首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The natural aging process of Chesapeake Bay and its tributary estuaries has been accelerated by human activities around the shoreline and within the watershed, increasing sediment and nutrient loads delivered to the bay. Riverine nutrients cause algal growth in the bay leading to reductions in light penetration with consequent declines in sea grass growth, smothering of bottom-dwelling organisms, and decreases in bottom-water dissolved oxygen as algal blooms decay. Historically, bay waters were filtered by oysters, but declines in oyster populations from overfishing and disease have led to higher concentrations of fine-sediment particles and phytoplankton in the water column. Assessments of water and biological resource quality in Chesapeake Bay and tributaries, such as the Potomac River, show a continual degraded state. In this paper, we pay tribute to Owen Bricker’s comprehensive, holistic scientific perspective using an approach that examines the connection between watershed and estuary. We evaluated nitrogen inputs from Potomac River headwaters, nutrient-related conditions within the estuary, and considered the use of shellfish aquaculture as an in-the-water nutrient management measure. Data from headwaters, nontidal, and estuarine portions of the Potomac River watershed and estuary were analyzed to examine the contribution from different parts of the watershed to total nitrogen loads to the estuary. An eutrophication model was applied to these data to evaluate eutrophication status and changes since the early 1990s and for comparison to regional and national conditions. A farm-scale aquaculture model was applied and results scaled to the estuary to determine the potential for shellfish (oyster) aquaculture to mediate eutrophication impacts. Results showed that (1) the contribution to nitrogen loads from headwater streams is small (about 2 %) of total inputs to the Potomac River Estuary; (2) eutrophic conditions in the Potomac River Estuary have improved in the upper estuary since the early 1990s, but have worsened in the lower estuary. The overall system-wide eutrophication impact is high, despite a decrease in nitrogen loads from the upper basin and declining surface water nitrate nitrogen concentrations over that period; (3) eutrophic conditions in the Potomac River Estuary are representative of Chesapeake Bay region and other US estuaries; moderate to high levels of nutrient-related degradation occur in about 65 % of US estuaries, particularly river-dominated low-flow systems such as the Potomac River Estuary; and (4) shellfish (oyster) aquaculture could remove eutrophication impacts directly from the estuary through harvest but should be considered a complement—not a substitute—for land-based measures. The total nitrogen load could be removed if 40 % of the Potomac River Estuary bottom was in shellfish cultivation; a combination of aquaculture and restoration of oyster reefs may provide larger benefits.  相似文献   

2.
The Choptank River, Chesapeake Bay’s largest eastern-shore tributary, is experiencing increasing nutrient loading and eutrophication. Productivity in the Choptank is predominantly nitrogen-limited, and most nitrogen inputs occur via discharge of high-nitrate groundwater into the river system’s surface waters. However, spatial patterns in the magnitude and quality of groundwater discharge are not well understood. In this study, we surveyed the activity of 222Rn, a natural groundwater tracer, in the Choptank’s main tidal channel, the large tidal tributary Tuckahoe Creek, smaller tidal and non-tidal tributaries around the basin, and groundwater discharging into those tributaries, measuring nitrate and salinity concurrently. 222Rn activities were <100 Bq m?3 in the main tidal channel and 100–700 Bq m?3 in the upper Choptank River and Tuckahoe Creek, while the median Rn activities of fresh tributaries and discharging groundwater were 1,000 and 7,000 Bq m?3, respectively. Nitrate-N concentrations were <0.01 mg L?1 throughout most of the tidal channel, 1.5–3 mg L?1 in the upper reaches, up to 13 mg L?1 in tributary samples, and up to 19.6 mg L?1 in groundwater. Nitrate concentrations in tributary surface water were correlated with Rn activity in three of five sub-watersheds, indicating a groundwater nitrate source. 222Rn and salinity mass balances indicated that Rn-enriched groundwater discharges directly into the Choptank’s tidal waters and suggested that it consists of a mixture of fresh groundwater and brackish re-circulated estuarine water. Further sampling is necessary to constrain the Rn activity and nitrate concentration of discharging groundwater and quantify direct discharge and associated nitrogen inputs.  相似文献   

