首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This study describes the geochemical and physico-chemical characterization of contaminant status of six wetlands of the lower uMngeni River floodplain, KwaZulu-Natal Province, South Africa. At all sites, organic matter content, calcium carbonate and metal concentrations were highest within the fine-sediment dominated surface laminae, decreasing with depth. Exceptions were displayed by arsenic (As), nickel (Ni) and vanadium (V), presumed to be derived from normal geochemical processes. Geochemical indicies indicated high contamination factors for lead (Pb) and V, pointing to moderate anthropogenic metal pollution contribution. Most conspicuous are the contamination high factors for Pb across most sites. Fe and Pb contamination is ubiquitous in all surface laminae, with contamination factors being either border-line, moderate or of high contamination. Enrichment factors for As, Mn and P at site S6 indicate possible anthropogenic sources. The data also shows a possibility of anthropogenic input of P and Zn at site S3. Apart from the enrichment factors established for Ni across all sites, all other metals indicate some degree of enrichment. A range of variable results for the mid to deeper laminae are indicative of natural processes with some human influence. Results of ANOVA confirm the above. Principal component analysis reveals a 46.4% variance from component 1 elements (Al, Ca, Cr, Cu, Fe, Mg, Mn and Zn) and a 17.8% variance from component 2 (Al, Cu and Fe). Given the rapid rate of development in this region, the protection of these floodplain wetlands must receive high conservation priority from the local municipality.  相似文献   

2.
Pine (Pinus Eldarica Medw.) needles as indicator for heavy metals pollution   总被引:1,自引:1,他引:0  
In this study, the pine tree (Pinus Eldarica Medw.) needles were evaluated as the biomonitors of heavy metal contamination in Tehran, Iran. The pine needle samples supplied from the old trees according to the main wind direction (highest wind speed) were obtained from each parts of tree and then were homogeneously mixed. The samples were taken from different locations with different degrees of metal pollution (urban, industrial, highway and control sites). Then, the concentrations of lead, zinc, copper, nickel and chromium were measured using a flame atomic absorption spectrophotometer. The result of this study showed that the highest and the lowest metal concentrations were found in the heavy traffic sites and the control site, respectively. However, samples taken from highway sites contained the high concentrations of nickel, copper and lead. Moreover, industrial areas were found to have high contents of zinc and chromium. The variation in heavy metal concentrations between the studied locations is due to changes in traffic density and anthropogenic activities. This research proved significant correlations between the heavy metal concentrations in pine needle samples. Finally, it is concluded that Pinus Eldarica Medw. needles can be applied to monitor polluted sites.  相似文献   

3.
Associations between macrobenthic communities, measures of water column and sediment exposure, and measures of anthropogenic activities throughout the watershed were examined for the Chesapeake Bay, U.S. The condition of the macrobenthic communities was indicated by a multimetric benthic index of biotic integrity (B-IBI) that compares deviation of community metrics from values at reference sites assumed to be minimally altered by anthropogenic sources of stress. Correlation analysis was used to examine associations between sites with poor benthic condition and measures of pollution exposure in the water column and sediment. Low dissolved oxygen events were spatially extensive and strongly correlated with benthic community condition, explaining 42% of the variation in the B-IBI. Sediment contamination was spatially limited to a few specific locations including Baltimore Harbor and the Southern Branch of the Elizabeth River and explained about 10% of the variation in the B-IBI. After removing the effects of low dissolved oxygen events, the residual variation in benthic community condition was weakly correlated with surrogates for eutrophication—water column concentrations of total nitrogen, total phosphorus, and chlorophylla. Associations between benthic conditions and anthropogenic inputs and activities in the watershed were also studied by correlation analysis. Benthic condition was negatively correlated with measures of urbanization (i.e., population density, point source loadings, and total nitrogen loadings) and positively correlated with watershed forestation. Significant correlations were observed with population density and nitrogen loading below the fall line, but not above it, suggesting that near-field activities have a greater effect on benthic condition than activities in the upper watershed. At the tributary level, the frequency of low dissolved oxygen events and levels of sediment contaminants were positively correlated with population density and percent of urban land use. Sediment contaminants were also positively correlated with point source nutrient loadings. Water column total nitrogen concentrations were positively correlated with nonpoint nutrient loadings and agricultural land use while total phosphorus concentrations were not correlated with land use or nutrient loadings. Chlorophylla concentrations were positively correlated with nitrogen and phosphorus concentrations in the water column and with agricultural land use but were not correlated with nutrient loads.  相似文献   

