首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentrations of particulate and dissolved organic matter and mineral nutrients in the Lena River and its major tributaries are analyzed. The concentrations of these components are shown to be nonuniform and feature wide variations under the effect of matter input by major tributaries. The total fluxes of matter increase downstream the river in agreement with increasing water runoff. The effect of delta in matter accumulation is considered. The organic matter in the Lena was found to be represented mostly by soil terrigenous material.  相似文献   

2.
The geomorphological and altitudinal positions of occupational layers corresponding to 1224 colonization epochs at 870 archaeological sites in river valleys and lake depressions in southwestern Tver province. A series of alternating low-water (low levels of seasonal peaks, many-year periods without inundation of floodplains) and high-water (high spring floods, regular inundation of floodplains) intervals of various hierarchical rank was identified. In low-water epoch, an increase was recorded in the share of settlements on low elevations, including river and lake floodplains now subject to inundation. The archaeological epochs 2–3 Ky in length were found to form the following series from high-water to low-water: Mesolithic (11.8–8.0 Ky ago)-Iron age (2.8–0.3)-Neolithic (8.0–5.0)-Bronze epoch (5.0–2.8). The first half of the Iron age (2.8–1.8 Ky ago) was extremely water-abundant, while its second half (middle ages) was dry (relative to the present time). A correlation between the hydrological and temperature regimes was identified: low-water epochs closely correlate with warm epochs, while high-water ones correlate with cold epochs. This can be associated with the specific features of the present-day type of water regime with dominating spring flood; this regime is supposed to have existed during the most part of the Holocene: the runoff and the levels of floods decline during warming epochs and increase during cooling epochs.  相似文献   

3.
Various schemes of within-year transformations of rifts from spring flood to low-water period and autumn freshets have been considered. Such transformations have been shown to manifest themselves in the displacement of rift trough from the upper to the lower point bars, accumulation of sediments in one phase of water regime and erosion of ridges in the other phase, as well as in the advancement of ridge-type micro- and meso-forms of channel relief onto rift saddle. Differences have been revealed between the regimes of rifts composed of sand and pebble-boulder sediments; specific features were identified in the regime of rifts in rivers in permafrost zones and rifts with rock protrusions on the bed.  相似文献   

4.
Water Resources - The oxygen regime of the channel flow of the small Maima River (Upper Ob basin) has been considered. A study of the spatial and seasonal variations of oxygen regime...  相似文献   

5.
The results of studying the ice regime in Transbaikalian rivers and its dependence on climate change are given. The magnitudes of many-year changes in the dates begin and end of freeze-up period, its duration, and maximal ice thickness are determined. The dependence of major characteristics of ice regime on air temperature and river runoff is evaluated.  相似文献   

6.
The gas regime and active reaction of water in Selenga basin rivers are analyzed. It is shown that, in the lower reaches of the Selenga and Uda rivers, which experience the highest anthropogenic impact, the minimal values of hydrogen index were recorded in under-ice period, while in the rivers of Chikoi, Khilok, Dzhida, and Temnik, during spring flood and summer freshets. The concentrations of organic substances are heterogeneous and vary widely under the effect of matter input with major tributaries and wastewater discharge from GOS. It has been established that the concentrations of readily oxidizable organic substances in 28–33% of the taken samples are above the established standards on maximal allowable concentrations in the period of open river channels. In spring and autumn, the organic matter in the rivers of the basin is mostly represented by soil terrigenous material.  相似文献   

7.
Seismic, geothermal, petrological and other data collected during the joint Soviet-Chinese-Japanese Project “Geotraverse: Pacific-China plain” are highly contradictory concerning their information on back-arc basins. The routine interpretation of the geothermal data leads, e.g. to the conclusion that the temperatures at depth are much higher than can be derived from other data. The discrepancies can be resolved by the back-arc spreading basins origin because of secondary mantle bulk or fluid convection. The inversion of the sign of the seismic velocity anomalies in the Pacific region at a depth of about 300 km can also be explained if active deep fluid regime is proposed. A new geotherm below the Mariana back-arc basin is proposed, and the velocity of the ascending mantle flow is estimated for this region.  相似文献   