3.
Intensive research in Chesapeake Bay has indicated that reductions in nitrogen inputs to the bay will be necessary to restore water quality to levels needed for resurgence of bay living resources. Fall-line water quality monitoring efferts have characterized diffuse-source nitrogen inputs from a large percentage of the bay drainage basin, but relatively little information exists regarding rates of nitrogen delivery to tidal waters from coastal plain regions. Extensive nitrate contamination of shallow groundwater due to agricultural activities, coupled with the dominant role of subsurface flow in discharge from Coastal Plain regions of the drainage basin, creates the potential for high rates of nitrogen delivery to tidal waters via groundwater seepage. This study utilized intensive hydrologic and water chemistry monitoring from April 1992 through September 1994 to determine the spatial characteristics of the groundwater-estuarine interface, as well as the rates of subsurface nitrogen transport from an agricultural field into nearshore waters of the Wye River, a subestuary of Chesapeake Bay. The hydrogeologic characteristics of the study site resulted in groundwater discharge to the Wye River occurring almost exclusively within 15 m of the shoreline. Calculated groundwater discharge rates were found to vary widely in the short term due to tidal fluctuations but in the long term were driven by seasonal changes in groundwater recharge rates. The zone of groundwater discharge contracted shoreward during summer months of low discharge, and expanded to a maximum width of approximately 15 m during high discharge periods in late winter. Average discharge rates were more than five times higher in winter versus summer months. Groundwater nitrate concentrations entering the discharge zone were relatively stable throughout the study period, with little evidence of denitrification or nitrate uptake by riparian vegetation. Consequently, nitrogen discharge patterns reflected the strong seasonality in groundwater discharge. Annual nitrate-N discharge was approximately 1.2 kg m?1 of shoreline, indicating drainage basin rates of nitrogen delivery to tidal waters of approximately 60 kg ha?1.  相似文献   

4.
Geochemical (total nitrogen, total organic carbon, total phosphorus, total sulfur, and carbon and nitrogen stable isotopes) and selected biotic (diatom, foraminifera, polychaete) indicators preserved in two estuarine sediment cores from the mesohaline Chesapeake Bay provide a history of alterations in the food web associated with land-use change. One core from the mouth of the Chester River (CR) (collected in 2000) represents a 1,000-year record. The second core (collected in 1999), from the Chesapeake Bay’s main stem opposite the Choptank River (MD), represents a 500-year record. As European settlers converted a primarily forested landscape to agriculture, sedimentation rates increased, water clarity decreased, salinity decreased in some areas, and the estuarine food web changed into a predominantly planktonic system. Representatives of the benthic macrofaunal community (foraminifera and the polychaetes Nereis spp.) were affected by local changes before there were widespread landscape alterations. Nitrogen stable isotope records indicated that land-use changes affected nitrogen cycling beginning in the early 1700s. Extreme changes were evident in the mid-nineteenth century following widespread deforestation and since the mid-twentieth century reflecting heightened eutrophication as development increased in the Chesapeake Bay watershed. Results also demonstrate how paleoecological records vary due to the degree of terrestrial inputs of freshwater runoff and nutrients at core locations within the Chesapeake Bay.  相似文献   

5.
Nutrient inputs have degraded estuaries worldwide. We investigated the sources and effects of nutrient inputs by comparing water quality at shallow (< 2m deep) nearshore (within 200 m) locations in a total of 49 Chesapeake subestuaries and Mid-Atlantic coastal bays with differing local watershed land use. During July–October, concentrations of total nitrogen (TN), dissolved ammonium, dissolved inorganic N (DIN), and chlorophyll a were positively correlated with the percentages of cropland and developed land in the local watersheds. TN, DIN, and nitrate were positively correlated with the ratio of watershed area to subestuary area. Total phosphorus (TP) and dissolved phosphate increased with cropland but were not affected by developed land. The relationships among N, P, chlorophyll a, and land use suggest N limitation of chlorophyll a production from July–October. We compared our measurements inside the subestuaries to measurements by the Chesapeake Bay Program in adjacent estuarine waters outside the subestuaries. TP and dissolved inorganic P concentrations inside the subestuaries correlated with concentrations outside the subestuaries. However, water quality inside the subestuaries generally differed from that in adjacent estuarine waters. The concentration of nitrate was lower inside the subestuaries, while the concentrations of other forms of N, TP, and chlorophyll a were higher. This suggests that shallow nearshore waters inside the subestuaries import nitrate while exporting other forms of N as well as TP and chlorophyll a. The importance of local land use and the distinct biogeochemistry of shallow waters should be considered in managing coastal systems.  相似文献   