4.
《Geochimica et cosmochimica acta》1999,63(19-20):3321-3336
Dissolved and particulate trace metal (Al, Cd, Cu, Pb, and Zn) concentrations were determined over a 21 month time period at four streamwater sites in the Pinelands (New Jersey, USA), a coastal plain region characterized by low-pH waters and highly weathered soils. Al and Zn were also determined at two sites over a 5 day period following a major precipitation event. In the Batsto River (pH 4.4–6.3), a representative Pinelands stream draining a largely forested watershed moderately impacted by agriculture, discharge-weighted mean concentrations of dissolved metals were (in nM): Al = 4610; Cd = 0.39; Cu = 4.6; Pb = 1.0; and Zn = 149. Dissolved Cd, Cu, and Zn in the undeveloped Bass River (pH 4.1–4.8) are in a similar range, but Pb concentration is 2–3 times greater. Dissolved metals show highly significant positive correlations to discharge, and weaker inverse relationships to pH over both the long- and short-term time series. Overall, seasonal and short-term variability in dissolved metal concentrations is most consistent with control by hydrologic flow path changes during high discharge, when shallow groundwaters mobilize anthropogenic metals stored in near-surface soil horizons and bypass potential metal removal processes in bordering wetlands. The data also suggest that in-stream metal removal driven by summertime biological productivity may further reduce low-discharge metal concentrations, as a secondary effect. For these metals, the particulate fraction is generally minor, and variations in solution/particle partitioning are unimportant to spatial/temporal variations dissolved concentrations, except for Pb. Estimates of atmospheric input can account for riverine fluxes of these metals, and suggest that Zn retention is minimal in this system, while Pb, Cu and Cd are more strongly retained. The positive relationship between discharge and metals concentration, and the unusually high concentrations in Pinelands streams compared to other world rivers, suggest that riverine effects on metals distributions in the estuary and nearby coastal ocean will be measurable and strongly seasonal.  相似文献   

5.
Metal contamination of estuarine sediments is an increasing problem in Florida and elsewhere as urbanization extends into previously undeveloped areas. Effective estuarine management practices require scientifically valid tools to assess the extent of estuarine contamination. Interpretation of anthropogenic metal contributions has been hampered by the fact that natural metal concentrations in sediments vary by orders of magnitude in different sediments. Normalization of metal concentrations to a reference element, aluminum, appears to be a promising method for comparing estuarine sediment metal concentrations on a regional basis. In this paper we describe an interpretive method based on the relationship between sediment metals and aluminum derived from statewide data on natural estuarine sediments in Florida. We show how the method can be used to interpret metal concentrations with an example using data from the Miami River and Biscayne Bay.  相似文献   

6.
Samples were collected at 71 sites in the Yellow River Delta Natural Reserve in December 2010 to represent soil conditions before and after the Yellow River (YR) diversion. The As, Cd, Cu, Pb, Zn, and Ni concentrations were measured to determine metal contamination levels. Results suggest that Cd concentrations were significantly higher after the YR diversion than before. The As, Cd, Cr, Cu, Ni, Pb, and Zn soil contamination indices did not exceed contamination levels, although the heavy metal content increased after the YR diversion. The mean concentrations of these heavy metals were lower than the Class I criteria. Correlation analysis shows significant correlations between As and Cr, Cu, Ni, Pb, and Zn concentrations both before and after the YR diversion. However, no significant correlations were observed between heavy metal concentration and pH before the diversion, and no heavy metal concentration was correlated with salinity. The principal component analysis indicates that these trace elements, including As, were closely correlated with each other and therefore likely originated from shared pollution sources before the diversion. These results are useful for assessing the heavy metal contamination and proposing feasible suggestions to improve soil quality.  相似文献   

