首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism parameters can be inferred from high frequency water quality data collections using autonomous logging instruments. For this study, we analyzed such time series datasets from three Gulf of Mexico estuaries: Grand Bay, MS; Weeks Bay, AL; and Apalachicola Bay, FL. Data were acquired from NOAA's National Estuarine Research Reserve System Wide Monitoring Program and used to calculate gross primary production (GPP), ecosystem respiration (ER), and net ecosystem metabolism (NEM) using Odum's open water method. The three systems represent a diversity of estuaries typical of the Gulf of Mexico region, varying by as much as two orders of magnitude in key physical characteristics, such as estuarine area, watershed area, freshwater flow, and nutrient loading. In all three systems, GPP and ER displayed strong seasonality, peaking in summer and being lowest during winter. Peak rates of GPP and ER exceeded 200 mmol O2?m?2 day?1 in all three estuaries. To our knowledge, this is the first study examining long-term trends in rates of GPP, ER, and NEM in estuaries. Variability in metabolism tended to be small among sites within each estuary. Nitrogen loading was highest in Weeks Bay, almost two times greater than that in Apalachicola Bay and 35 times greater than to Grand Bay. These differences in nitrogen loading were reflected in average annual GPP rates, which ranged from 825 g C m?2 year?1 in Weeks Bay to 401 g C m?2 year?1 for Apalachicola Bay and 377 g C m?2 year?1 in Grand Bay. Despite the strong inter-annual patterns in freshwater flow and salinity, variability in metabolic rates was low, perhaps reflecting shifts in the relative importance of benthic and phytoplankton productivity, during different flow regimes. The advantage of the open water method is that it uses readily available and cost-effective sonde monitoring technology to estimate these fundamental estuarine processes, thus providing a potential means for examining long-term trends in net carbon balance. It also provides a historical benchmark for comparison to ongoing and future monitoring focused on documenting the effect of human activities on the coastal zone.  相似文献   

2.
We collated information on the sources and sinks of organic carbon in Manukau Harbour, a shallow temperate estuary. Two contrasting inner harbor regions were considered; the northern region, which is urbanized and receives a major load of sewage wastewater, and the southern region, where allochthonous inputs are dominated by the runoff from small rural streams. Although high levels of dissolved nitrogen in the wastewater supported phytoplankton blooms in the northern region, total primary production there was similar to that in the southern region (ca. 300 g C m?2yr?1). By contrast, high concentrations of organic carbon in the wastewater resulted in an additional input to the northern region of 120 g C m?2 yr?1. Loads from runoff and streams to both regions were low. At 350 g C m?2 yr?1, total respiration in the northern region exceeded total production, so the region was slightly heterotrophic. Respiration was lower in the southern region (270 g C m?2 yr?1), which was net autotrophic. Some carbon was exported from each region to the outer harbour (50–80 g C m?2 yr?1). Dissolved oxygen levels in the northern region were somewhat depleted at times; and the high numbers of microzooplankton indicated consumption was enhanced there. Apart from a relatively small area of organic enrichment close to the wastewater discharge, benthic consumers in the harbor appeared to be limited by physical disturbance (by wind-waves) rather than by food availability. Improved wastewater treatment is expected to substantially reduce the allochthonous input to the northern region, with the total input of carbon in the future being only slightly higher than that to the southern region.  相似文献   

