首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
An investigation of seagrass-epiphyte controlling factors was conducted within aThalassia testudinum meadow in Florida Bay from March 2000 to April 2001. Univariate and multivariate analyses were performed using water column nutrient concentrations, temperature, salinity, and turbidity, and gastropod grazer abundances, seagrass leaf area index, and leaf turnover rate data to explain the variation in total epiphyte standing stock, epiphyte chlorophylla, and epiphyte autotrophic index. Turbidity was positively correlated with total epiphyte standing stock and accounted for the most variation. Observations of adhered sediment onT. testudinum leaves and the combination, of increased total epiphyte standing stocks and low autotrophic indices observed in February and April 2001 suggest that the settling of resuspended sediments following turbidity events is one of the temporal mechanisms for increased epiphyte accumulation. Total epiphyte standing stock was also negatively correlated with the abundance of a robust gastropod grazer community dominated byTurbo castanea, Tegula fasciata, andModulus modulus. Distinct temporal size cohorts ofT. castanea andT. fasciata throughout the study period suggest recruitment in spring and an annual lifespan. Nutrient concentrations can also account for some of the temporal variation in total epiphyte standing stock, epiphyte chlorophylla, and autotrophic index. The low variation ofT. testudinum leaf turnover rates was unable to account for any of the variation in the epiphyte parameters.  相似文献   

2.
In the tidal creeks of the southeastern United States, the numerically and ecologically dominant macrobenthic organisms are typically oligochaetes. Due to their relatively small size and difficult taxonomy, little is known about the short-term and seasonal changes in the oligochaetes of tidal creeks. This study presents a report of the spatial and temporal changes of the oligochaete taxa within and between two tidal creeks in southern South Carolina, at monthly intervals over a 13-month period. These changes are framed within the reference of monthly changes in benthic chlorophylla, sediment composition, and porewater ammonia, as well as in the perspective of seasonal changes in the entire tidal creek macrobenthic community. The most abundant oligochaete found in this study was the tubificidMonopylephorus rubroniveus, followed by the naidParanais litoralis and the tubificidsTubificoides heterochaetus andT. brownae. All of the oligochaetes exhibited strong month-to-month and spatial changes, indicative of changes in water quality and sediment habitat characteristics (e.g., low dissolved oxygen, high benthic chlorophylla). There were significant correlations between the abundance of most species and either benthic chlorophylla concentration or the silt-clay fraction of the sediment. Looking at short-term changes in this rapidly changing component of the macrobenthic community provides insight not only into the ecology of the oligochaetes, but also into the changes in the tidal creek ecosystem and their potential effects on other biota.  相似文献   

3.
A hypothesis on the formation and seasonal evolution of Atlantic menhaden (Brevoortia tyrannus) juvenile nurseries in coastal estuaries is described. A series of cruises were undertaken to capture postmetamorphic juvenile menhaden and to characterize several biological and physical parameters along estuarine gradients. The two study systems, the Neuse and Pamlico rivers in North Carolina, contain important menhaden nursery grounds. Juvenile menhaden abundance was found to be associated with gradients of phytoplankton biomass as evidenced by chlorophylla levels in the upper water column. Fish abundances were only secondarily associated with salinity gradients as salinity was a factor that moderated primary production in the estuary. The persistence of spatial and temporal trends in the distribution of phytoplankton in the Neuse and Pamlico estuaries was reviewed. The review suggested that postmetamorphic juvenile menhaden modify their distribution patterns to match those created by phytoplankton biomass, which in turn makes them most abundant in the phytoplankton maxima of estuaries. Because the location of these maxima varies with the mixing and nutrient dynamics of different estuaries, so will the location of the nursery.  相似文献   

4.
Benthic microalgal biomass is an important fraction of the primary producer community in shallow water ecosystems, and the factors controlling benthic microalgal biomass are complex. One possible controlling factor is sediment grain-size distribution. Benthic microalgal biomass was sampled in sediments collected from two sets of North Carolina estuaries Massachusetts and Cape Cod bays, and Manukau Harbour in New Zealand. Comparisons of benthic microalgal biomass and sediment grain-size distributions in these coastal and estuarine ecosystems frequently showed a negative relationship between the proportion of fine-grained sediments and benthic microalgal biomass measured as chlorophylla. The highest sedimentary chlorophylla levels generally occurred in sediments with lower percentages of fine particles (diameter <125 mm). A negative relationship between the proportion of fine sediments and benthic microalgal biomass suggests anthropogenic loadings of fine sediment may reduce the biological productivity of shallow-water ecosystems.  相似文献   

