首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high alpine and subalpine vegetation of Dinaric Alps is very diverse.These are conditional on genuine patterns of development of the geological substrate,climate,soil and terrain on the mountain world,which are interconnected and spatially,and ecologically away.Also,today high mountain vegetation is extremely important indicator of global changes.In this area are many refugia of glacial biodiversity.Very illustrative example for understanding the specific forms of ecological diversity is high alpine veg...  相似文献   

2.
The present study highlights the rich species diversity of higher plants in the Bhabha Valley of western Himalaya in India. The analysis of species diversity revealed that a total of 313 species of higher plants inhabit the valley with a characteristic of moist alpine shrub vegetation. The herbaceous life forms dominate and increase with increasing altitude. The major representations are from the families Asteraceae, Rosaceae, Lamiaceae and Poaceae, suggesting thereby the alpine meadow nature of the study area. The effect of altitude on species diversity displays a hump-shaped curve which may be attributed to increase in habitat diversity at the median ranges and relatively less habitat diversity at higher altitudes. The anthropogenic pressure at lower altitudes results in low plant diversity towards the bottom of the valley with most of the species being exotic in nature. Though the plant diversity is less at higher altitudinal ranges, the uniqueness is relatively high with high species replacement rates. More than 90 % of variability in the species diversity could be explained using appropriate quantitative and statistical analysis along the altitudinal gradient. The valley harbours 18 threatened and 41 endemic species, most of which occur at higher altitudinal gradients due to habitat specificity.  相似文献   

3.
ECOLOGICAL SERIES OF SOIL ANIMALS IN DARLIDAI MOUNTAIN   总被引:1,自引:0,他引:1  
The ecological series of soil animals under the broad-leaved and pine mixed forest in Darlidai Mountainwas studied. Seven sample plots were selected according to different altitude gradients, which belong to different vegeta-tion types. By investigating and analyzing soil animals in every sample plot it is found that there are 45 groups and 1956individuals, which axe involved in 3 phylums, 7 classes, 16 orders, respectively. The altitude is a key factor which af-fects ecological series of soil animals. Both the groups and individuals of soil animals increase with altitude increasingunder certain conditions, which contrastes with ordinary cases, resulting from special micro-climate in studied area. Thegroups and individuls of soil animals are the most under the broad-leaved and pine forest on the top of the mountain, andthe least under Picea-Abies forest in the foot of the mountain.  相似文献   

4.
Introduction High mountain ecosystems are comparatively thrilling and sensitive at least at the upper elevation levels, and are determined by abiotic climate related ecological factors. Therefore, the ecosystems at the low temperature limits of plant life are generally considered to be particularly sensitive to climate changes (Koerner 1999). As temperature is a key factor for high mountain plants (Koerner and Larcher 1988, Gottfried et al. 1998), an upward migration of species must be conse…  相似文献   

5.
《山地科学学报》2020,17(10):2405-2417
Ohud mountain is one of the main important historic sites in the Arab Peninsula, and it is distinguishable over the rest of the mountains in the region. No extensive floristic survey has been carried out on Ohud mountain because of the rugged topography of this mountain. The current study investigates the floristic diversity and the correspondence of environmental factors of the phytogeographical distribution of plants, based on the floristic analysis of the present region. The research question is about the relationships between the species diversity and the human impacts of populated area at lowlands around Ohud mountain. A total of 59 species belonging to 56 genera and 28 families were recorded. Asteraceae had the highest contribution, about 12% of the total plant species. The analysis of the life forms demonstrated the prevalence of therophytes(68%) followed by chamaephytes(24%), indicating the adaptation of these life forms to hyperarid conditions. The chorological analysis indicated the predominance of the bi-regional taxa over the other phytochoria. Most of the recorded plant species belong to Saharo-Arabian and Sudano-Zambezian(24%) phytochoria. TWINSPAN analysis was performed to detect the indicator species of different vegetation groups and confirmed by detrended correspondence analysis(DCA or DECORANA). It is concluded that species richness and diversity revealed clear variation along the mountain and among the studied sites. Plant species diversity and richness were more pronounced in the intermediate portion of the elevation gradients across the mountain, with a decrease in the high altitudinal belts. The decrease was also recorded at the lower altitudes, where human impacts clearly affected vegetation; leading to a decrease in alpha diversity. In addition, the beta diversity among moderately highlands and lowlands was considerably high indicating the heterogeneous species composition among the studied sites along mountain elevations. The general pattern of vegetation groups distribution is controlled by a number of environmental factors; such as latitude, longitude, elevation, organic matter and some anions and cations. A Canonical Correspondence Analysis(CCA) ordination revealed that the vegetation structure has a strong association with the latitude of the mountain followed by organic matter and Magnesium. It is recommended that the populated area should be subjected to restoration of mountain ecosystem that might be degraded by human activities.  相似文献   