6.
In this paper we assemble and analyze quantitative annual input-export budgets for total nitrogen (TN) and total phosphorus (TP) for Chesapeake Bay and three of its tributary estuaries (Potomac, Patuxent, and Choptank rivers). The budgets include estimates of TN and TP sources (point, diffuse, and atmospheric), internal losses (burial in sediments, fisheries yields, and denitrification), storages in the water column and sediments, internal cycling rates (zooplankton excretion and net sediment-water flux), and net downstream exchange. Annual terrestrial and atmospheric inputs (average of 1985 and 1986 data) of TN and TP ranged from 4.3 g TN m?2 yr?1 to 29.3 g TN m?2 yr?1 and 0.32 g TP m?2 yr?1 to 2.42 g TP m?2 yr?1, respectively. These rates of TN and TP input represent 6-fold to 8-fold and 13-fold to 24-fold increases in loads to these systems since the precolonial period. A recent 11-yr record for the Susquehanna River indicates that annual loads of TN and TP have varied by about 2-fold and 4-fold, respectively. TN inputs increased and TP inputs decreased during the 11-yr period. The relative importance of nutrient sources varied among these estuaries: point sources of nutrients delivered about half the annual TN and TP load to the Patuxent and nearly 60% of TP inputs to the Choptank; diffuse sources contributed 60–70% of the TN and TP inputs to the mainstream Chesapeake and Potomac River. The direct deposition of atmospheric wet-fall to the surface waters of these estuaries represented 12% or less of annual TN and TP loads except in the Choptank River (37% of TN and 20% of TP). We found direct, although damped, relationships between annual rates of nutrient input, water-column and sediment nutrient stocks, and nutrient losses via burial in sediments and denitrification. Our budgets indicate that the annual mass balance of TN and TP is maintained by a net landward exchange of TP and, with one exception (Choptank River), a net seaward transport of TN. The budgets for all systems revealed that inorganic nutrients entering these estuaries from terrestrial and atmospheric sources are rapidly converted to particulate and organic forms. Discrepancies between our budgets and others in the literature were resolved by the inclusion of sediments derived from shoreline erosion. The greatest potential for errors in our budgets can be attributed to the absence of or uncertainties in estimates of atmospheric dry-fall, contributions of nutrients via groundwater, and the sedimentation rates used to calculate nutrient burial rates.  相似文献   

7.
External nutrient loadings, internal nutrient pools, and phytoplankton production were examined for three major subsystems of the Chesapeake Bay Estuary—the upper Mainstem, the Patuxent Estuary, and the 01 Potomac Estuary—during 1985–1989. The atomic nitrogen to phosphorus ratios (TN:TP) of total loads to the 01 Mainstem, Patuxent, and the Potomac were 51, 29 and 35, respectively. Most of these loads entered at the head of the estuaries from riverine sources and major wastewater treatment plants. Approximately 7–16% for the nitrogen load entered the head of each estuary as particulate matter in contrast to 48–69% for phosphorus. This difference is hypothesized to favor a greater loss of phosphorus than nitrogen through sedimentation and burial. This process could be important in driving estuarine nitrogen to phosphorus ratios above those of inputs. Water column TN: TP ratios in the tidal fresh, oligohaline, and mesohaline salinity zones of each estuary ranged from 56 to 82 in the Mainstem, 27 to 48 in the Patuxent, and 72 to 126 in the Potomac. A major storm event in the Potomac watershed was shown to greatly increase the particulate fraction of nitrogen and phosphorus and lower the TN:TP in the river-borne loads. The load during the month that contained this storm (November 1985) accounted for 11% of the nitrogen and 31% of the phosphorus that was delivered to the estuary by the Potomac River during the entire 60-month period examined here. Within the Mainstem estuary, salinity dilution plots revealed strong net sources of ammonium and phosphate in the oligohaline to upper mesohaline region, indicating that these areas were sites of considerable internal recycling of nutrients to surface waters. The sedimentation of particulate nutrient loads in the upper reaches of the estuary is probably a major source of these recycled nutrients. A net sink of nitrate was indicated during summer. A combination of inputs and these internal recycling processes caused dissolved inorganic N to P ratios to approach 16:1 in the mesohaline zone of the Mainstem during late summer; this ratio was much higher at other times and in the lower salinity zones. Phytoplankton biomass in the mesohaline Mainstem reached a peak in spring and was relatively constant throughout the other seasons. Productivity was highest in spring and summer, accounting for approximately 33% and 44%, respectively, of the total annual productivity in this region. In the Patuxent and Potomac, the TN:TP ratios of external loads documented here are 2–4 times higher than those observed over the previous two decades. These changes are attributed to point-source phosphorus controls and the likelihood that nitrogen-rich nonpoint source inputs, including contributions from the atmosphere, have increased. These higher N:P ratios relative to Redfield proportions (16:1) now suggest a greater overall potential for phosphorus-limitation rather than nitrogen-limitation of phytoplankton in the areas studied.  相似文献   