5.
We measured dissolved and particulate organic carbon (DOC and POC) in samples collected along 13 transects of the salinity gradient of Chesapeake Bay. Riverine DOC and POC end-members averaged 232±19 μM and 151±53 μM, respectively, and coastal DOC and POC end-members averaged 172±19 μM and 43±6 μM, respectively. Within the chlorophyll maximum, POC accumulated to concentrations 50–150 μM above those expected from conservative mixing and it was significantly correlated with chlorophylla, indicating phytoplankton origin. POC accumulated primarily in bottom waters in spring, and primarily in surface waters in summer. Net DOC accumulation (60–120 μM) was observed within and downstream of the chlorophyll maximum, primarily during spring and summer in both surface and bottom waters, and it also appeared to be derived from phytoplankton. In the turbidity maximum, there were also net decreases in chlorophylla (?3 μg l?1 to ?22 μg l?1) and POC concentrations (?2 μM to ?89 μM) and transient DOC increases (9–88 μM), primarily in summer. These occurred as freshwater plankton blooms mixed with turbid, low salinity seawater, and we attribute the observed POC and DOC changes to lysis and sedimentation of freshwater plankton. DOC accumulation in both regions of Chesapeake Bay was estimated to be greater than atmospheric or terrestrial organic carbon inputs and was equivalent to ≈10% of estuarine primary production.  相似文献   

6.
The dominant members of the freshwater zooplankton in the Sacramento-San Joaquin delta were those typical of temperate zone rivers—Bosmina andCyclops among the crustaceans andKeratella, Polyarthra, Trichocerca andSynchaeta among the rotifers. The estuarine or brackish component of the plankton was represented by the copepodEurytemora affinis and the rotiferSynchaeta bicornis. Abundace of freshwater zooplankton was highest in the San Joaquin River near Stockton, the region with the highest chlorophylla concentrations and highest temperatures. This was also the region least affected by water project operations, which alter the normal river flow patterns and bring large volumes of zooplankton-deficient Sacramento River water into the San Joaquin River and south delta chanels. Over a seven-year period, abundance of most zooplankton genera was positively correlated with chlorophylla concentrations and temperature but not with net flow velocity. OnlyBosmina had a significant and negative correlation with abundance of a predacious shrimp,Neomysis mercedis. Extreme salinity intrusion in 1977 reduced freshwater zooplankton abundance throughout most of the delta to seven-year lows. All zooplankton groups showed a long-term abundance decline from 1972 to 1978. In the cases of rotifers and copepods, this deciline was significantly correlated with a decline in chlorophylla.  相似文献   

7.
Primary productivity of three size classes of phytoplankton (<5 μm, 5–22 μm, >22 μm) was measured monthly at six sites within San Francisco Bay throughout 1980. These sites in the three principal embayments were chosen to represent a range of environments, phytoplankton communities, and seasonal cycles in the estuary. Temporal variations in productivity for each size class generaly followed the seasonality of the corresponding fraction of phytoplankton biomass. The 5–22 μm size class accounted for 40 to 50% of the annual production in each embayment, but production by phytoplankton >22 μm ranged from 26% in the southern reach to 54% of total phytoplankton production in the landward embayment of the northern reach. A productivity index is derived that predicts daily productivity for each size class as a function of ambient irradiance and integrated chlorophylla in the photic zone. For the whole phytoplankton community and for each size class, this index was constant and estimated as ?0.76 g C m?2 (g chlorophylla Einstein)?1. The annual means of maximum carbon assimilation numbers were usually similar for the three size classes. Spatial and temporal variations in size-fractionated productivity are shown to be primarily due to differences in biomass rather than size-dependent carbon assimilation rates. *** DIRECT SUPPORT *** A01BY034 00005  相似文献   