3.
Hypoxia is emerging as a major threat to marine coastal biota. Predicting its occurrence and elucidating the driving factors are essential to set successful management targets to avoid its occurrence. This study aims to elucidate the effects of warming on the likelihood of hypoxia. High-frequency dissolved oxygen measurements have been used to estimate gross primary production (GPP), net ecosystem production (NEP) and community respiration (CR) in a shallow macroalgae (Caulerpa prolifera) ecosystem in a highly human-influenced closed Mediterranean bay. Daily averaged GPP and CR ranged from 0 to 1,240.9 and 51.4 to 1,297.3?mmol?O2?m?2?day?1, respectively. The higher GPP and CR were calculated for the same day, when daily averaged water temperature was 28.3?°C, and resulted in a negative NEP of ?56.4?mmol?O2?m?2?day?1. The ecosystem was net heterotrophic during the studied period, probably subsidized by allochthonous organic inputs from ground waters and from the surrounding town and boating activity. Oxygen dynamics and metabolic rates strongly depend on water temperature, with lower oxygen content at higher temperatures. The probability of hypoxic conditions increased at a rate of 0.39?% °C?1 (±0.14?% °C?1). Global warming will increase the likelihood of hypoxia in the bay studied, as well as in other semi-enclosed bays.  相似文献   

4.
Tidal freshwater marshes exist in a dynamic environment where plant productivity, subsurface biogeochemical processes, and soil elevation respond to hydrological fluctuations over tidal to multi-decadal time scales. The objective of this study was to determine ecosystem responses to elevated salinity and increased water inputs, which are likely as sea level rise accelerates and saltwater intrudes into freshwater habitats. Since June 2008, in situ manipulations in a Zizaniopsis miliacea (giant cutgrass)-dominated tidal freshwater marsh in South Carolina have raised porewater salinities from freshwater to oligohaline levels and/or subtly increased the amount of water flowing through the system. Ecosystem-level fluxes of CO2 and CH4 have been measured to quantify rates of production and respiration. During the first 20 months of the experiment, the major impact of elevated salinity was a depression of plant productivity, whereas increasing freshwater inputs had a greater effect on rates of ecosystem CO2 emissions, primarily due to changes in soil processes. Net ecosystem production, the balance between gross ecosystem production and ecosystem respiration, decreased by 55% due to elevated salinity, increased by 75% when freshwater inputs were increased, and did not change when salinity and hydrology were both manipulated. These changes in net ecosystem production may impact the ability of marshes to keep up with rising sea levels since the accumulation of organic matter is critical in allowing tidal freshwater marshes to build soil volume. Thus, it is necessary to have regional-scale predictions of saltwater intrusion and water level changes relative to the marsh surface in order to accurately forecast the long-term sustainability of tidal freshwater marshes to future environmental change.  相似文献   

5.
One of the most critical problems facing many deltaic wetlands is a high rate of relative sea-level rise due to a combination of eustatic sea-level rise and local subsidence. Within the Rhône delta, the main source of mineral input to soil formation is from the river, due to the low tidal range and the presence of a continuous sea wall. We carried out field and modeling studies to assess the present environmental status and future conditions of the more stressed sites, i.e.,Salicornia-type marshes with a shallow, hypersaline groundwater. The impacts of management practices are considered by comparing impounded areas with riverine areas connected to the Rhône River. Analysis of vegetation transects showed differences between mean soil elevation ofArthrocnemum fruticosum (+31.2 cm),Arthrocnemum glaucum (+26.5 cm), bare soil (+16.2 cm), and permanently flooded soil (?12.4 cm). Aboveground and belowground production showed that root:shoot ratio forA. fruticosum andA. glaucum was 2.9 and 1.1, respectively, indicating more stressful environmental conditions forA. glaucum with a higher soil salinity and lack of soil drainage. The annual leaf litter production rate of the two species is 30 times higher than annual stem litter production, but with a higher long-term decomposition rate associated with leaves. We developed a wetland elevation model designed to predict the effect of increasing rates of sea-level rise on wetland elevation andSalicornia production. The model takes into account feedback mechanisms between soil elevation and river mineral input, and primary production. In marshes still connected to the river, mineral input decreased quickly when elevation was over 21 cm. Under current sea-level rise conditions, the annual amount of riverine mineral input needed to maintain the elevation of the study marshes is between 3,000 and 5,000 g m?2 yr?1. Simulations showed that under the Intergovernmental Panel on Climate Change best estimate sea-level rise scenario, a mineral input of 6,040 g m?2 yr?1 is needed to maintain marsh elevation. The medium term response capacity of the Rhône deltaic plain with rising sea level depends mainly on the possibility of supplying sediment from the river to the delta, even though the Rhône Delta front is wave dominated. Within coastal impounded marshes, isolated from the river, the sediment supply is very low (10 to 50 g m?2 yr?1), and an increase of sea-level rise would increase the flooding duration and dramatically reduce vegetation biomass. New wetland management options involving river input are discussed for a long-term sustainability of low coastal Mediterranean wetlands.  相似文献   