7.
对于人为因素或自然因素造成的农田土壤重金属元素污染,需要进行大面积的土壤环境质量调查和分类管控,然而传统的采样测试方法存在工作量大、代价高等问题。可见—近红外(Vis-NIR)反射光谱是一种快速低成本获取土壤理化信息的手段。为研究Vis-NIR反射光谱预测模型划分土壤重金属污染风险类别的能力,文章以典型人为污染地区(浙江温岭)和典型地质高背景地区(广西横县)的390份农田土壤为样本,测定8种重金属元素(As、Cd、Cr、Cu、Hg、Ni、Pb和Zn)的含量和pH值,并测定土壤Vis-NIR光谱。使用偏最小二乘(PLS)和支持向量机(SVM)算法建立回归模型,对土壤重金属含量和pH值进行预测,并基于预测值进行土壤重金属污染风险分类。结果显示,温岭土壤主要污染元素Cd和Cu的光谱模型回归预测偏差(RPD)分别为1.23和1.19,预测机制与有机质有关。横县土壤主要污染元素As和Cd的RPD分别为1.98和1.93,预测机制与铁氧化物和粘土矿物有关。地质高背景土壤重金属与铁氧化物的正相关性普遍较强,使得光谱模型对重金属含量预测准确度较高。温岭和横县土壤pH值的光谱模型RPD分别为1.76和1.68。土壤重金属污染风险光谱分类的总体 准确度分别为75.0%~100%(温岭)和80.0%~100%(横县)。将Vis-NIR光谱与遥感技术相结合,对农田土壤重金属污染风险进行快速分类总体是可行的。  相似文献   

8.
Concentrations of six heavy metals such as Fe, Pb, Zn, Cu, Ni and Cd have been examined in 20 surface sediment samples from Sfax solar saltern in order to evaluate their contamination levels; such concentrations (expressed in mg/kg of dry weight) have shown that Fe varied from 8750 to 8889.1, Pb from 18.98 to 233.46, Zn from 39.92 to 574.89, Cu from 13 to 98, Ni from 17.47 to 160.92, and Cd from 4.86 to 37.42. Importantly, the highest metal concentrations—except for Fe—have been more significant in sites frequently exposed to the industrial plumes of the local pollutant sources on the one hand and in sites often overwhelmed by high tide marine’s water draining industrial waste from the port area on the other hand. Calculated enrichment factors have shown a spatial distribution in consistency with that related to concentrations. Complementary statistical approaches based on principal component analysis and hierarchical cluster analysis have proved that Fe is natural and other analyzed metals are anthropogenic. The geoaccumulation index has shown different contamination and toxicity levels, which have been confirmed by the study of mean-effect range medium-quotient, demonstrating a high probability of toxicity ranging from 49 to 76%, especially at sites with the highest metal concentrations. It has been suggested by the potential ecological risk index that the combined ecological risk of anthropogenic metal differ from one site to another, which highly significant in the case of Cd.  相似文献   

9.
Statistical comparisons of heavy-metal concentrations in river sediments   总被引:5,自引:0,他引:5  
Statisticalt tests were used to determine lead, copper, and chromium enrichment in sediments from the Lower Branch of the Rouge River in southeast Michigan, USA. Both absolute metal concentrations and ratios of trace metal to conservative metal concentrations were used to compare sampled sites along the Lower Branch of the Rouge River to background sites in the headwaters region. Concentration ratios were used to reduce the effects of certain chemical and physical characteristics on the level of metal contained in a given sediment. Results from the comparison of sample sites to the background reveal metal enrichment at several sites, particularly along the highly urbanized, downstream section of the river. This section of the Lower Branch of the Rouge River exhibits significant lead and copper contamination, as well as measurable chromium enrichment when using either concentrations alone or ratios as methods of comparison. The areas of metal enrichment appear to coincide closely with areas of known anthropogenic activities. Of particular interest, however, is the enrichment of lead and copper at two upstream sites where the statistical tests suggest an anthropogenic source for the enrichment, but where no previously known cultural activities existed. These data prompted a historical search of records, which discovered several abandoned landfills immediately upstream of the metal enrichment sites.  相似文献   

