规律目前仍知之甚少。【研究方法】本文基于岩心、测井及全三维地震资料,通过系统的岩心观察描述、测井及地震资料解释,对渤海湾盆地东营凹陷始新统沙三中亚段深水体系沉积过程及模式开展研究。【研究结果】结果表明,沙三中深水体系发育九种异地搬运岩相,可概括为四大成因类型,反映了块体及流体两种搬运过程。岩相定量统计表明,该深水体系主要由碎屑流沉积构成,浊流沉积很少,碎屑流中又以砂质碎屑流为主。重力流在搬运过程中经历了滑动、滑塌、砂质碎屑流、泥质碎屑流及浊流等5个阶段演变,发育5类主要的深水沉积单元,包括滑动体、滑塌体、碎屑流水道、碎屑流朵体及浊积薄层砂。从发育规模及储层物性上,砂质碎屑流水道、朵体及砂质滑动体构成了本区最重要的深水储层类型。【结论】认为沙三中时期充足的物源供给、三角洲前缘高沉积速率、断陷期频繁的断层活动以及较短的搬运距离是碎屑流主控型深水体系形成及演化的主控因素,最终基于沉积过程、沉积样式及盆地地貌特征综合建立了碎屑流主控型深水体系沉积模式。本研究将进一步丰富深水沉积理论,为陆相深水储层预测提供借鉴。  相似文献   

20.
Along the West Greenland continental margin adjoining Baffin Bay, bathymetric data show a series of large submarine fans located at the mouths of cross‐shelf troughs. One of these fans, termed here ‘Uummannaq Fan’, is a trough‐mouth fan built largely by debris delivered from a fast‐flowing outlet of the Greenland Ice Sheet during past glacial maxima. Cores from this fan provide the first information on glacimarine sedimentary facies within a major West Greenland trough‐mouth fan and on the nature of Late Weichselian–Holocene glacigenic sediment delivery to this region of the Baffin Bay margin. Glacigenic debris flows deposited on the upper slope and extending to at least 1800 m water depth in front of the trough‐mouth are related to the remobilization of subglacial debris that was delivered onto the upper slope at times when an ice stream was positioned at the shelf edge. In contrast, sedimentary facies from the northern sector of the fan are characterized by hemipelagic and ice‐rafted sediments and turbidites; glacigenic debris flows are notably absent in cores from this region. Quantitative X‐ray diffraction studies of the <2‐mm sediment fraction indicate that the bulk of the sediment in the fan is derived from Uummannaq Trough but there are distinct intervals when sediment from northern Baffin Bay sources dominates, especially on the northern limit of the fan. These data demonstrate considerable variation in the nature of sediment delivery across the Uummannaq Fan when the Greenland Ice Sheet was at the shelf edge. They highlight the variability of glacimarine depositional processes operating on trough‐mouth fans on high‐latitude continental margins during the last glacial maximum and indicate that glacigenic debris flows are just one of a number of mechanisms by which such large depocentres form. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号