6.
A nutrient mass balance for the tidal freshwater segment of the James River was used to assess sources of nutrients supporting phytoplankton production and the importance of the tidal freshwater zone in mitigating nutrient transport to marine waters. Monthly mass balances for 2007–2010 were based on riverine inputs, local point sources (including sewer overflow events), ungauged inputs, riverine outputs, and tidal exchange. The tidal freshwater James River received exceptionally high areal loads (446 mg TN m?2 day?1 and 55 mg TP m?2 day?1) compared to other estuaries in the region and elsewhere. P inputs were principally from riverine sources (84 %) whereas point sources contributed appreciably (54 %) to high N loads. Despite high loading rates and short water residence time, areal mass retention was high (143 mg TN m?2 day?1 and 33 mg TP m?2 day?1). Retention of particulate fractions occurred during high discharge, whereas dissolved inorganic fractions were retained during low discharge when chlorophyll-a concentrations were high. On an annualized basis, P was retained more effectively (59 %) than N (32 %). P was retained by abiotic mechanisms via trapping of particulate forms, whereas N was retained through biological assimilation of dissolved inorganic forms. Results from a limited suite of stable isotope determinations suggest that DIN from point sources was preferentially retained. Combined inputs from diffuse and point sources accounted for only 20 % and 36 % (respectively) of estimated algal N and P demand, indicating that internal nutrient recycling was important to sustaining high rates of phytoplankton production in the tidal freshwater zone.  相似文献   

7.
Accretion rates were measured in fringe and basin mangrove forests in river and tidally dominated sites in Terminos Lagoon, Mexico, and a basin mangrove forest in Rookery Bay, Florida, USA. Accretion rates were determined using the radionuclides210Pb and137Cs. Consolidation-corrected accretion rates for the Rookery Bay cores, ranged from 1.4 to 1.7 mm yr?1, with an average rate of 1.6 mm yr?1. Rates at the Mexico sites ranged from 1.0 to 4.4 mm yr?1, with an average of 2.4 mm yr?1. Determination of rates in these mangrove forests was greatly affected by the consolidation corrections which decreased the apparent accretion rate by over 50% in one case. Accretion rates at basin sites compare favorably with a reported 1.4 to 1.6 mm yr?1 rate of sea-level rise, indicating little or no subsidence at inland locations. Accretion rates in fringe sites are generally greater than basin sites, indicating greater subsidence rates in these sediments over longer time intervals.  相似文献   

8.
Zebra mussels (Dreissena polymorpha) graze on phytoplankton, and decreased phytoplankton concentrations have been associated with zebra mussels in lakes. It is not known, however, how the zebra mussel will affect phytoplankton in turbid systems such as rivers and the freshwater portions of estuaries. To determine whether zebra mussels can effectively remove phytoplankton in these turbid systems, and to determine what components of the suspended material are removed and at what rates, we conducted a series of grazing and size-selection experiments using ambient Hudson River water and its natural phytoplankton community. Zebra mussels removed both phytoplankton and total suspended weight (TSW) at comparable rates (~115 ml mussel?1 h?1). Variation in filtration rates were not correlated with TSW or chlorophylla (chla) concentration, and did not appear to depend on relative proportions of either component. Mussels removed particles with approximately equal efficiency in all particle size classes measured (0.4 μm to >40 μm). Zebra mussels appear to remove Hudson River phytoplankton effectively in the presence of suspended sediment and do so at rapid rates. Based on our measurements and unpublished estimates of the size of the population, zebra mussels filter a volume equivalent to the entire volume of the tidal freshwater portion of the Hudson River about every 2 d.  相似文献   

