首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With recent technological advances in remote sensing sensors and systems, very high-dimensional hyperspectral data are available for a better discrimination among different complex land-cover classes. However, the large number of spectral bands, but limited availability of training samples creates the problem of Hughes phenomenon or ‘curse of dimensionality’ in hyperspectral data sets. Moreover, these high numbers of bands are usually highly correlated. Because of these complexities of hyperspectral data, traditional classification strategies have often limited performance in classification of hyperspectral imagery. Referring to the limitation of single classifier in these situations, Multiple Classifier Systems (MCS) may have better performance than single classifier. This paper presents a new method for classification of hyperspectral data based on a band clustering strategy through a multiple Support Vector Machine system. The proposed method uses the band grouping process based on a modified mutual information strategy to split data into few band groups. After the band grouping step, the proposed algorithm aims at benefiting from the capabilities of SVM as classification method. So, the proposed approach applies SVM on each band group that is produced in a previous step. Finally, Naive Bayes (NB) as a classifier fusion method combines decisions of SVM classifiers. Experimental results on two common hyperspectral data sets show that the proposed method improves the classification accuracy in comparison with the standard SVM on entire bands of data and feature selection methods.  相似文献   

2.
高光谱遥感图像的出现进一步提升遥感图像分类的准确性,但高光谱遥感图像的数据量大,处理高光谱遥感图像复杂度高、效率低。为解决这一问题,将主成分分析算法作为遥感图像分类的预处理技术。分析主成分分析算法的原理,利用主成分分析算法提取高光谱图像的主要波段图像。通过实验验证得出结论:高光谱遥感图像的主波段图像包含分类所需的大部分信息,利用少数的主波段图像即可达到70%以上的分类正确率。实验结果表明,在保证分类正确率的前提下,PCA算法可有效地减少图像分类处理的数据量,提高图像的处理效率。  相似文献   

3.
融合形状和光谱的高空间分辨率遥感影像分类   总被引:13,自引:0,他引:13  
黄昕  张良培  李平湘 《遥感学报》2007,11(2):193-200
提出了一种像元形状指数及基于形状和光谱特征融合的高(空间)分辨率遥感影像分类方法。形状和光谱是遥感影像纹理的具体表现形式,尤其在高分辨率影像中地物细节得到充分表达,相邻像元的关系及其共同表征的形状特性成为分类的重要因素。本文用像元及其邻域的关系来描述其空间结构,同时为了更全面地利用影像特征,提出了基于支持向量机的形状和光谱融合分类方法。实验证明,该方法计算简便且能有效表达高分辨率影像的地物特征,提高分类精度。  相似文献   

4.
One of the most widely used outputs of remote sensing technology is Hyperspectral image. This large amount of information can increase classification accuracy. But at the same time, conventional classification techniques are facing the problem of statistical estimation in high-dimensional space. Recently in remote sensing, support vector machines (SVMs) have shown very suitable performance in classifying high dimensionality problem. Another strategy that has recently been used in remote sensing is multiple classifier system (MCS). It can also improve classification accuracy by combining different classifier methods or by a diversity of the same classifier. This paper aims to classify a Hyperspectral data using the most common methods of multiple classifier systems i.e. adaboost and bagging and a MCS based on SVM. The data used in the paper is an AVIRIS data with 224 spectral bands. The final results show the high capability of SVMs and MCSs in classifying high dimensionality data.  相似文献   

5.
Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.  相似文献   

6.
针对高光谱影像数据具有波段众多、数据量较大的特点,本文提出了一种基于波段子集的独立分量分析(ICA)特征提取的高光谱遥感影像分类的新方法。以北京昌平小汤山地区的高光谱影像为例,根据高光谱遥感影像的相邻波段的相关性进行子空间划分,在各个波段子集上采用ICA算法进行特征提取,将各个子空间提取的特征合并组成特征向量,采用支持向量机(SVM)分类器进行分类。结果表明:该方法分类精度最佳(分类精度89.04%,Kappa系数0.8605,明显优于其它特征提取方法的SVM分类,有效地提高了高光谱数据的分类精度。  相似文献   