8.
Variations in the characteristics of ice regime of rivers in the Northern Dvina basin over the last 125 years are analyzed. For the Northern Dvina lower course, potential changes in the dates of the appearance of floating ice and the breakup due to expected changes in the air temperature and the rate of streamflow in rivers are assessed. Special attention is paid to the factors that affect the formation of ice jams and their spatial and temporal variability. The prognostic relationship for the maximum ice-jam stage in the Sukhona River near the town of Velikii Ustyug is presented as an example.  相似文献   

9.
《水文科学杂志》2013,58(4):704-712
Abstract

The upper Niger and Volta rivers exhibit a great and highly contrasting variability of inter-annual runoff. The Bani River, the largest tributary to the Niger River in Mali, shows a dramatic decrease in runoff after the 1970s, with the result that many boreholes in the region have dried up since the drought began. In contrast, the Nakambe River (Upper Volta basin, in Burkina Faso) shows an increase in runoff for the same period, leading to unexpected flood peaks that damaged infrastructures. The contribution that the groundwater and its variability make to surface runoff variability is assessed in this study by comparing the data of the national groundwater monitoring networks of Mali and Burkina Faso to surface runoff. Several variables are compared at the basin scale: the date of the maximum level of the water table, the annual rainfall, discharge, low flows and depletion coefficients. Variability in the low flows of the Bani River is well correlated to a decrease in the water table. Since 1970, the greater decrease in runoff in comparison to the rainfall decrease is due to a reduction in the baseflow, related to the cumulated rainfall deficit. Concerning the Nakambe River, the runoff increase is not supported by a water table increase, but is due to the increase in runoff coefficient related to land degradation.  相似文献   

10.
11.
Abstract

Two river catchments, the Huangfuchuan and the Hailiutu, located in the same climate zone in the Erdos Plateau, China, have distinctly different flow regimes. This study systematically compared differences between the flow regimes of these two catchments using several statistical methods, and analysed the possible causes. The variations in yearly, monthly and daily mean discharges were found to be much greater in the Huangfuchuan catchment than in the Hailiutu catchment. Preliminary analysis indicated that these differences are not caused by changes in climate, but are instead attributable to differences in geology, geomorphology, hydrological processes and human interventions. In the Hailiutu catchment, the dominant groundwater contribution maintains stationary daily and monthly river discharges, while shifts in yearly mean discharges were closely associated with the expansion or reduction of crop area. In the Huangfuchuan catchment, the dominant direct rainfall–runoff process generates flashier daily and monthly river discharges, while the decrease of yearly mean discharges is caused mainly by the construction of check dams. These findings have significant implications for water resource management and the implementation of proper soil and water conservation measures in the middle reach of the Yellow River Basin of China.
Editor Z.W. Kundzewicz; Associate editor Y. Gyasi-Agyei  相似文献   

12.
Uranium deposits in sedimentary basins can be formed at various depths,from near surface to the basement.While many factors may have played a role in controlling the location of mineralization,examination of various examples in the world,coupled with numerical modeling of fluid flow,indicates that the hydrodynamic regime of a basin may have exerted a major control on the localization of uranium deposits.If a basin is strongly overpressured,due to rapid sedimentation,abundance of low-permeability sediments or generation of hydrocarbons,fluid flow is dominantly upward and uranium mineralization is likely limited at shallow depths.If a basin is moderately overpressured,upward moving fluids carrying reducing agents may meet downward moving,oxidizing,uranium-bearing fluids in the middle of the basin,forming uranium deposits at moderate depths.If a basin is weakly or not overpressured,either due to slow sedimentation or dominance of high-permeability lithologies,minor topographic disturbance or density variation may drive oxidizing fluids to the bottom of the basin,leaching uranium either from the basin or the basement,forming unconformity-type uranium deposits.It is therefore important to analyze the hydrodynamic regime of a basin in order to predict the most likely type and location of uranium deposits in the basin.  相似文献   