8.
This study was designed to investigate seasonal changes on food available for benthic consumers in relation to tidal levels and sediment depth in an estuarine beach. The relationships between the biochemical characteristics of sedimentary organic matter and benthic macrofauna were analyzed quarterly over 2 years (from January 1997 to January 1999), in an estuarine soft intertidal zone from the NW coast of Spain (42°64′04″N, 8°88′36″W). Sediment samples were collected to provide a two-dimensional view of macroinfauna distribution in the intertidal zone and its relationship with the quantity and quality of the organic matter. The nutritional value of organic matter (i.e., lipid, protein, and carbohydrate) and the content of chlorophyll a of the sediment were measured. Macrofaunal assemblages and food availability in the sediment were studied at three tidal levels on the shore: two intertidal and one supratidal. Macroinfauna and biochemical compounds showed a clear vertical stratification with the highest macrofaunal abundance at the superficial layer of the sediment, where redox potential discontinuity was also observed. Crustaceans were found mainly inhabiting the supratidal level of the estuarine beach, while polychaetes and mollusks occupied the intertidal level. Food availability, measured as biopolymeric carbon, and also chlorophyll a from the sediment were better related to macroinfauna abundance, biomass, and abundance of main taxonomic groups. Macrofauna assemblages showed particular distribution in both vertical and horizontal ranges suggesting specific preferences to several abiotic factors. No clear seasonal pattern was found in macrofauna and sedimentary organic characteristics suggesting that macrofaunal assemblages are controlled by complex and unpredictable factors, including small-scale changes in substrate and hydrological characteristics.  相似文献   

9.
The uptake and release of materials by intertidal mussel beds were directly measured in two cultivated Dutch estuaries. Generally, chlorophylla, seston, and particulate organic carbon were taken up, while ammonium, orthophosphate, and silicate were released. The observed rates were higher than values computed from organismic observations and similar to those observed for intertidal oyster reefs in South Carolina. Specific estuarine material turnover rates varied from 1 week to 38 weeks when calculated with mussel bed fluxes. The fastest turnover rates were for chlorophylla and ammonium. These results support the idea that dense assemblages of bivalves are major components in the recycling of nutrients in estuaries.  相似文献   

10.
In the Tampa Bay region of Florida, extreme levels of annual and seasonal rainfall are often associated with tropical cyclones and strong El Niño episodes. We used stepwise multiple regression models to describe associations between annual and seasonal rainfall levels and annual, bay-segment mean water clarity (as Secchi depth [m]), chlorophylla (μg I?1), color (pcu), and turbidity (ntu) over a 20-yr period (1985–2004) during which estimated nutrient loadings have been dominated by non-point sources. For most bay segments, variations in annual mean water clarity were associated with variations in chlorophylla concentrations, which were associated in turn with annual or seasonal rainfall. In two bay segments these associations with annual rainfall were superimposed on significant long-term declining trends in chlorophylla. Color was significantly associated with annual rainfall in all bay segments, and in one segment variations in color were the best predictors of variations in water clarity. Turbidity showed a declining trend over time in all bay segments and no association with annual rainfall, and was significantly associated with variations in water clarity in only one bay segment. While chlorophylla, color, and turbidity a affected water clarity to varying degrees, the effects of extreme rainfall events (El Niño events in 1998 and 2003, and multiple tropical cyclone events in 2004) on water clarity were relatively short-lived, persisting for periods of months rather than years. During the 20-yr period addressed in these analyses, declining temporal trends in chlorophylla and turbidity, produced in part by a long-term watershed management program that has focused on curtailing annual loadings of nitrogen and other pollutants, may have helped to prevent the bay as a whole from responding more adversely to the high rainfall periods that occurred in 1998 and 2003–2004.  相似文献   

11.
To elucidate relationships between land cover and water quality along the central California coast, we collected monthly samples from 14 coastal waterway outlets representing various degrees of human development. Sites were distributed between three salinity categories, freshwater, estuarine, and marine, to better understand land cover-water quality relationships across a range of coastal aquatic ecosystems. Samples were analyzed for fecal indicator bacteria (FIB), dissolved nutrients, stable nitrogen isotopes in particulate organic matter, and chlorophylla (chla). Sediment samples from 11 sites were analyzed for the concentration of the anthropogenic organic contaminant perfluorooctane sulfonate and its precursors (ΣPFOS). While the data indicated impairment by nutrient, microbial, and organic contaminants at both agricultural and urban sites, the percentage of agricultural land cover was the most robust indicator of impairment, showing significant correlations (p<0.05) to FIB, nutrient, chla, and ΣPFOS levels. FIB densities were strongly influenced by salinity and were highest at sites dominated by agriculture and urbanization. Nutrient levels and chla correlated to both agricultural and urban land use metrics as well. Positive correlations among FIB, nutrients, chla, and ΣPFOS suggest a synergy between microbial, nutrient, and organic pollution. The results emphasize the importance of land management in protecting coastal water bodies and human health, and identify nutrient, microbial, and organic pollution as prevalent problems in coastal California water bodies.  相似文献   