9.
The overall objective of this study is to define and interpret the annual dissolved inorganic carbon (DIC) flux in selected river catchments in North Eastern Iceland. The flux stems primarily from chemical weathering of basalt. The DIC flux out of the catchments is compared with the spatial distribution of the various vegetation communities and their gross primary production (GPP), net primary production (NPP) and net ecosystem exchange (NEE). There is no correlation between the DIC flux and the GPP, but one between DIC and NPP. The DIC flux is highly dependent on the NEE, which in turn is governed by the area extent of wetlands in these catchments. A variation by a factor 5 of the NEE results in a variation by a factor 2.8 in the river dissolved inorganic flux.  相似文献   

10.
Persistent inorganic constitutents preserved in sediments of aquatic ecosystems record temporal variability of biogeochemical functioning and anthropogenic impacts.210Pb and137Cs dating techniques were used to study the past variations of heavy metals (Pb, Cu, and Zn) and accumulation rates of sediments for Tivoli South Bay, in the Hudson River National Estuarine Research Reserve ecosystem. South Bay, a tidal freshwater embayment of the Hudson, may play an important role in the sediment dynamics of this important river. The measured sedimentation rate range of 0.59 to 2.92 cm yr−1 suggests that rapid accumulation occurred during the time period represented by the length of the cores (approximately the past 50 yr). Direct measurements of sediment exchange with the Hudson River reveal high variability in the sediment flux from one tidal cycle to the next. Net exchange does not seem to be adequate to explain sediment accumulation rates in the bay as measured by210Pb and137Cs. The difference may be supplied from upland streams or the Hudson River during storm events. Concentrations of the metals Pb, Cu and Zn were found to be well correlated with each other within individual cores at five of six sites tested. This suggests a common proximate source for the three metals at a specific site. The evidence is consistent with mixing in some environmental compartment before delivery to the bay. While metals self-correlate within individual cores, absolute concentrations, depth distribution patterns, and ratios of the metals to each other vary among the cores collected at different locations within the bay. Organic matter, Fe content, and particle size distribution of sediments do not account for the intercore variations in metal concentration. It is likely that cores collected from different sites may have derived metals from different sources, such as watershed streams and tidal exchange with the Hudson River.  相似文献   

11.
Daily and annual integrated rates of primary productivity and community respiration were calculated using physiological parameters measured in oxygen-based photosynthesis-irradiance (P-I) incubations at 8 stations throughout central and western Long Island Sound (cwLIS) during the summer and autumn of 2002 and 2003 and the late spring of 2003. Each calculation takes into account actual variations in incident irradiance over the day and underwater irradiance and standing stock with depth. Annual peak rates, ±95% confidence interval of propagated uncertainty in each measurement, of gross primary production (GPP, 1,730±610 mmol O2 m−2 d−1), community respiration (Rc, 1,660±270 mmol O2 m−2 d−1), and net community production (NCP, 1,160±1,100 mmol O2 m−2 d−1) occurred during summer at the western end of the Sound. Lowest rates of GPP (4±11 mmol O2 m−2 d−1), Rc (−50±300 mmol O2 m−2 d−1), and NCP (−1,250±270 mmol O2 m−2 d−1) occurred during late autumn-early winter at the outer sampled stations. These large ranges in rates of GPP, Rc, and NCP throughout the photic zone of cwLIS are attributed to seasonal and spatial variability. Algal respiration (Ra) was estimated to consume an average of 5% to 52% of GPP, using a literature-based ratio of Ra:Rc. From this range, we established that the estimated Ra accounts for approximately half of GPP, and was used to estimate daily net primary production (NPP), which ranged from 2 to 870 mmol O2 m−2 d−1 throughout cwLIS during the study. Annual NPP averaged 40±8 mol O2 m−2 yr−1 for all sampled stations, which more than doubled along the main axis of the Sound, from 32±14 mol O2 m−2 yr−1 at an eastern station to 82±25 mol O2 m−2 yr−1 at the western-most station. These spatial gradients in productivity parallel nitrogen loads along the main axis of the Sound. Daily integrals of productivity were used to test and formulate a simple, robust biomass-light model for the prediction of phytoplankton production in Long Island Sound, and the slope of the relationship was consistent with reports for other systems.  相似文献   