8.
The temporal and spatial distributions of salinity, dissolved oxygen, suspended particulate material (SPM), and dissolved nutrients were determined during 1983 in the Choptank River, an estuarine tributary of Chesapeake Bay. During winter and spring freshets, the middle estuary was strongly stratified with changes in salinity of up to 5‰ occurring over 1 m depth intervals. Periodically, the lower estuary was stratified due to the intrusion of higher salinity water from the main channel of Chesapeake Bay. During summer this intrusion caused minimum oxygen and maximum NH4 + concentrations at the mouth of the Choptank River estuary. Highest concentrations of SPM, particulate carbon (PC), particulate nitrogen (PN), total nitrogen (TN), total phosphorous (TP) and dissolved inorganic nitrogen (DIN) occurred in the upper estuary during the early spring freshet. In contrast, minimum soluble reactive phosphate (SRP) concentrations were highest in the upper estuary in summer when freshwater discharge was low. In spring, PC:PN ratios were >13, indicating a strong influence by allochthonous plant detritus on PC and PN concentrations. However, high concentrations of PC and PN in fall coincided with maximum chlorophyll a concentrations and PC:PN ratios were <8, indicating in situ productivity controlled PC and PN levels. During late spring and summer, DIN concentrations decreased from >100 to <10 μg-at l?1, resulting mainly from the nonconservative behavior of NO3 ?, which dominated the DIN pool. Atomic ratios of both the inorganic and total forms of N and P exceeded 100 in spring, but by summer, ratios decreased to <5 and <15, respectively. The seasonal and spatial changes in both absolute concentrations and ratios of N and P reflect the strong influence of allochthonous inputs on nutrient distributions in spring, followed by the effects of internal processes in summer and fall.  相似文献   

9.
We conducted a quantitative assessment of estuarine ecosystem responses to reduced phosphorus and nitrogen loading from sewage treatment facilities and to variability in freshwater flow and nonpoint nutrient inputs to the Patuxent River estuary. We analyzed a 19-year dataset of water quality conditions, nutrient loading, and climatic forcing for three estuarine regions and also computed monthly rates of net production of dissolved O2 and physical transport of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) using a salt- and water-balance model. Point-source loading of DIN and DIP to the estuary declined by 40–60% following upgrades to sewage treatment plants and correlated with parallel decreases in DIN and DIP concentrations throughout the Patuxent. Reduced point-source nutrient loading and concentration resulted in declines in phytoplankton chlorophyll-a (chl-a) and light-saturated carbon fixation, as well as in bottom-layer O2 consumption for upper regions of the estuary. Despite significant reductions in seaward N transport from the middle to lower estuary, chl-a, turbidity, and surface-layer net O2 production increased in the lower estuary, especially during summer. This degradation of water quality in the lower estuary appears to be linked to a trend of increasing net inputs of DIN into the estuary from Chesapeake Bay and to above-average river flow during the mid-1990s. In addition, increased abundance of Mnemiopsis leidyi significantly reduced copepod abundance during summer from 1990 to 2002, which favored increases in chl-a and allowed a shift in total N partitioning from DIN to particulate organic nitrogen. These analyses illustrate (1) the value of long-term monitoring data, (2) the need for regional scale nutrient management that includes integrated estuarine systems, and (3) the potential water quality impacts of altered coastal food webs.  相似文献   

