首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Blue crabsCallinectes sapidus in lower Chesapeake Bay are subject to high rates of predation during the late summer of their first year of growth as they migrate out of vegetated nursery habitats. Predators, potentially contributing to this pattern, were identified in video-recorded field observations of tethered juvenile crabs (20–25 mm carapace width). Predators were also tested in large laboratory tanks containing similarly-sized untethered crabs as prey. Seven different predators attacked tethered crabs in the field. Only two predators, larger blue crabs and northern puffers,Sphoeroides maculatus, consistently succeeded in preying on crabs in both field and laboratory settings. These results confirm the importance of cannibalism on juvenile blue crabs and identify puffers as a potentially overlooked source of predation pressure.  相似文献   

2.
A two-year trawling and gill-netting study of vegetated and unvegetated bottoms near Parson’s Island, Maryland and near the mouth of the York River, Virginia was carried out to assess the nursery function of submerged vegetation for populations of fishes and decapod crustaceans in the Chesapeake Bay. Results revealed that vegetated bottoms supported substantially larger numbers of decapods, but not fishes, than unvegetated substrates. The lower Bay grassbed was an important nursery area for juvenile blue crabs, although neither of the grassbeds functioned as a nursery for commercially or recreationally valuable fishes. Our results suggest that: (1) further decreases in lower Bay Seagrass biomass would result in reduced numbers of adult blue crabs, but should not substantially affect populations of valuable fish species; (2) additional decreases in Upper Bay submerged vegetation should not produce dramatic change in the population sizes of either adult blue crabs or fishes.  相似文献   

3.
The effects of low dissolved oxygen or hypoxia (<2 mg l?1) on macrobenthic infaunal community structure and composition in the lower Chesapeake Bay and its major tributaries, the Rappahannock, York, and James rivers are reported. Macrobenthic communities at hypoxia-affected stations were characterized by lower species diversity, lower biomass, a lower proportion of deep-dwelling biomass (deeper than 5 cm in the sediment), and changes in community composition. Higher dominance in density and biomass of opportunistic species (e.g., euryhaline annelids) and lower dominance of equilibrium species (e.g., long-lived bivalves and maldanid polychaetes) were observed at hypoxia-affected stations. Hypoxia-affected macrobenthic communities were found in the polyhaline deep western channel of the bay mainstem north of the Rappahannock River and in the mesohaline region of the lower Rappahannock River. No hypoxic effects on the infaunal macrobenthos were found in the York River, James River, or other deep-water channels of the lower Chesapeake Bay.  相似文献   

4.
The influence of atmospheric forcing on the flow and heat transports in the lower Chesapeake Bay and the adjacent coastal ocean were studied by comparing nontidal sea level and sea surface temperature variations in this region with meteorological data for 1992. Northeasterly and southwesterly winds caused the greatest changes in mean sea level (greater than 0.25 m) throughout the year. Northeastely winds caused a more rapid response than southwesterly winds, causing sea-level rises in less than 6 h. Barometric pressure changes typically contributed approximately 10% to extreme sea-level variations and were less influential than wind stress in most cases. Wind forcing was also responsible for summer events in which the horizontal water temperature gradient between two near-surface locations in the vicinity of the bay mouth vanished. These zero-gradient events corresponded to inflows and outflows at the bay's entrance caused by northeasterly and southwesterly winds, respectively. Wind-induced advection outside the lower Chesapeake Bay was additionally responsible for extreme heat flux variations. Heat gains and losses during the spring and fall occurred in pulsating events related to wind direction but were probably not connected to lower bay processes.  相似文献   

5.
Experiments in 2.2 m3, in situ mesocosm enclosures indicate that black drum, Pogonias cromis, eggs and larvae potentially can survive in the lower Chesapeake Bay at ambient microzooplankton prey levels (≈200 prey 1?1) in the absence of predators. In growth experiments, larva mean growth rates to 10 d posthatch were similar (0.17 mm d?1 and 0.18 mm d?1) when fed at prey levels of 50 prey 1?1 and 200 prey 1?1. Individual growth rates, however, were more variable at 50 prey 1?1. Mortality rates also were comparable in 50 (27% d?1) and 200 (23% d?1) prey 1?1 enclosures. In a second experiment, the predation potentials of the hydromedusa Nemopsis bachei and the lobate ctenophore Mnemiopsis leidyi were estimated in relation to initial black drum egg prey density, presence of alternative <1 mm zooplankton prey, and estimated daily abundance of the jellyfish on the black drum spawning grounds. Mortality rates per medusa and ctenophore were similar (0.02–0.03 d?1), were not affected by presence of alternative prey, and were directly related to initial egg density. Results suggest that the gelatinous predators, especially the hydromedusa, could have cleared a high (≈38%) but variable fraction of the water column daily of fish eggs and yolk-sac larvae during the black drum spawning season. We hypothesize that the poor or episodic recruitment success of black drum in Chesapeake Bay results from a short spawning season that often coincides with abundance peaks of gelatinous predators and that predation on eggs and yolk-sac larvae may control recruitment.  相似文献   