7.
周炜  关洪军  童俊 《测绘通报》2019,(3):120-123,140
针对水体边界混合像元导致的精度损失问题,提出了一种基于高光谱混合像元分解的水体边界提取方法。该方法结合高光谱影像水体边界混合像元特有的光谱特征,削弱诸多因素对水体边界像元识别的影响,获取水体边界混合像元,降低了混合像元分解的计算量。通过混合像元的高精度分解及水体边界像元分割,进一步逼近水体的真实边界,能显著提高水体边界界定的精度。试验结果表明:用该方法进行水体提取,精度明显优于水体指数法,略优于支持向量机法,总体精度为93.86%,Kappa系数为0.87。  相似文献   

8.
In this paper a new approach for fractal based dimensionality reduction of hyperspectral data has been proposed. The features have been generated by multiplying variogram fractal dimension value with spectral energy. Fractal dimension bears the information related to the shape or characteristic of the spectral response curves and the spectral energy bears the information related to class separation. It has been observed that, the features provide accuracy better than 90 % in distinguishing different land cover classes in an urban area, different vegetation types belonging to an agricultural area as well as various types of minerals belonging to the same parent class. Statistical comparison with some conventional dimensionality reduction methods validates the fact that the proposed method, having less computational burden than the conventional methods, is able to produce classification statistically equivalent to those of the conventional methods.  相似文献   

9.
Currently, hyperspectral images have potential applications in many scientific areas due to the high spectral resolution. Extracting suitable and adequate bands/features from high dimensional data is a crucial task to classify such data. To overcome this issue, dimension reduction techniques have direct effects to improve the efficiency of classifiers on hyperspectral images. One common approach for decreasing the dimensionality is the feature/band selection by considering the optimum dimensionality of the hyperspectral imagery. In this paper, a new method was proposed to select optimal band for classification application, based on a metaheuristic Invasive Weed Optimization (IWO) algorithm. In this regard, the K-nearest neighbour (K-NN) technique was used as the classifier. Moreover, as a by-product of our band selection method, a new method was proposed to estimate an optimum dimension of the reduced hyperspectral images for better classification. Experimental results over three real-world hyperspectral datasets clearly showed that the proposed IWO-based band selection algorithm of this study led to the significant progress in selecting suitable bands for classification applications and estimation of optimum dimensionality of these datasets. In this regard, the overall accuracy (OA) of classification of the proposed IWO-based band selection algorithm was 92.02, 93.57, and 89.72 % for each dataset, respectively. Moreover, results reveal the superiority of the proposed IWO-based band selection algorithm against the other algorithms including GA, SA, ACO, and PSO for band selection purpose.  相似文献   

10.
针对高光谱图像分类中对光谱信息利用不足的问题,提出一种基于卷积神经网络在光谱域开展的分类算法。该算法通过构建五层网络结构,逐像素对光谱信息开展分析,将全光谱段集合作为输入,利用神经网络展开代价函数值的计算,实现对光谱特征的提取与分类。实验中采用三组高光谱遥感影像数据进行对比分析,以India Pines数据集为例,提出的基于卷积神经网络的分类方法的分类正确率达到90.16%,比RBF-SVM方法高出2.56%,相比三种传统的深度学习方法高出1%~3%,训练速度也较为理想。实验结果表明,本文所提出的算法充分利用了高光谱图像中逐像素点的光谱域信息,能够有效提高分类正确率。与传统学习算法相比,在较少训练样本的情况下,更能发挥其良好的分类性能。  相似文献   

11.
利用独立分量分析的方法,从图像信号分离的角度出发,将每个波段像元的光谱特征看成是由相互独立的不同地物类型光谱信号混合而成。通过ETM^-遥感影像数据的分类试验,验证了该方法应用于多光谱遥感影像非监督分类的有效性。  相似文献   