10.
Heavy metal contamination is of great concern in rapidly urbanizing areas. A basin-basis study on the impacts of urbanization on the heavy metal contamination in surface sediments from the Qinhuai River, Eastern China, was conducted, focusing on the spatial variation and source appointments. All of the sampling sites can be divided into three groups based on the hierarchical cluster analysis (HCA) results, which correspond well to the pollution levels of the studied heavy metals in the sediments of the rural, suburban, and urban sections of the Qinhuai River. The relationship between the heavy metal and the Al/Si ratio of sediments varied distinctly with the metal species and urbanization degree of the river sections. Correlation analysis and HCA highlighted that zinc appeared to be a fairly efficient geochemical signature of urban-related heavy metal contamination. The contributions derived from urban activities ranged from 35.9% for Ni to 96.1% for Cu, as estimated by a multilinear regression of the absolute principal component score method (MLR-ACPS). Agricultural activities had a clear impact on As, Pb, and Cu contamination of the sediment. Lithologic sources contributed a significant portion of Ni, Cr, and As to the sediment.  相似文献   

11.
The present study investigates the anthropogenic metal input into the lake system, the toxic metal pollution in the sediments of Kodaikanal Lake. Surface sediment samples were collected at seven locations to represent its spatial variability within the lake. Samples were subjected to analyze for Fe, Co, Cr, Mn, Ni, Zn, Cd, Cu, Ag, Pb, Hg, and As by energy dispersive X-ray fluorescence (EDXRF) and their concentrations in lake sediments range from 102,000–109,000, 561–2699, 292–544, 211–482, 79–163, 57–265, 57–74, 37–92, 46–59, 20–97, 19–30, to 13–24 mg/kg, respectively. The sources of pollution were inferred through spatial and statistical analyses. Most of the toxic metal contents in the sediments are found to exceed the background concentration in all locations. The enrichment factor (EF) and index of geoaccumulation (I geo) of Hg, Co, Cd, and Ag showed that sediments of Kodaikanal Lake exhibit the probability of anthropogenic influence. The significant Pearson’s correlation coefficient is also suggesting that they probably originated from the same source of occurrence. The contamination factor and degree of contamination of the Kodaikanal Lake sediments are strongly polluted in terms of most of the examined metals. The study also provides environmentally significant information about anthropogenic influence on the lake sediments.  相似文献   

12.
Mineral soil horizons (Ae, Bhf1, Bhf2, Bf, BC and C) were carefully collected from two podzolic soil profiles in the Lake Clair watershed (Québec) in order to assess anthropogenic trace metal accumulation. Petrographic and selective analyses were performed to establish the soil mineralogy and properties. Furthermore, a complete sequential extraction procedure has been applied to help understanding the complex chemical speciation of Pb in forest soils. Chemical speciation of Pb showed a strong vertical gradient: 85% of this metal is mainly partitioned in refractory minerals in the C-horizon whereas in the upper Bhf1 and Ae-horizons, less than 50% of Pb is associated with this fraction. In the Ae-horizon, for example, 35%, 30% and 12% of total Pb, respectively, is associated with the exchangeable, labile organic matter and amorphous Fe-Mn oxides fractions. The distribution of Pb and Cr in the studied forest soils mainly reflects progressive contamination of the watershed by anthropogenic atmospheric sources. The anthropogenic source is indicated by elevated Cr and Pb concentrations in the topsoil (Bhf and Ae) horizons and by strong negative correlation between 206Pb/207Pb ratios and total Pb concentrations. According to these isotopic values, penetration of anthropogenic Pb does not exceed 10 cm in both soil profiles. Below this depth, both Pb concentrations and isotopic ratios remain nearly constant and similar to values observed in pre-anthropogenic sediments from Lake Clair. These values are interpreted as the natural geochemical backgrounds of the watershed. Based on that behaviour, calculated anthropogenic Pb net inputs amounted to between 1.24 and 1.8 g/m2.  相似文献   

13.
The natural variation in heavy metal contents of subsurface sediments in the southern Netherlands is described, based on a series of 820 bulk geochemical analyses. The detrital heavy metal contents of these sediments show linear correlations with Al as a result of their joint occurrence in phyllosilicates. Anomalous enrichments occur as a result of the presence of glauconite (As, Cr, Ni, Pb, Zn), pyrite (As) or Fe-oxides (As, Ba, Ni, Zn), due to the interaction of organic-rich subsurface material with groundwater (Co, Ni, Zn) or as a result of anthropogenic pollution in topsoils (Cu, Pb, Zn). The contents of Al, Fe, K and S are well suited to determine background values, and to identify the cause for anomalous accumulations of heavy metals.  相似文献   