13.
The thermal regime of rivers is threatened by anthropogenic stresses at a large variety of timescales. We focus on sub‐daily thermal alterations induced by the release of hypolimnetic water for hydropower production (thermopeaking). We analyse the thermal signal focusing on the following characteristics that are potentially affected by hypolimnetic releases: (i) sub‐daily thermal rate of change and (ii) oscillation frequencies contained in the thermal signal. Through a proper scaling, we derive two dimensionless at‐a‐station indicators to compare alterations among stations with different locations and physiographic characteristics of the basins. Then we analyse the data from two different thermal datasets (Italy/Switzerland) for a total of 48 stations with 10 min time resolution of temperature data. The stations are grouped according to the absence of upstream hydropeaking releases (29 stations, reference group) and the existence of upstream hydropeaking, hence potentially impacted by thermopeaking (19 stations, altered group). Using a simple statistical approach, based on a non‐parametric definition of outliers, we identify the range of variability of the two indicators for the reference, unaltered group. This range measures the ‘natural’ sub‐daily thermal variability of the proposed indicators. Finally, we investigate the seasonality effects on the two proposed indicators and it results, that sub‐daily alterations mostly occur during summer. The two indicators represent a novel tool for the assessment of river thermal regime alterations and can be easily included in existing methodologies to assess river quality. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Rivers flowing through sedimentary basins are subjected to a variety of controls. The main goal of our study was to identify the effect of external (e.g. climate changes, tectonics) and internal controls (e.g. sediment transport, deposition, vegetation cover) on the evolution of meandering rivers flowing through sedimentary basins using the example of the lower Drava River (Europe, Hungary/Croatia). Field research was conducted along a 50-km-long section of the valley. Sedimentary data from boreholes and corings, 35 km of ground-penetrating radar surveys and analyses of digital maps were conducted to reconstruct channel planform changes. Traces of four meander belts were identified, and 39 AMS radiocarbon dates were used to distinguish the chronology of the fluvial events. The evolution of the lower Drava River comprised alternating periods of deposition (formation of aggrading meander belt) and avulsions. The channel belts were formed owing to upstream sediment delivery and floodplain storage. Changes in climate humidity and the occurrence of high flows influenced the planform of the meanders within particular channel belts. The oldest channel was active at least ~40 000 cal. BP before being reworked by subsequent meanders active between the Late Pleniglacial (30 000–14 700 cal. BP) and Late Glacial (~11 000 cal. BP) periods. The channel belts shifted to the south in the Holocene, between ~11 000 and 250 cal. BP due to the presence of a thrust fault situated diagonally to the Drava Valley. Results show channel width, channel belt width and the surface area of point bar deposits increased in the succeeding generations of meanders and that the style and sedimentary architecture of the channel belts were dominantly dependent on autogenic controls, that is, sediment delivery, aggradation and erosional events (e.g. formation of chute cut-offs).  相似文献   

15.
The overpresence of fine sediment and fine sediment infiltration (FSI) in the aquatic environment of rivers are of increasing importance due to their limiting effects on habitat quality and use. The habitats of both macroinvertebrates and fish, especially spawning sites, can be negatively affected. More recently, hydropeaking has been mentioned as a driving factor in fine sediment dynamics and FSI in gravel-bed rivers. The primary aim of the present study was to quantify FSI in the vertical stratigraphy of alpine rivers with hydropeaking flow regimes in order to identify possible differences in FSI between the permanently wetted area (during base and peak flows) and the so-called dewatering areas, which are only inundated during peak flows. Moreover, we assessed whether the discharge ratio between base and peak flow is able to explain the magnitude of FSI. To address these aims, freeze-core samples were taken in eight different alpine river catchments. The results showed significant differences in the vertical stratification of FSI between the permanently wetted area during base flow and the dewatering sites. Surface clogging occurred only in the dewatering areas, with decreasing percentages of fine sediments associated with increasing core depths. In contrast, permanently wetted areas contained little or no fine sediment concentrations on the surface of the river bed. Furthermore, no statistical relationship was observed between the magnitude of hydropeaking and the sampled FSI rate. A repeated survey of FSI in the gravel matrix revealed the importance of de-clogging caused by flooding and the importance of FSI in the aquatic environment, especially in the initial stages of riparian vegetation establishment. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