12.
The sources of carbon, which fuel water column respiration, remain unresolved for most estuaries; our objective was to examine carbon dynamics in a shallow subtropical estuary. We sampled the Sabine-Neches estuary, Texas, during low (November 1999) and high (May 2000) freshwater inflow and measured stable carbon isotope ratios of the dissolved inorganic and orgnaic carbon (δ13C-DIC, δ13C-DOC), as well as quantifying accessory parameters (salinity, nutrients, total suspended solids, and photosynthetic pigments). Pigment analysis indicated that diatoms were the predominant phytoplankton. Data from the May 2000 sampling event exhibited conservative mixing, indicating that the system was acting as a conduit between the watershed and the Gulf of Mexico. During November, mixing was generally nonconservative indicating extensive recycling of allochthonous and autochthonous carbon sources. Our data imply that both carbon sources had similar isotope, ratios that made it impossible to unambiguously determine the dominant source supporting respiration. The nonconservative DIC concentration data indicating an autotrophic sink as well as the strong relationship between δ13C-DOC and chlorophylla, suggest that in situ production was an important component of the DOC pool. We hypothesize that uncharacteristically calm wind conditions during sampling may have promoted phytoplankton settling, removing autotrophs, from the water column, but leaving behind a dissolved biogeochemical signature. Interpretation of carbon dynamics may be confounded by spatial and temporal decoupling of producers and consumers from biogeochemical indicators.  相似文献   

13.
The goal of this study was to determine the food web pathways supporting juvenile Chinook (Oncorhynchus tshawytscha) salmon in the Columbia River estuary through multiple stable isotope analysis (δ13C, δ15N, δ34S). Using this method, we distinguished the role of various organic matter sources in Chinook food webs and interpreted the dynamics of their use both spatially and temporally within the estuary. Our results indicate that subyearling Chinook are associated with fluvial, anthropogenic, estuarine, and marine organic matter sources, with hatchery food and vascular plant detritus being the most dominant sources in juvenile Chinook food webs. Although freshwater phytoplankton is involved in many food web pathways to subyearling Chinook, increased phytoplankton production from the impounded river has not replaced the loss of autochthonous marsh production to fish. Our results indicate that large-scale ecosystem alteration may have decreased the availability and quality of food webs in the estuary and potentially diminished the ability of the Columbia to support Chinook salmon.  相似文献   

14.
Estuaries located in the northern Gulf of Mexico are expected to experience reduced river discharge due to increasing demand for freshwater and predicted periods of declining precipitation. Changes in freshwater and nutrient input might impact estuarine higher trophic level productivity through changes in phytoplankton quantity and quality. Phytoplankton biomass and composition were examined in Apalachicola Bay, Florida during two summers of contrasting river discharge. The <20 μm autotrophs were the main component (92?±?3 %; n?=?14) of phytoplankton biomass in lower (<25 psu) salinity waters. In these lower salinity waters containing higher dissolved inorganic nutrients, phycocyanin containing cyanobacteria made the greatest contribution to phytoplankton biomass (69?±?3 %; n?=?14) followed by <20 μm eukaryotes (19?±?1 %; n?=?14), and phycoerythrin containing cyanobacteria (4?±?1 %; n?=?14). In waters with salinity from 25 to 35 psu that were located within or in close proximity to the estuary, >20 μm diatoms were an increasingly (20 to 70 %) larger component of phytoplankton biomass. Lower summer river discharges that lead to an areal contraction of lower (5–25 psu) salinity waters composed of higher phytoplankton biomass dominated by small (<20 μm) autotrophs will lead to a concomitant areal expansion of higher (>25 psu) salinity waters composed of relatively lower phytoplankton biomass and a higher percent contribution by >20 μm diatoms. A reduction in summer river discharge that leads to such a change in quantity and quality of estuarine phytoplankton available will result in a reduction in estuarine zooplankton productivity and possibly the productivity of higher trophic levels.  相似文献   