14.
The sediments of the raw sewage-fed fishpond system at East Kolkata Wetland (EKW) were analyzed for heavy metal content in a comprehensive way. Various indices of contamination like enrichment factor (EF), geo-chemical index (I geo), modified degree of contamination (mDC), and pollution load index (PLI) were assessed. In all cases, instead of literature values, the metal concentrations of less contaminated sites, separated by the statistical approach of the hierarchical cluster analysis, were used as baseline values. In the present study, about 70% of the pond sediments are found uncontaminated, 5% display low degree of contamination and 25% are designated as moderate degree of contamination. Both the EF and I geo indices highlighted that the metals lead (Pb), cadmium (Cd), and chromium (Cr) are responsible for the contamination while there is little anthropogenic input in cases of Cu, Zn, and Ni. Most of the ponds situated near the main sewage flowing canals as well as the main traffic highway and close to the solid waste dumping areas recorded higher degree of metal contamination as evident from spatial variation of mDC and PLI indices in the study area. Indices comparison study clearly indicates that although these are calculated using different methods, these may or may not produce the same indices values and hence the values should neither be compared nor be averaged. But all the above indices are directly related to a common term contamination factor (CF). Classification of contamination levels based on these CF values is found to be similar and this classification is only valid up to the level of high degree of contamination. Thus, the use of any one of these indices is sufficient to classify the degree of contamination of an area. However, to evaluate the contamination per metal, both I geo and EF are effective while, to assess the composite effect of all the metals, PLI is preferable to mDC.  相似文献   

15.
Concentrations of several heavy metals (Pb, Cr, Cd, Cu, Zn and Fe) in surface sediment were determined to investigate the distributions and the metallic pollution status in Sfax–Chebba coastal area (southeast of Tunisia). Sediment samples were collected from 20 locations, representing three different site groups (i.e., site I: urban zone, site II: pre-urban zone and site III: rural zone). Heavy metal contents were analyzed by Atomic Absorption Spectrometry. The obtained results showed that generally, heavy metal concentrations in the coastal sediments near Sfax city (urban zone) were higher than those at other stations because of the anthropogenic activities. These concentrations exceeded the threshold effect levels. This was confirmed by the chemometric approaches (enrichment factors, geoaccumulation index and principal component analysis) which showed a significant impact of multiple anthropogenic sources. Moderate to extremely severe enrichment of sediments in terms of Pb, Cr, Cd, Cu and Zn were shown to exist in site I. Severe enrichment by Cd was also observed in other sites. Based on the geoaccumulation index, Pb, Cr, Cd, Cu and Zn can be considered as unpollutants to extreme pollutants.  相似文献   

16.
The objective of this study is to evaluate the nitrate contamination in the plioquaternary aquifer of Sais Basin based on a statistical approach. A total of 98 samples were collected in the cultivated area during the spring and autumn period of 2018. The results show that 55% and 57% of the samples in spring and autumn respectively exceed the threshold fixed by WHO(50 mg/L). However, nitrate concentrations do not show seasonal and spatial variation(p0.05). The results of the correlation matrix, principal component analysis(PCA), and hierarchical cluster analysis(HCA) suggest that nitrate pollution is related to anthropogenic source. Moreover, multiple linear regression results show that NO_3 is more positively explained in the spring period by Ca and SO_4 and negatively explained by pH and HCO_3. Regarding the autumn period, nitrate pollution is positively explained by Ca and negatively by pH. This study proposes a useful statistical platform for assessing nitrate pollution in groundwater.  相似文献   