16.
Water Resources - Data on the overgrowth level and biomass reserves in Volga reservoirs, collected in 2003–2009, are given. The long-term dynamics and the character of overgrowth of the...  相似文献   

17.
Water Resources - Two reservoirs in the Upper Volga were studied to determine the abundance, biomass, and production of planktonic, epiphyte, and benthos bacterial communities and to assess their...  相似文献   

18.
Erosion, sediment transportation and accumulation in rivers   总被引:3,自引:5,他引:3  
The present paper analyses the interrelation between erosion, sediment transportation and accumulation proposed by N. I. Makkaveyev (1908-1983) and its further development in modem studies of river channel processes in Russia. Spatio-temporal linkages between erosion and accumulation are defined considering channel processes at different scales - river longitudinal profile, channel morphological patterns, alluvial bedforms (bars, dunes) and individual sediment particles. Relations between river geomorphic activity, flow transportation capacity and sediment budgets are established (sediment input and output; channel bed erosion and sediment entrainment into flow - termination of sediment transport and its deposition). Channel planforms, floodplain segments separated by the latter and alluvial channel bedforms are shown to be geomorphic expressions of sediment transport process at different spatial and temporal scales. This paper is dedicated to the 100th anniversary of N. I. Makkaveyev, Professor of the Moscow State University, author of the book "River channel and erosion in its basin" (1955). That book is regarded in Russia as the pioneering work which initiated the complex hydrological and geographical studies of channel processes and laid a basis for the theory of unified fluvial erosion-accumulation process.  相似文献   

19.
Demin  A. P.  Ismaiylov  G. Kh. 《Water Resources》2003,30(3):333-346
Data on water withdrawal and use in different economic branches in the Volga basin in 1970–2000 are analyzed. Time variations in the removed volumes of waste, mine, and drainage waters, as well as in their chemistry, are considered. Characteristics of water use in 2010 are forecasted based on predictions of the socioeconomic development of Russia and extrapolation of the tendencies established in the dynamics of the analyzed indices.  相似文献   

20.
G. Kaless  L. Mao  M. A. Lenzi 《水文研究》2014,28(4):2348-2360
Downstream hydraulic geometry relationships describe the shape of alluvial channels in terms of bankfull width, flow depth, flow velocity, and channel slope. Recent investigations have stressed the difference in spatial scales associated with these variables and thus the time span required for their adjustment after a disturbance. The aim of this study is to explore the consequences in regime models considering the hypothesis that while channel width and depth adjust quickly to changes in water and sediment supply, reach slope requires a longer time span. Three theoretical models were applied. One model incorporates an extremal hypothesis (Millar RG. 2005. Theoretical regime equations for mobile gravel‐bed rivers with stable banks. Geomorphology 64 : 207–220), and the other two are fully physically based (Ikeda S, Parker G, Kimura Y. 1988. Stable width and depth of straight gravel rivers with heterogeneous bed materials. Water Resources Research 24 : 713–722; Parker G, Wilcock PR, Paola C, Dietrich W, Pitlick J. 2007. Physical basis for quasi universal relations describing bankfull hydraulic geometry of single‐thread gravel‐bed rivers. Journal of Geophysical Research 112 , DOI: 10.1029/2006JF000549). In order to evaluate the performance of models introducing the slope as an independent variable, we propose two modifications to previous models. The performance of regime models was tested against published data from 142 river reaches and new hydraulic geometry data from gravel‐bed rivers in Patagonia (Argentina) and north‐eastern Italy. Models that assume slope as a control (Ikeda et al., 1988; or Millar, 2005) predict channel depth and width reasonably well. Parker et al.'s (2007) model improved predictions because it filters the scatter in slope data with a relation slope–discharge. The extremal hypothesis model of Millar (2005) predicts comparably to the other physically based models. Millar's model was chosen to describe the recent changes in the Piave and Brenta rivers due to human intervention – mainly in‐channel gravel mining. The change in sediment supply and recovery was estimated for these rivers. This study supports the interpretation that sediment supply is the key factor guiding morphological changes in these rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号