6.
Release of Mn into bottom waters of the Chesapeake Bay occurs in massive quantities during summertime periods of anoxia. The measured flux is much greater than can be accounted for by diffusion from pore waters under normal concentration gradients and is enhanced by dissolution of Mn-oxides under low Eh conditions. Extrapolating flux rates to the area of the Bay which goes anoxic during the summer indicates that this internal cycling accounts for four times as much Mn entering Bay waters as the total annual input (soluble and suspended) from the Susquehanna River.  相似文献   

7.
The spring freshet increases density stratification in Chesapeake Bay and minimizes oxygen transfer from the surface to the deep layer so that waters below 10 m depth experiece oxygen depletion which may lead to anoxia during June to September. Respiration in the water of the deep layer is the major factor contributing to oxygen depletion. Benthic respiration seems secondary. Organic matter from the previous year which has settled into the deep layer during winter provides most of the oxygen demand but some new production in the surface layer may sink and thus supplement the organic matter accumulated in the deep layer.  相似文献   

8.
Aerial surveys were conducted in the lower Chesapeake Bay during 1986–1989 to estimate abundance and examine the distribution of the cownose ray,Rhinoptera bonasus, during its seasonal residence, May–October. Most of the survey effort was concentrated in the lower and mid-bay regions. Cownose rays appeared uniformly distributed across the bay during mid-summer, but were more abundant in the eastern portion of the bay during migration. North-south distribution varied and reflected the general seasonal migration pattern. Mean abundance increased stepwise monthly from June through September and declined dramatically in October with their emigration from the bay. Abundance estimates from individual surveys varied. The greatest range of individual survey abundance estimates occurred in September (0–3.7×107 cownose rays0 due to high variation in school size and abundance between surveys. Monthly mean cownose ray abundance ranged from 0 in May and November to an estimated maximum of 9.3×106 individuals in September. The magnitude of the population suggests that the cownose ray plays an important role in the trophic dynamics of the Chesapeake Bay ecosystem. The historical data were insufficient to determine whether the population has increased, but these surveys provided the baseline data which would allow future investigation of cownose ray population dynamics in lower Chesapeake Bay.  相似文献   

9.
It has been observed that storms in early fall can result in top-to-bottom mixing of Chesapeake Bay. A three-dimensional, time-dependent circulation model is used to examine this destratification process for September 1983, when extensive current and hydrographic data were available. The model bay is forced at the surface by observed hourly winds, at the ocean boundary by observed hourly surface and bottom salinities and sea level fluctuations, and at the head by observed daily discharges for a 28-d period. A second-moment, turbulence-closure submodel, with no adjustments from previous applications to its requisite coefficients, is used to calculate the vertical turbulence mixing coefficients. Comparisons with data inside the model domain indicate relative errors of 7% to 14% for sea level, 7% to 35% for current, and 11% to 21% for salinity. The tidal portion of the spectrum is modeled better than the subtidal portion. The model is used to examine both the mechanisms of wind mixing and the temporal and spatial distribution of vertical mixing within the estuary. Wind-driven internal shear is shown to be a more effective mechanism of inducing destratification than turbulence generated at the surface. The model is also used to show that the vertical temperature inversion which occurs in the fall does not affect the timing of the destratification as much as its completeness. The distribution of mid-depth vertical mixing shows highly variable values in the mid-bay region, where wind-induced mixing is dominant. This suggests that the source of oxygen to mid-bay bottom waters is similarly variable. Vertical turbulence mixing coefficients of 10?2 cm2 s?1 (background) to 103 cm2 s?1 were needed to simulate the September period, indicating the need for time-variable mixing in models of dissolved and suspended estuarine constituents.  相似文献   

10.
There is mounting speculation that overharvesting of oyster stocks (Crassostrea virginica) in Chesapeake Bay may be a factor contributing to the decline in water quality and shifts in the dominance of species inhabiting the estuary. The trophic consequences of increasing the oyster population may be addressed using a simple quasi-equilibrium, mass action model of the exchanges transpiring in the Chesapeake mesohaline ecosystem. According to output from the model, increasing oyster abundance would decrease phytoplankton productivity as well as stocks of pelagic microbes, ctenophores, medusae, and particulate organic carbon. Recently acquired field data on phytoplankton productivity, bacterioplankton, and labile organic carbon in the vicinity of rafted oyster aquaculture support model predictions. The model also indicates that more oysters should increase benthic primary production, fish stocks, and mesozooplankton densities. Hence, augmenting the oyster community by restoring beds or introducing raft culture represents a potentially significant adjunct to the goal of mitigating eutrophication through curtailment of nutrient inputs. *** DIRECT SUPPORT *** A01BY059 00005  相似文献   