17.
The study was taken up to establish the distributions of metals as well as to assess the extent of anthropogenic inputs into the Subarnarekha River. Bed sediments were collected; analyzed for metals; and assessed with the index of geo-accumulation (I geo), enrichment factor (EF) value, concentration factor (CF) and pollution load index (PLI). Metals in the sediment were variable in the river and there are major pollution problems at certain locations. The average concentrations of Fe, Cu, Cr, Pb, Mn, Ni, Zn, Co and Ba in mg/kg was found to be 30,802 ± 11,563, 69 ± 57, 111 ± 74, 75 ± 61, 842 ± 335, 42 ± 22, 100 ± 39, 15 ± 4 and 698 ± 435, respectively. The I geo, EF, CF and PLI indices showed that the contamination of Pb and Cu was more serious than that of Ni, Zn, Co and Ba, whereas the presence of Fe, Mn and Cr might be primarily from natural sources. The contamination of the sediments with metals at few locations is attributed to mining, industries and other anthropogenic causes. Principal component analysis was employed to better comprehend the controlling factors of sediment quality. The statistical analysis of inter-metallic relationship revealed the high degree of correlation among the metals indicated their identical behaviour during transport. PCA outcome of three factors together explained 83.8 % of the variance with >1 initial eigenvalue indicated both innate and anthropogenic activities are contributing factors as source of metal profusion in Subarnarekha River basin.The overall study reveals moderately serious pollution in the river basin principally in some locations under the anthropogenic influences.  相似文献   

18.
An increase in heavy metal pollution in the soils of Hassi Messaoud (Algeria) due to intense industrialization and urbanization has become a serious environmental problem. There are three large industrial complexes that have been established in the region of Hassi Messaoud for petroleum extraction field and refinery. The region hosts several industrial facilities which are the main sources for hazardous wastes. Surface soil samples from 58 sampling sites (systematically sampled; 1 × 1 km regular grid), including different functional areas in Hassi Messaoud, were collected and analyzed. The results showed that the average concentrations of Cu, Ni, Mn, Pb and Zn in soil of Hassi Messaoud were up to 13.17, 35.78, 121.21, 130.97 and 61.08 mg/kg, respectively. Ni concentrations were comparable to background values, while Cu, Mn, Pb and Zn concentrations were higher than their corresponding background values. Among the functional areas, the industrial regions displayed the highest metal concentrations, while the lowest concentrations occurred in rural soil. Principal component analysis coupled with cluster analysis showed that: (1) Pb and Zn had anthropogenic sources; and (2) Ni, Cu and Mn were associated with parent materials. Contaminations in soils were classified as geoaccumulation index and enrichment factor. Pollution index values of Cu, Ni, Mn, Pb and Zn varied in the range of 0.04–5.41, 0.46–2.49, 0.01–5.73, 0.62–152.9 and 0.09–53.01, with mean values of 1.32, 1.08, 1.26, 5.64 and 3.1, respectively. The integrated pollution index (IPI) of all the analyzed samples varied from 0.42 to 31.59, with a mean of 2.48, and more than 5.45 % of samples are extremely contaminated; 18.18 % are heavily contaminated; 60 % are moderately contaminated; and others are low contaminated. The spatial distribution of IPI showed that desert and rural areas displayed relatively lower heavy metal contamination in comparison with other areas.  相似文献   

19.
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O3T suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C–S–Fe relationship owing to authigenic precipitation of Fe–Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.  相似文献   

20.
《Applied Geochemistry》2000,15(4):513-530
Soil samples taken from excavated pits on traverses across New Zealand’s Scott Base, Antarctica, were leached with water and 0.01 M HNO3 and the leachates analysed for Ag, Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. The soils had high conductivity and pH values generally increasing with depth and in the range 8.3–10.1. The water leachate generally contained most of the extractable metals except Mn and Cd, and As. Linear relationships were observed between some metals leached into alkaline solution and the Fe in those solutions. The ratios to Fe were comparable to those of the host basanite, and this observation is interpreted as showing that these metals are incorporated in fine mineral particulates derived directly from the rock mass. Outliers in leachable metal concentrations in the soils indicated appreciable contamination of the soil from anthropogenic sources with Ag, Cd, Cu, Pb and Zn as well as As. In some locations high concentrations of Ag and Cd correspond to specific sources and drainage channels. High concentrations of Pb were widely spread and in the top soil layers whereas the elevated concentrations of Zn were distributed throughout the soil profiles indicating atmospheric sources and different mobilities within the soils. Transport within the soils is evident for some metals, as is lateral movement over and through the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号