10.
The Swan River estuary, Western Australia, has undergone substantial hydrological modifications since pre-European settlement. Land clearing has increased discharge from some major tributaries roughly 5-fold, while weirs and reservoirs for water supply have mitigated this increase and reduced the duration of discharge to the estuary. Nutrient loads have increased disproportionately with flow and are now approximately 20-times higher than pre-European levels. We explore the individual and collective impacts of these hydrological changes on the Swan River estuary using a coupled hydrodynamic-ecological numerical model. The simulation results indicate that despite increased hydraulic flushing and reduced residence times, increases in nutrient loads are the dominant perturbation producing increases in the incidence and peak biomass of blooms of both estuarine and freshwater phytoplankton. Changes in salinity associated with altered seasonal freshwater discharge have a limited impact on phytoplankton dynamics.  相似文献   

11.
Coastal watersheds support more than one half of the world’s human population and are experiencing unprecedented urban, agricultural, and industrial expansion. The freshwater–marine continua draining these watersheds are impacted increasingly by nutrient inputs and resultant eutrophication, including symptomatic harmful algal blooms, hypoxia, finfish and shellfish kills, and loss of higher plant and animal habitat. In addressing nutrient input reductions to stem and reverse eutrophication, phosphorus (P) has received priority traditionally in upstream freshwater regions, while controlling nitrogen (N) inputs has been the focus of management strategies in estuarine and coastal waters. However, freshwater, brackish, and full-salinity components of this continuum are connected structurally and functionally. Intensification of human activities has caused imbalances in N and P loading, altering nutrient limitation characteristics and complicating successful eutrophication control along the continuum. Several recent examples indicate the need for dual N and P input constraints as the only nutrient management option effective for long-term eutrophication control. Climatic changes increase variability in freshwater discharge with more severe storms and intense droughts and interact closely with nutrient inputs to modulate the magnitude and relative proportions of N and P loading. The effects of these interactions on phytoplankton production and composition were examined in two neighboring North Carolina lagoonal estuaries, the New River and Neuse River Estuaries, which are experiencing concurrent eutrophication and climatically driven hydrologic variability. Efforts aimed at stemming estuarine and coastal eutrophication in these and other similarly impacted estuarine systems should focus on establishing N and P input thresholds that take into account effects of hydrologic variability, so that eutrophication and harmful algal blooms can be controlled over a range of current and predicted climate change scenarios.  相似文献   

12.
The continued urbanization of coastal watersheds can influence the quality of water that enters rivers and estuaries. Intelligent management of aquatic resources will require the capability to quantitatively assess and evaluate the impacts of alterations in surface waters that result from changes in patterns of land use. An aquatic ecosystem model was developed and linked to an empirical landscape model to estimate ecological risks posed by nutrients and potentially toxic trace elements (copper [Cu], cadmium [Cd], arsenic [As]) in the Patuxent River, Maryland. The empirical landscape model translated reductions in croplands within the Patuxent River watershed into corresponding changes in nitrate estimated to enter the river. Trace element concentrations were increased in relation to urbanization associated with the loss of agricultural lands in the watershed. The aquatic ecosystem model used the altered inputs of nutrients and trace elements to estimate changes in the annual production dynamics of selected producer and consumer populations within the Patuxent River. The models were implemented for four mainstem locations that defined a transect from the upper freshwater portion of the river to downstream estuarine locations. Ecological impacts were estimated for 4 hypothetical changes in land use that consisted of 10%, 7.5%, 5%, and 2.5% watershed coverage by cropland. Impacts were estimated as the probability (risk) of different magnitudes of increases or decreases in total annual production of populations representative of freshwater and estuarine food webs in the Patuxent River.  相似文献   