15.
This paper documents the role of salt marsh algal mats in the productivity of a southern California tidal wetland. The productivity of the mats, which are composed of filamentous bluegreen and green algae and diatoms, varies both temporally and spatially in relation to tidal inundation and overstory vegetation. The estimates of net primary productivity (NPP) were highest under the canopy ofJaumea carnosa (Less.) Gray (341 g C m?2 yr?1) at low elevation. Elsewhere, NPP appeared to be limited by low light (276 g C m?2 yr?1 underSpartina foliosa Trin.) and desiccation (185 g C m?2 yr?1 underBatis martima L. and 253 g C m?2 yr?1 underMonanthochloe littoralis Engelm). Algal NPP was from 0.8 to 1.4 times that of the vascular plant overstory NPP. It is hypothesized that the arid environment of southern California and resulting hypersaline soils reduce vascular plant cover, which leads to high algal productivity.  相似文献   

16.
In order to test the assumption that accretion rates of intertidal salt marshes are approximately equal to rates of sea-level rise along the Rhode Island coast,210Pb analyses were carried out and accretion rates calculated using constant flux and constant activity models applied to sediment cores collected from lowSpartina alterniflora marshes at four sites from the head to the mouth of Narragansett Bay. A core was also collected from a highSpartina patens marsh at one site. Additional low marsh cores from a tidal river entering the bay and a coastal lagoon on Block Island Sound were also analyzed. Accretion rates for all cores were also calculated from copper concentration data assuming that anthropogenic copper increases began at all sites between 1865 and 1885. Bulk density and weight-loss-on-ignition of the sediments were measured in order to assess the relative importance of inorganic and organic accumulation. During the past 60 yr, accretion rates at the eight low marsh sites averaged 0.43±0.13 cm yr?1 (0.25 to 0.60 cm yr?1) based on the constant flux model, 0.40±0.15 cm yr?1 (0.15 to 0.58 cm yr?1) based on the constant activity model, and 0.44±0.11 cm yr?1 (0.30 to 0.59 cm yr?1) based on copper concentration data, with no apparent trend down-bay. High marsh rates were 0.24±0.02 (constant flux), 0.25±0.01 (constant activity), and 0.47±0.04 (copper concentration data). The cores showing closest agreement between the three methods are those for which the excess210Pb inventories are consistent with atmospheric inputs. These rates compare to a tide gauge record from the mouth of the bay that shows an average sea-level rise of 0.26±0.02 cm yr?1 from 1931 to 1986. Low marshes in this area appear to accrete at rates 1.5–1.7 times greater than local relative sea-level rise, while the high marsh accretion rate is equal to the rise in sea level. The variability among the low marsh sites suggests that marshes may not be poised at mean water level to within better than ±several cm on time scales of decades. Inorganic and organic dry solids each contributed about 9% by volume to low marsh accretion, while organic dry solids contributed 11% and inorganic 4% to high marsh accretion. Water/pore space accounted for the majority of accretion in both low and high marshes. If water associated with the organic component is considered, organic matter accounts for an average of 91% of low marsh and 96% of high marsh accretion. A dramatic increase in the organic content at a depth of 60 to 90 cm in the cores from Narragansett Bay appears to mark the start of marsh development on prograding sand flats.  相似文献   