12.
传统谱聚类的高光谱影像波段选择模型中,采用的波段相似矩阵受到噪声或异常值的影响且仅能表征波段的单一相似特征,导致波段子集的选取结果受到限制.本文从波段选择的目的 出发,提出鲁棒多特征谱聚类方法,整合多个特征的波段相似矩阵来形成综合相似矩阵以解决上述问题.该方法假设4种相似性度量包括光谱信息散度、光谱角度距离、波段相关性...  相似文献   

13.
Land cover (LC) changes play a major role in global as well as at regional scale patterns of the climate and biogeochemistry of the Earth system. LC information presents critical insights in understanding of Earth surface phenomena, particularly useful when obtained synoptically from remote sensing data. However, for developing countries and those with large geographical extent, regular LC mapping is prohibitive with data from commercial sensors (high cost factor) of limited spatial coverage (low temporal resolution and band swath). In this context, free MODIS data with good spectro-temporal resolution meet the purpose. LC mapping from these data has continuously evolved with advances in classification algorithms. This paper presents a comparative study of two robust data mining techniques, the multilayer perceptron (MLP) and decision tree (DT) on different products of MODIS data corresponding to Kolar district, Karnataka, India. The MODIS classified images when compared at three different spatial scales (at district level, taluk level and pixel level) shows that MLP based classification on minimum noise fraction components on MODIS 36 bands provide the most accurate LC mapping with 86% accuracy, while DT on MODIS 36 bands principal components leads to less accurate classification (69%).  相似文献   

14.
面向高光谱图像分类的半监督空谱判别分析   总被引:2,自引:2,他引:0  
侯榜焕  王锟  姚敏立  贾维敏  王榕 《测绘学报》2017,46(9):1098-1106
为充分利用高光谱图像蕴藏的空间信息提升分类精度,提出了面向高光谱图像分类的半监督空谱判别分析(S3 DA)算法。考虑高光谱图像数据集的空间一致性,首先利用少量标记样本定义类内散度矩阵,保存数据集同类像元的光谱近邻结构;再利用无标记样本定义空间近邻像元散度矩阵,揭示像元间的空间近邻结构和地物的空间分布结构信息。S3 DA既保持数据集在光谱域的可分性,又保存了无标记样本蕴藏的空间域近邻结构,增强了同类像元和空间近邻像元在投影子空间的聚集性,从而提升分类性能。在PaviaU和Indian Pines数据集的试验表明,总体分类精度分别达到81.50%和71.77%。与传统的光谱方法比较,该算法能有效提升高光谱图像数据集的地物分类精度。  相似文献   

15.
对高光谱数据进行波段组合,可以减少信息量的冗余,提高数据的处理速度。对黄河口入海口湿地进行分类,对合理利用、开发保护该地区湿地资源具有重要意义。本文首先分析了“珠海一号”高光谱数据各个波段的信息量及波段之间的相关系数,然后利用最佳波段指数(OIF)方法选出波段组合B7-B8-B32,进一步在OIF基础上设置信息量与相关系数阈值,选出波段组合B7-B18-B32,实验结果证明分类精度提高了5.4%。最后,根据地物的光谱特征分析,选择光谱差异较大的波段进行组合B6-B13-B18,分类后精度比OIF筛选出的波段组合精度高12.6694%。经实验验证,结合地物光谱特征的波段组合可以大大提高分类精度。  相似文献   

16.
On the Performance Evaluation of Pan-Sharpening Techniques   总被引:1,自引:0,他引:1  
The limitations of the currently existing pan-sharpening quality indices are analyzed: the absolute difference between pixel values, mean shifting, and dynamic range change is frequently used as spatial fidelity measurement, but they may not correlate well with the actual change of image content; and spectral angle is a widely used metric for spectral fidelity, but the spectral angle remains the same if two vectors are multiplied by two individual constants, which means the average spectral angle between two multispectal images is zero even if pixel vectors are multiplied by different constants. Therefore, it is important to evaluate the quality of a pan-sharpened image under a task of its practical use and to assess spectral fidelity in the context of an image. In this letter, three data analysis techniques in linear unmixing, detection, and classification are applied to evaluate spectral information within a spatial scene context. It is demonstrated that those old but simplest approaches, i.e., Brovey and multiplicative (or after straightforward adjustment) methods, can generally yield acceptable data analysis results. Thus, it is necessary to consider the tradeoff between computational complexity, actual improvement on application, and hardware implementation when developing a pan-sharpening method.  相似文献   