13.
The decline of submersed aquatic vegetation (SAV) in tributaries of the Chesapeake Bay has been associated with increasing anthropogenic inputs, and restoration of the bay remains a major goal of the present multi-state “Bay Cleanup” effort. In order to determine SAV response to water quality, we quantified the water column parameters associated with success of transplants and natural regrowth over a three-year period along an estuarine gradient in the Choptank River, a major tributary on the eastern shore of Chesapeake Bay. The improvement in water quality due to low precipitation and low nonpoint source loadings during 1985–1988 provided a natural experiment in which SAV was able to persist upstream where it had not been for almost a decade. Mean water quality parameters were examined during the growing season (May–October) at 14 sites spanning the estuarine gradient and arrayed to show correspondence with the occurrence of SAV. Regrowth of SAV in the Choptank is associated with mean dissolved inorganic nitrogen <10 μM; mean dissolved phosphate <0.35 μM; mean suspended sediment <20 mg l?1; mean chlorophylla in the water column <15 μg l?1; and mean light attenuation coefficient (Kd) <2 m?1. These values correspond well with those derived in other parts of the Chesapeake, particularly in the lower bay, and may provide managers with values that can be used as target concentrations for nutrient reduction strategies where SAV is an issue.  相似文献   

14.

Four meadows of turtle grass (Thalassia testudinum Banks ex Konig) in Sarasota Bay, Florida were sampled on a bimonthly basis from June 1992 to July 1993 to determine spatial and temporal variation in short shoot density, biomass, productivity, and epiphyte loads. Concurrent with the seagrass sampling, quarterly water-quality monitoring was undertaken at ≥3 sites in the vicinity of each studied seagrass meadow. Three months after termination of the seagrass sampling effort, a biweekly water-quality monitoring program was instituted at two of the seagrass sampling sites. In addition, a nitrogen loading model was calibrated for the various watersheds influencing the seagrass meadows. Substantial spatial and temporal differences in turtle grass parameters but smaller spatial variation in water quality parameters are indicated by data from both the concurrent quarterly monitoring program and the biweekly monitoring program instituted after termination of the seagrass study. Turtle grass biomass and productivity were negatively correlated with watershed nitrogen loads, while water quality parameters did not clearly reflect differences in watershed nutrient inputs. We suggest that traditional water-quality monitoring programs can fail to detect the onset or continuance of nutrient-induced declines in seagrass health. Consequently, seagrass meadows should be monitored directly as a part of any effort to determine status and/or trends in the health of estuarine environments. *** DIRECT SUPPORT *** A01BY074 00029

  相似文献   

15.
We hypothesize that nutrient cycling in a Gulf of Mexico subterranean estuary (STE) is fueled by oxygen and labile organic matter supplied by tidal pumping of seawater into the coastal aquifer. We estimate nutrient production rates using the standard estuarine model and a non-steady-state box model, separate nutrient fluxes associated with fresh and saline submarine groundwater discharge (SGD), and estimate offshore fluxes from radium isotope distributions. The results indicate a large variability in nutrient concentrations over tidal and seasonal time scales. At high tide, nutrient concentrations in shallow beach groundwater were low as a result of dilution caused by seawater recirculation. During ebb tide, the concentrations increased until they reached a maximum just before the next high tide. The dominant form of nitrogen was dissolved organic nitrogen (DON) in freshwater, nitrate in brackish waters, and ammonium in saline waters. Dissolved organic carbon (DOC) production was two-fold higher in the summer than in the winter, while nitrate and DON production were one order of magnitude higher. Oxic remineralization and denitrification most likely explain these patterns. Even though fresh SGD accounted for only ∼5% of total volumetric additions, it was an important pathway of nutrients as a result of biogeochemical inputs in the mixing zone. Fresh SGD transported ∼25% of DOC and ∼50% of total dissolved nitrogen inputs into the coastal ocean, with the remainder associated with a one-dimensional vertical seawater exchange process. While SGD volumetric inputs are similar seasonally, changes in the biogeochemical conditions of this coastal plain STE led to higher summertime SGD nutrient fluxes (40% higher for DOC and 60% higher for nitrogen in the summer compared to the winter). We suggest that coastal primary production and nutrient dynamics in the STE are linked.  相似文献   