17.
Transports of nitrate and suspended solids were measured six times from January 1984 until January 1985 in a small freshwater tidal bayou in south-central Louisiana. The bayou and adjacent marshes are influenced by Atchafalaya River discharges, tides, and coastal weather patterns. Large net ebb-directed water transports occurred in winter, spring, and summer, coincident with high river discharges, indicating riverine dominance. A very small net flood-directed water transport occurred in fall, indicating tidally dominated hydrology. Nitrate and suspended solids transports were net ebb-directed in all seasons, but were two orders of magnitude higher during high river flow. Exports changed as hydrology switched from river dominated to tidally dominated, and as concentrations of materials changed. Comparison of suspended solids and nitrate concentrations in the river and bayou shows that these materials were usually lower in the bayou, indicating retention by the marsh/aquatic system.  相似文献   

18.
Using the Eddy Covariance (EC) technique, we analyzed temporal variation in net ecosystem CO2 exchange (NEE) and determined the effects of environmental factors on the balance between ecosystem photosynthesis and respiration in a reed (Phragmites australis) wetland in the Yellow River Delta, China. Our results indicated that diurnal and seasonal patterns of NEE and its components (ecosystem respiration (R eco), gross primary production (GPP)) varied markedly among months for the growing season (May to October). The cumulative CO2 emission was 1,657 g CO2 m?2, while 2,612 g CO2 m?2 was approximately accumulated as GPP, which resulted in the reed wetland being a net sink of 956 g CO2 m?2. The ratio of R eco to GPP in reed wetland was 0.68, which was close to other temperate wetlands. Soil temperature and soil moisture exerted the primary controls on R eco during the growing season. Daytime NEE values during the growing season were strongly correlated with photosynthetically active radiation. Aboveground biomass showed significant linear relationships with 24-h average NEE, daytime GPP, and R eco, respectively. Thus, we conclude that the coastal wetland acted as a carbon sink during the growing season despite the variations in environmental conditions, and long-term flux measurements over these ecosystems are undoubtedly necessary.  相似文献   

19.
In the lower delta of the Paraná River, at the head of the Río de la Plata estuary (Argentina), we compared net aboveground primary production (NAPP) and soil properties of the dominant macrophyteScirpus giganteus (Kunth) in a floating and an attached marsh community. Both marshes are tidally influenced but in different ways. The floating marsh site is relatively isolated from tidal influences because its ability to float makes it resistant to overland flow and to sediment inputs from the estuary. The attached marsh lacks the capacity to float and receives sediment supplies from the estuary through overland flow. These hydrologic differences are reflected in lower mineral content in sediments of the floating marsh. Using a leaf tagging technique, estimated NAPP was 1,109 ± 206 g m−2 yr−1 for the floating marsh and 1,866 ±258 g m−2 yr−1 for the attached marsh. We attribute the lower NAPP of the floating marsh to isolation from sediment input from overland flow.  相似文献   

20.
Planimetry studies of coastal geology maps prepared by the Maine Geological Survey show that there is more than an order of magnitude more tidal marsh area in the state of Maine than documented in previously published estimates. The highly convoluted coast of Maine, which is approximately 5,970 km long, contains almost 79 km2 of salt marsh, far more than any other New England state, New York, or the Bay of Fundy region. Reasonable estimates for the per-unit primary productivity of salt marshes lead to projections of total marsh productivity on the order of 1010 g dry weight yr?1 for the Maine coast and 1011 g dry weight yr?1 for the Gulf of Maine as a whole. Distribution of tidal marsh area is strongly controlled by coastal geomorphology, which varies considerably along the coast of Maine. The salt marsh area is concentrated in the southwestern coastal region of arcuate bays, where marshes have developed behind sandy beaches. A series of long islands and bedrock peninsulas in the south-central portion of the coast also provides sheltered areas where large marshes occur. Northeast of Penobscot Bay salt marshes become more numerous and smaller in average areal extent. A lack of protection from waves, along with limited sources of glacio-fluvial and glacio-marine sediments, restricts the occurrence of salt marshes in that region to the frignes of coves and tidal rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号