17.
提出一种稀疏自表达方法来研究高光谱影像分类中的波段选择问题。该方法利用字典矩阵等于测量矩阵的条件来改进多观测向量的稀疏表达模型,将波段子集看作高光谱影像波段集合中的代表子集。稀疏自表达方法将波段选择转换为寻求多观测向量中稀疏系数矩阵的非零行向量问题,通过引入混合范数来限定非零元素行向量的个数,利用快速交替方向乘子方法求解稀疏系数矩阵,并聚类非零行向量,实现波段的有效选择。基于两个公开高光谱影像数据集并对比其他4种波段选取方法来验稀疏自表达方法。实验结果证明,稀疏自表达方法能够在计算效率明显优于基于波段相关性的线性限制最小方差方法的同时,取得与该方法和非负稀疏矩阵分解方法相匹甚至略高的总体分类精度。  相似文献   

18.
黄鸿  石光耀  段宇乐  张丽梅 《测绘学报》2019,48(8):1014-1024
高光谱遥感影像数据量大、波段数多,容易导致“维数灾难”。传统流形学习方法一般仅考虑其光谱特征,忽略了空间信息。为此提出一种非监督的基于加权空-谱联合保持嵌入(WSCPE)的维数约简算法。首先采用加权均值滤波(WMF)方法对高光谱影像进行滤波,以消除噪点和背景点的干扰。然后根据遥感影像地物分布的空间一致性,通过采用加权空-谱联合距离(WSCD)来融合像素点的光谱信息和空间信息,有效选取各像素点的空-谱近邻,并根据像素点与其空-谱近邻点之间的坐标距离来有区别的利用其近邻点进行流形重构,提取低维鉴别特征进行地物分类。在PaviaU和Indian Pines数据集上的分类结果表明,总体分类精度分别达到了98.89%和95.47%。该方法在反映影像内部流形结构的同时,有效融合了影像的空间-光谱信息,故能提高影像特征的鉴别性,并提升分类性能。  相似文献   

19.
A new approach for dimensionality reduction of hyperspectral data has been proposed in this article. The method is based on extraction of fractal-based features from the hyperspectral data. The features have been generated using spectral fractal dimension of the spectral response curves (SRCs) after smoothing, interpolating and segmenting the curves. The new features so generated have then been used to classify hyperspectral data. Comparing the post classification accuracies with some other conventional dimensionality reduction methods, it has been found that the proposed method, with less computational complexity than the conventional methods, is able to provide classification accuracy statistically equivalent to those from conventional methods.  相似文献   

20.
The intensity-hue-saturation method is used frequently in image fusion due to its efficiency and high spatial quality. The main shortage is its spectral distortion stemmed from replacement of intensity band with higher resolution image. In this study, a new method is introduced to improve the spectral quality of the Intensity-Hue-Saturation (IHS) algorithm. The goal of this study is to produce the fused image that has a better spectral and spatial quality with respect to the original images in term of visual comparison and the classification result. In this regard, an improved statistical approach is developed to combine an intensity band from IHS algorithm and an input high resolution image such as SAR or Panchromatic image. Then the intensity image is replaced by the combined image band. Final fused images are attained using the inverse IHS algorithm. The proposed fusion algorithm is tested on two data sets of: a) panchromatic and multi spectral bands of IKONOS image with the same acquisition date, and b) multi spectral and HH bands of IKONOS and TerraSAR-X images respectively with different acquisition dates. Moreover, the obtained results are compared with other fusion methods like IHS, Gungor, Brovey and synthetic variable ratio. The results show less spectral discrepancy of the proposed method comparing to other methods. Finally, the outcome of proposed method is classified and classification overall accuracy is improved by 5.6 and 2 percentage for data set ‘a’ and ‘b’ respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号