16.
Multi-year nitrogen (N) and phosphorus (P) budgets were developed for the Patuxent River estuary, a seasonally stratified and moderately eutrophic tributary of Chesapeake Bay. Major inputs (point, diffuse, septic, and direct atmospheric) were measured for 13 years during which, large reductions in P and then lesser reductions in N-loading occurred due to wastewater treatment plant improvements. Internal nutrient losses (denitrification and long-term burial of particulate N and P) were measured in tidal marshes and sub-tidal sediments throughout the estuary as were nutrient storage in the water column, sediments, and biota. Nutrient transport between the oligohaline and mesohaline zones and between the Patuxent and Chesapeake Bay was estimated using a salt and water balance model. Several major nutrient recycling terms were directly and indirectly evaluated and compared to new N and P inputs on seasonal and annual time-scales. Major findings included: (1) average terrestrial and atmospheric inputs of N and P were very close to the sum of internal losses plus export, suggesting that dominant processes are captured in these budgets; (2) both N and P export were a small fraction (13% and 28%, respectively) of inputs, about half of that expected for N based on water residence times, and almost all exported N and P were in organic forms; (3) the tidal marsh-oligohaline estuary, which by area comprised ~27% of the full estuarine system, removed about 46% and 74% of total annual upland N and P inputs, respectively; (4) recycled N and P were much larger sources of inorganic nutrients than new inputs during warm seasons and were similar in magnitude even during cold seasons; (5) there was clear evidence that major estuarine processes responded rapidly to inter-annual nutrient input variations; (6) historical nutrient input data and nutrient budget data from drought periods indicated that diffuse nutrient sources were dominant and that N loads need to be reduced by about 50% to restore water quality conditions to pre-eutrophic levels.  相似文献   

17.
Long-term interdisciplinary studies of the Rhode River estuary and its watershed in the mid-Atlantic coastal plain of North America have measured fluxes of nitrogen and phosphorus fractions through the hydrologically-linked ecosystems of this landscape. These ecosystems are upland forest, cropland, and pasture; streamside riparian forests; floodplain swamps; tidal brackish marshes and mudflats; and an estuarine embayment. Croplands discharged far more nitrogen per hectare in runoff than did forests and pastures. However, riparian deciduous hardwood forest bordering the cropland removed over 80 percent of the nitrate and total phosphorus in overland flows and about 85 percent of the nitrate in shallow groundwater drainage from cropland. Nevertheless, nutrient discharges from riparian forests downslope from croplands still exceeded discharges from pastures and other forests. The atomic ratio of nitrogen to phosphorus discharged from the watersheds into the estuary was about 9 for total nutrients and 6 for inorganic nutrient fractions. Such a low N:P ratio would promote nitrogen rather than phosphorus limitation of phytoplankton growth in the estuary. Estuarine tidal marshes trapped particulate nutrients and released dissolved nutrients. Subtidal mudflats in the upper estuary trapped particulate P, released dissolved phosphate, and consumed nitrate. This resulted in a decrease in the ratio of dissolved inorganic N:P in the estuary. However, the upper estuary was a major sink for total phosphorus due to sediment accretion in the subtidal area. Bulk precipitation accounted for 31 percent of the total nongaseous nitrogen influx to the landscape, while farming accounted for 69 percent. Forty-six percent of the total non-gaseous nitrogen influx was removed as farm products, 53 percent either accumulated in the watershed or was lost in gaseous forms, and 1 percent entered the Rhode River. Of the total phosphorus influx to the landscape, 7 percent was from bulk precipitation and 93 percent was from farming. Forty-five percent of the total phosphorus influx was removed as farm products, 48 percent accumulated in the watershed, and 7 percent entered the Rhode River. These nitrogen and phosphorus discharges into the Rhode River, although a small fraction of total loadings to the watershed, were large enough to cause seriously overenriched conditions in the upper estuary.  相似文献   