12.
Soft-shell clams (Mya arenaria) can serve important ecological roles in intertidal mudflats and are an important economic and recreational resource in the northwestern Atlantic. However, environmental factors affecting newly-settled and juvenile clam abundances within a given settlement season remain uncertain. We conducted a field study assessing relationships between juvenile soft-shell clam abundance and spatial, temporal, and environmental variables in coastal mudflats of the northern shore of the Bay of Fundy. Sediment pH and low-tide water temperature (tide pools) were monitored in situ on a biweekly–monthly basis over the course of the M. arenaria settlement season in 2012 at four study sites to quantify diel variation in sediment pH and temperature. Core samples were also collected to quantify M. arenaria (<6 mm) abundance. Sea-surface and air temperature, and in situ sediment pH and water temperature were then used to predict clam abundance. Sediment pH was spatially and temporally variable, while in situ temperature was stable and declined over the sampling season. Akaike’s information criterion model selection indicated that models incorporating site, date, and air temperature best predicted 2012 recruitment patterns in linear models when all variables were included. When only environmental variables were included, the best linear model included minimum air temperature and sediment pH. When data were averaged across dates for each site to remove potential temporal effects, mean clam abundance displayed a significant positive relationship with sediment pH and sediment grain size, but not minimum air temperature. The results of this study suggest that sediment pH and/or sediment grain size may influence within-season juvenile soft-shell clam abundances across mudflats in the Bay of Fundy. Field experiments at the same (or similar) sites are now needed to confirm the mechanism driving the observed relationships.  相似文献   

13.
The establishment of submersed aquatic vegetation (SAV) at unvegetated sites in the freshwater tidal Potomac River was limited primarily by factors other than propagule availability. For two years, traps were used to quantify the amount of plant material reaching three unvegetated sites over the growing season. The calculated flux values provided a gross estimate of the flux of propagules that could potentially survive if other site factors were suitable. The mean flux ofHydrilla verticillata and all other species (≥0.01 gdw m?2 d?1) appeared sufficient to favor the establishment of vegetation, particularly considering the high viability (70–100%) of whole plants and fragments under controlled conditions. However, median water clarity values (i.e., for light attenuation, Secchi depth, total suspended solids, and chlorophylla) were below SAV restoration goals at all unvegetated sites. Additionally, sediments from unvegetated sites showed a potential for nitrogen limitation of the growth ofH. verticillata. Our findings support the hypothesis that in the tidal Potomac River, water clarity and nutrient (especially nitrogen) levels in sediment are key to plant community establishment.  相似文献   

14.
Trends in the spatial distribution of chlorophylla (chla) and colloidal and total carbohydrates on the Molenplaat tidal flat in the Westerschelde estuary, Netherlands, reflected spatial differences in physical properties of the sediment. Results from a Spearman Rank Order Correlation indicated that many of the physical and biological measures covaried. Multiple regression analyses describing the relationship between colloidal carbohydrates and sediment properties resulted in several highly significant equations, although in all cases chla was able to predict colloidal carbohydrate content. Relationships between sediment surface chla and colloidal carbohydrate, and sediment erodibility (i.e., critical erosion threshold, Ucrit, and mass of sediment eroded at a velocity of 30 cm s?1) determined in annular flume experiments were examined. Overall sediment erodibility was lowest (i.e., high thresholds, low mass eroded) for the siltiest sediments in June 1996 when chla and colloidal carbohydrates were high (56.9 μg gDW?1 and 320.6 μg gluc.equ. gDW?1, respectively), and greatest (i.e., low thresholds, high mass eroded) at the sandier sediments in September 1996, when chla and colloidal carbohydrates were low (1.0 μg gDW?1 and 5.7 μg gluc.equ. gDW?1, respectively). When sediments were grouped according to relative silt content, the most significant relationships were found in muddy sand with a finegrained fraction (<63 μm) of 25–50%. Thresholds of erosion increased, while mass of sediment eroded decreased, with increasing chla and colloidal carbohydrate. A similar trend was observed for the sand-muddy sand (63 μm 10–25%). In the sand (63 μm 0–10%), there were no relationships for Ucrit, whereas mass eroded appeared to increase with increasing chla and colloidal carbohydrate. The increased carbohydrate may stick sand grains together, altering the nature of erosion from rolling grains to clumps of resuspension.  相似文献   