11.
Populations of the hard clam,Mercenaria mercenaria, were sampled at thirty sites in the lower Chesapeake Bay region in 1972 and 1973. Subsamples were taken for analysis for the trace metals cadmium, copper and zinc. Emphasis was placed on samples from the York and James rivers, two very productive and commercially utilized clam grounds. The levels of metals determined were comparable to those reported from other regions except Southampton Water in the United Kingdom. Differences in levels between the York and James rivers were statistically significant (P<0.001) which indicates that the James River probably suffers from contamination by these metals. One metal, copper, varied significantly with the age of the organism whereas the other two, cadmium and zinc, varied with salinity. InMercenaria the salinity of the sampling site must be considered before cadmium and zinc data can be interpreted. A standard action-level to denote pollution from copper would be adequate in this species.  相似文献   

12.
Present day anthropogenic fluxes of some heavy metals to central Chesapeake Bay appear to be intermediate to those of the southern California coastal region and those of Narragansett Bay. The natural fluxes, however, are in general higher. On the bases of Pb-210 and Pu-239 + 240 geochronologies and of the time changes in interstitial water compositions, there is a mixing of the upper 30 or so centimeters of the sediments in the mid-Chesapeake Bay area through bioturbation by burrowing mollusks and polychaetes. Coal, coke and charcoal levels reach one percent or more by dry weight in the deposits, primarily as a consequence of coal mining operations.  相似文献   

13.
The structure of the fish community associated with eelgrass beds in the lower Chesapeake Bay was studied over a 14 month period. A total of 24,182 individuals in 48 species was collected by otter trawl with Leiostomus xanthurus (spot) comprising 63% of the collection, Syngnathus fuscus (northern pipefish) 14%, Anchoa mitchilli (bay anchovy) 9%, and Bairdiella chrysoura (silver perch) 5%. The density and diversity of fishes were higher in vegetated areas compared to unvegetated areas; fishes were more abundant in night collections Fish abundance and species number increased in the spring and early summer as both water temperature and eelgrass biomass increased and decreased in the fall and winter as temperature and eelgrass biomass decreased. Gill netting revealed some of the top predators in the system, especially the sandbar shark, Carcharhinus milberti. The fish community in the Chesapeake Bay was quite different from North Carolina eelgrass fish communities. Most notable was the rarity of the pinfish, Lagodon rhomboides, which may be a very important predator in the structuring of the epifaunal communities.  相似文献   

14.
A study was conducted to define winter distribution patterns of blue crabs,Callinectes sapidus, in the lower Chesapeake Bay and to relate these patterns to environmental variation. During February 1986 a stratified random survey was conducted to examine the distribution of blue crabs with respect to three major habitat types: 1) high energy, wave- and tide-dominated, spits and shoals; 2) moderate energy, tide-dominated basins; and 3) variable energy, tide-dominated or quiescent channels (natural or cut). Each major habitat type was further stratified on the basis of location (to account for possible salinity effects), resulting in a total of 17 habitat-stratum combinations. Blue crabs exhibited significant differences in abundance among habitats. Crabs were most abundant in the basin habitat and least abundant in the shoal and spit habitat. A posteriori evaluations of abundance patterns in relation to sediment type and depth showed that crabs were significantly more abundant where sediments contained between 41 and 60% sand and at depths exceeding 9 m. The sampled population of blue crabs was dominated by mature females. There were no significant differences in crab sex ratios between habitats, but significant differences between two fixed sites sampled through the winter showed that there were proportionately more male crabs at the western site than there were at the eastern site. The observed patterns indicate that some differential habitat utilization occurs and that overwintering female crabs are found preferentially in areas characterized by moderate energy regimes and fine, but sandy sediments.  相似文献   

15.
Acid extractable Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb. and Zn were determined in sediments from the Inner Virginia Shelf, and from shipping channels in the lower Chesapeake Bay and Hampton Roads, Virginia, harbor system. Data were evaluated by a variety of techniques Levels of Cd, Cu, Pb, and Zn exceeded average crustal abundances for most of the study sites. Cumulative frequency curves suggested that there were two major populations for all metals and perhaps a third and smaller, one for Cd, Cr, and Mn Plots of metal vs Fe indicated no anthropogenic inputs of metals for shelf and Chesapeake Bay channel sites, but suggested anthropogenic influences for all metals in several of the inshore sites. Enrichment factor calculations showed enrichment of Cd, Pb, and Zn with respect to average crustal abundances for all sites and of Cu for the industrial harbor system. A recommendation of this study for evaluation of environmental geochemical metals data is to utilize mean concentrations, cumulative frequency plots, and metal vs Fe and/or enrichment factor calculations when evaluating the pollution status of sediments.  相似文献   