18.
The Nauset Marsh estuary is the most extensive (9.45 km2) and least disturbed salt marsh/estuarine system within the Cape Cod National Seashore, even though much of the 19 km2 watershed area of the estuary is developed for residential or commercial purposes. Because all of the Nauset watershed is serviced by on-site individual sewage disposal systems, there is concern over the potential impact of groundwater-derived nutrients passing from these systems to the shallow receiving waters of the estuary. The purpose of this study was to determine whether denitrification (the bacterial conversion of nitrate to gaseous nitrogen) in estuarine sediments could effectively remove the nitrate from contaminated groundwater before it passed from the watershed to the estuary. Rates of denitrification were measured both in situ and in sediment cores, in areas of active groundwater discharge, in relatively pristine locations, and in areas situated down-gradient of moderate to heavily developed regions of the watershed. Denitrification rates for 47 sediment cores taken over an annual cycle at 5 stations ranged from non-detectable to 47 μmol N2 m−2 h. Mean denitrification rates were positively correlated with sediment organic content, and varied seasonally due to changes in sediment organic content and to the effect of water temperatures on sediment oxygen penetration depths. There was no correlation between observed denitrification rates and corresponding nitrate concentrations in groundwater. A comparison of in situ denitrification rates (supported by groundwater nitrate) with denitrification rates observed in sediment cores (supported by remineralized nitrate) showed that groundwater-driven denitrification rates were small, and not in excess of denitrification rates supported by remineralized nitrate. Most of the denitrification in Nauset sediments was apparently fueled by remineralized nitrate through coupled nitrification/denitrification. Denitrification did not contribute significantly to the direct loss of nitrate from incoming groundwater at Nauset Marsh estuary. Groundwater flow was rapid, and much of it occurred in freshwater springs and seeps through very coarse, sandy, well-oxygenated sediments of limited organic content. There was little opportunity for denitrification to occur during groundwater passage through these sediments. These results have important management implications because they suggest that the majority of nitrogen from contaminated groundwater crosses the sediment/water interface and arrives at Nauset Estuary, where it is available to primary producers. Preliminary budget calculations suggest that while denitrification was not an effective mechanism for the direct removal of nitrate in contaminated groundwater flowing to Nauset Marsh estuary, it may contribute to significant nitrogen losses from the estuary itself.  相似文献   

19.
Trace element distributions, partitioning, and speciation were examined at 15 sites in the Patuxent River watershed from May 1995 through October 1997 to determine possible sources of trace elements to the river and estuary, to examine the relationship of the trace element discharges to freshwater discharges as well as to land use and geographic region, to validate previous estimates of loadings to the river, and to provide baseline data for trace elements in the Patuxent River watershed and estuary. Six freshwater sites were examined, representing different basins and geographic provinces, and nine sites along the estuarine salinity gradient. Subregions within the watershed varied considerably in concentrations and areal yields for some elements. Concentrations of As, Cd, Ni, Pb, and Zn were elevated in the Coastal Plain sites compared to the Piedmont sites, while Cu and Hg were more evenly distributed. Cadmium, Cu, Hg, Ni, Pb, and Zn showed overall positive correlations with river flow while As and methylHg (meHg) showed negative correlations with river flow. Concentrations of trace elements in the estuarine portion of the river were generally low, and consistent with mixing between Patuxent River water with elevated concentrations and the lower concentrations of the Chesapeake Bay. Interesting features included a local Cd maximum in the low salinity region of the estuary, probably caused by desorption from suspended sediments, and a significant input of water containing high As concentrations from the Chesapeake Bay and from As being released from bottom sediments in summer. Comparisons between the estimated annual flux of trace elements and the estimates of suspected source terms (atmospheric deposition, urban runoff, and known point sources) suggest that, except for Hg, direct atmospheric deposition is small compared to fluvial loads. Current estimates of trace element inputs from point sources or from urban runoff are inadequate for comparison with other sources, because of inappropriate techniques and/or unacceptably high detection limits. A complete examination of trace element dynamics in the Patuxent River (and in other coastal systems) will require better data for these potential sources.  相似文献   

20.
Total maximum daily loads for nitrogen (N) are currently being established for the Chesapeake Bay watershed. While we know inorganic N is bioavailable in the environment and therefore its input contributes to cultural eutrophication, the bioavailability of organic N is unclear. Using bioassay experiments, we examined the impact of effluent-derived organic nitrogen (EON) from wastewater treatment plants on natural water samples collected along an estuarine/salinity gradient within the lower Chesapeake Bay watershed. All of the inorganic N and between 31% and 96% of the EON was removed during biotic bioassays within the first 2 days. Further, there was substantial abiotic reactivity of effluent N when it was added to natural water samples. Results demonstrate that organic and inorganic N in effluent is removed to support the growth of microbial communities. These are the first results aimed at assessing the reactivity of EON in natural waters along an estuarine/salinity gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号