15.
We examined the spatial and temporal variability in drift macroalgal abundance in two seagrass dominated estuarine systems on the Texas coast: Redfish Bay (in the Copano-Aransas Estuary) and Lower Laguna Madre. Measurements of benthic macroalgal variability were made in conjunction with a suite of biotic (seagrass biomass, percent cover, blade width and length, shoot density, epiphyte biomass, seagrass blade C:N ratios, and drift macroalgal abundance and composition) and abiotic (inorganic nitrogen and phosphorus concentrations, chlorophylla, total suspended solids, light attenuation, salinity, temperature, total organic carbon and porewater NH4 +) indicators. All parameters were measured at 30 sites within each estuary semiannually from July 2002 to February 2004. Principal components analysis (PCA) was used to examine relationships between drift macroalgal abundance and biotic and abiotic parameters. In both Redfish Bay and Lower Laguna Madre, drift macroalgal distribution was widespread, and during three of four sampling periods, abundance was equal to abovegro und biomass ofThalassia testudinum, the dominant seagrass. Drift macro algal abundance was highly variable within sites, between sites, and between seasons in both estuaries. No significant differences in drift macroalgal abundance were found between Redfish Bay and Lower Laguna Madre. In Redfish Bay, drift macroalgae (90.1±10.2 gm−2) tended to accumulate in bare patches within seagrass beds. In Lower Laguna Madre, drift macroalgae (72.7±10.7 gm−2) tended to accumulate in areas of dense seagrass cover rather than in bare areas. We found no relationship between drift macroalgal abundance and low (<2μM) water column nutrient concentrations, and although several of our measured parameters were related to drift macroalgal abundance, none alone sufficiently explained the variability in abundance noted between the two estuarine systems. The contrasting patterns of macroalgal accumulation between Redrish Bay and Lower Laguna Madre likely reflect differences in water circulation characteristics between the two regions as dictated by local physiography, in cluding the shape and orientation of the lagoons, with seasonal variations in macroalgal abundance related to changes in freshwater inflow and nutrient loading.  相似文献   

16.
Macrotidal estuaries (mean tidal range >2m) generally exhibit a tolerance to pollution with nitrogen-containing nutrients despite high loadings originating from freshwater outflows. These systems, which are characterized by high tidal energy, generally exhibit lower levels of chlorophylla than systems with lower tidal energy. A comparative analysis of data from 40 microtidal and macrotidal estuaries shows that mean annual chlorophylla levels are significantly lower in systems with high tidal energy even when nitrogen concentrations are equal to nitrogen levels in the microtidal systems. Tidal range and associated processes (e.g., tidal mixing, current velocity, light penetration, and sediment resuspension) influence phytoplankton biomass in some estuaries.  相似文献   

17.
Marsh creation has come into increasing use as a measure to mitigate loss of valuable wetlands. However, few programs have addressed the functional ecological equivalence of man-made marshes and their natural counterparts. This study addresses structural and functional interactions in a man-made and two natural marshes. This was done by integrating substrate characteristics and marsh utilization by organisms of two trophic levels. Sediment properties, infaunal community composition, andFundulus heteroclitus marsh utilization were compared for a man-madeSpartina salt marsh (between ages 1 to 3 yr) in Dills Creek, North Carolina, and adjacent natural marshes to the east and west. East natural marsh and planted marsh sediment grain-size distributions were more similar to each other than to the west natural marsh due to shared drainage systems, but sediment organic content of the planted marsh was much lower than in either natural marsh. This difference was reflected in macrofaunal composition. Natural marsh sediments were inhabited primarily by subsurface, deposit-feeding oligochaetes whereas planted marsh sediments were dominated by the tube-building, surface-deposit feeding polychaetesStreblospio benedicti andManayunkia aestuarina. Infaunal differences were mirrored inFundulus diets. Natural marsh diets contained more detritus and insects, because oligochaetes, though abundant, were relatively inaccessible. Polychaetes and algae were major constituents of the planted marshFundulus diet. Though naturalmarsh fish may acquire a potentially less nutritive, detritus-based diet relative to the higher animal protein diet of the planted marsh fish,Fundulus abundances were markedly lower in the planted marsh than in the natural marshes, indicating fewer fish were being supported. LowerSpartina stem densities in the planted marsh may have provided inadequate protection from predation or insufficient spawning sites for the fundulids. After three years, the planted marsh remained functionally distinct from the adjacent natural marshes. Mitigation success at Dills Creek could have been improved by increasing tidal flushing, thereby enhancing, access to marine organisms and by mulching withSpartina wrack to increase sediment organic-matter content and porosity. Results from this study indicate that salt marshes should not be treated as a replaceable resource in the short term. The extreme spatial and temporal variability inherent to salt marshes make it virtually impossible to exactly replace a marsh by planting one on another site.  相似文献   