16.
Juveniles of the burrowing anemone Peachia parasitica, living on the scyphozoan Cyanea capillata, were obtained from Virginia, thus extending the southern limit for this species. Anemones were easily maintained in the laboratory; one lived for over four years. The feeding behavior is described.  相似文献   

17.
Fish biomass size spectra in Chesapeake Bay   总被引:1,自引:0,他引:1  
Biomass size spectra of pelagic fish were modeled to describe community structure, estimate potential fish production, and delineate trophic relationships in Chesapeake Bay. Spectra were constructed from midwater trawl collections each year in April, June–August, and October 1995–2000. The size spectra were bimodal: the first spectral dome corresponded to small zooplanktivorous fish, primarily bay anchovyAnchoa mitchilli; the second dome consisted of larger fish from several feeding guilds that are supported by multiple prey-predator linkages. Annual production estimates of pelagic fish, derived from a mean production to biomass ratio, varied nearly three-fold, ranging from 162 × 109 kcal (125 × 103 tons) in 1996 to 457 × 109 kcal (352 × 103 tons) in 2000. Seasonally, the biomass level and mean individual sizes of fish in the first dome increased from April to October, while the biomass level of the second dome was relatively stable. Regionally, biomass levels in the second dome were higher than biomasses in the first dome for the upper and lower Bay, but were minimal in the middle Bay where seasonal and episodic hypoxia occurs. To test a benthic-pelagic coupling hypothesis that could explain the higher biomass in the second domes for the lower and upper Bay, a cyclic size-spectrum model was fit that included only species in the zooplanktivorous-piscivorous fish guilds. The mean, normalized slope equaled ?1, indicating that zooplanktivorous fish may support piscivore production, but that a benthic-pelagic linkage is required to fully support fish production in the second dome. Interannual variability in slopes and intercepts of modeled size spectra was related to salinity, recruitment level of bay anchovy, and the primary axis of a correspondence analysis (salinity effect) on fish community structure. The spectral slope and intercept of normalized spectra were lowest in 1996, a near-record wet year. Results suggest that fish size spectra can be developed as useful indicators of ecosystem state and response to perturbations, especially if prey-predator relationships are explicitly represented.  相似文献   

18.
Two colorless flagellates,Hermesinum adriaticum andEbria tripartita, were found in the upper meter of water in Mobjack Bay and the York River.Hermesinum was abundant in the summer months when water temperatures were maximum for the area.Ebria was abundant at this and other times of the year. There was no correlation of temperature and abundance for the latter flagellate.  相似文献   

19.
Wind Modulation of Dissolved Oxygen in Chesapeake Bay   总被引:1,自引:0,他引:1  
A numerical circulation model with a simplified dissolved oxygen module is used to examine the importance of wind-driven ventilation of hypoxic waters in Chesapeake Bay. The model demonstrates that the interaction between wind-driven lateral circulation and enhanced vertical mixing over shoal regions is the dominant mechanism for providing oxygen to hypoxic sub-pycnocline waters. The effectiveness of this mechanism is strongly influenced by the direction of the wind forcing. Winds from the south are most effective at supplying oxygen to hypoxic regions, and winds from the west are shown to be least effective. Simple numerical simulations demonstrate that the volume of hypoxia in the bay is nearly 2.5 times bigger when the mean wind is from the southwest as compared to the southeast. These results provide support for a recent analysis that suggests much of the long-term variability of hypoxia in Chesapeake Bay can be explained by variations in the summertime wind direction.  相似文献   

20.
Monthly sampling of a 140-ha seagrass bed in the lower Chesapeake Bay, Virginia, revealed that 13 numerically and trophically important species, representing about 20% of the total community densities over the year-long study period, accounted for the production of ≈42 g dry wt m?2 yr?1. This estimate is likely conservative due to our assumptions on voltinism and fixed size at maturity regardless of season for the species studied. The isopodErichsonella attenuata accounted for 17.6 g dry wt m?2 yr?1 or 42% of the calculated total production, while the portunid decapodCallinectes sapidus and the amphipodGammarus mucronatus each accounted for 7.7 g dry wt m?2 yr?1. The 10 remaining species (4 peracarids, 4 molluscs, and 2 decapods) each produced less than 2 g dry wt m?2 yr?1. Total seagrass-associated secondary production was estimated to equal or exceed 200 g dry wt m?2yr?1. By applying this estimate to the entire 140-ha grassbed, we projected that, on average, 4.8 metric tons dry wt of invertebrate standing stock and 55.9 metric tons of invertebrate production occur over the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号