18.
Sediment microphytobenthos, such as diatoms and photosynthetic bacteria, are functionally important components of food webs and are key mediators of nutrient dynamics in marine wetlands. The medium to long-term recovery of benthic microproducers in restored habitats designed to improve degraded coastal wetland sites is largely unknown. Using taxon-specific photopigments, we describe the composition of microphytobenthic communities in a large restoration site in southern California and differences in the temporal recovery of biomass (chlorophylla), composition, and taxonomic diversity between vegetatedSpartina foliosa salt marsh and unvegetated mudflat. Visually distinct, spatially discreet, microphytobenthic patches appeared after no more than 7 mo within the restoration site and were distinguished by significant differences in biomass, taxonomic diversity, and the relative abundance of cyanobacteria versus diatoms. Sediment chlorophylla concentrations within the restored site were similar to concentrations in nearby natural habitat 0.2–2.2 yr following marsh creation, suggesting rapid colonization by microproducers. RestoredSpartina marsh very rapidly (between 0.2 and 1.2 yr) acquired microphytobenthic communities of similar composition and diversity to those in naturalSpartina habitat, but restored mudflats took at least 1.6 to 2.2 yr to resemble natural mudflats. These results suggest relatively rapid recovery of microphytobenthic communities at the level of major taxonomic groups. Sediment features, such as pore water salinity andSpartina density, explained little variation in microphytobenthic taxonomic composition. The data imply that provision of structural heterogeneity in wetland construction (such as pools and vascular plants) might speed development of microproducer communities, but no direct seeding of sediment microfloras may be necessary.  相似文献   

19.
The benthic macroinfauna of Lagunal Joyuda, a coastal lagoon in Puerto Rico, was surveyed for two years. Seven hundred fifty core samples yielded 23 macrobenthic taxa. The oligochaeteThalassodrilides gurwitschi comprised 43.4% of the number of individuals collected. Polychaetes comprised 35.4% of the individuals, includingCapitella cf.capitata, Dasybranchus lumbricoides, andSteninonereis martini in approximately equal numbers. The amphipodGrandidierella bonnieroides made up 11.5% of the community. The lagoon yielded fewer species than other tropical estuaries in the Caribbean and Atlantic, but the trophic composition, mostly deposit feeders, was similar. Seasonal patterns in the abundance of individuals were most pronounced in the central basin, with maximum number of organisms during the wet season, and a minimum in the dry season. Responses to rainfall events, however, were variable and probably related to migration patterns in predators. Macrofaunal biomass demonstrated a high degree of annual variation at all sampling stations with a marked increase in 1987. Low macrofaunal biomass, lack of temporal association with physical-chemical conditions, and inverse relationships with predator populations suggest that patterns of macrofaunal abundance in Laguna Joyuda are mediated primarily by biotic mechanisms. *** DIRECT SUPPORT *** A01BY050 00006  相似文献   

20.
Examination of small-scale spatial variation in essential to understanding the relationships between environmental factors and benthic community structure in estuaries. A sampling experiment was performed in October 1993 to measure infauna association with sediment composition and salinity gradients in Nueces Bay, Texas, USA. The bay was partitioned into four salinity zones and three sediment types. Higher densities of macrofaua, were found in sediments with greater sand content and in areas with higher salinity. High diversity was also associated with high homogeneous salinity (31–33‰) and greater sand content. Macrofauna biomass and diversity were positively correlated with bottom salinity, porewater salinity, and bottom dissolved inorganic nitrogen (DIN). Furthermore, species dominance shifted along the estuarine gradient.Streblospio benedicti dominated at lower salinity, but,Mediomatsus ambiseta andMulinia lateralis were the dominant species at higher salinity. Statistical analyses revealed significant correlations for sediment characteristics (i.e., increased fine sediments, water content, and total organic carbon) with decreased total abundance and diversity. Increased salinity and DIN were correlated with increased total biomass, diversity, and macrofauma community structure. These physico-chemical variables are regulated by freshwater inflow, so inflow is an important factor influencing macrofauna community structure by indirectly influencing the physico-chemical environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号