6.
The Himalaya harbor rich floristic diversity which is of immense scientific interest and socio-economic importance.In this study, floristic diversity of a remote alpine valley has been studied based on information extracted from remotely sensed satellite data along with field surveys undertaken during 2008-2014.Analysis of vegetation information from satellite data revealed that ~75% of the area is covered with natural vegetation which comprises lush green coniferous forests, alpine pastures and alpine scrub lands.With inputs from vegetation information extracted from satellite data, comprehensive field surveys were planned to document the floristic diversity of the region.Analysis of species composition showed a total of 285 plant species,belonging to 191 genera in 60 families.Of these, 250 species are herbs, 14 shrubs, 2 sub-shrubs and 19 trees.The dicotyledons are represented by 240 species, monocotyledons 30, gymnosperms 04, andpteriodophytes 11 species.Asteraceae is the largest family with 35 species.During the present study, 5species(Corydalis cashmeriana, Hippophae rhamnoides, Primula minutissima, Saussurea sacra and Inula orientalis) have been recorded for the first time from this Himalayan region.The study demonstrates the benefits of geo-informatics in floristic studies, particularly the robustness of remotely sensed data in identifying areas with potentially high species richness, which would be otherwise difficult in a complex mountainous terrain using traditional floristic surveys alone.The present study is expected to provide baseline scientific data for cutting edge studies relating to long term ecological research, bioprospecting, possible impacts of changing climate on vegetation and sustainable use of plant resources in this Himalayan region.  相似文献   

7.
Based on data from 22 sample plots and applying the Canonical Correspondence Analysis (CCA),this paper discusses the vegetation-environment relationships between the northern slope of Karlik Mountain and Naomaohu Basin,which is situated in the easternmost end of the Tianshan Mountains,Xinjiang Uygur Autonomous Region,China.For the zonal vegetation,community diversity of mountain vegetation is higher than that of the desert vegetation due to environmental factors.The CCA ordination diagram revealed that the composition and distribution of vegetation types are mainly determined by altitude,soil pH and soil salt content.With increasing elevation,the soil pH and total salt content decrease but the contents of soil organic matter,soil water,total nitrogen and total phosphorus increase gradually.In the CCA ordination diagrams,the sample plots and main species can be divided into five types according to their adaptations to the environmental factors.Type I is composed of desert vegetation distributed on the low mountains,hills,plains and deserts below an elevation of 1900 m;type II is distributed in the mountain and desert ecotone with an elevation of 1900-2300 m,and includes steppe desert,desert steppe and wetland meadow;type III is very simply composed of only salinized meadow;type IV is distributed above an elevation of 2300 m,containing mountain steppe,meadow steppe,subalpine meadow and alpine meadow;type V only contains salinized meadow.The results show that with increasing elevation,species combination changes from the xerophytic shrubs,semi-shrubs and herbs distributed in the low altitude zone with arid climate to the cold-tolerant perennial herbs growing in the high altitudinal zone with cold climate.  相似文献   

8.
In the Garhwal of Uttarakhand, India, the Bhotiya, an ethnically and culturally distinct tribal group, were historically engaged in seasonal migration (i.e. transhumance) to take advantage of scarce mountain resources and trade relations with Tibet. This livelihood practice has all but disappeared. Households are adapting to these changing circumstances by engaging in the collection and sale of the valuable alpine medicinal fungus Ophiocordyceps sinensis, widely known as Cordyceps. The collection of this fungus has exploded, emerging as a lucrative yet high-risk livelihood strategy for many Bhotiya communities. The Bhotiyas’ historic herding and trade-based interactions and knowledge of these alpine environments where Cordyceps are found uniquely positions them to access this valuable biological resource. Elsewhere in the Himalayan region, some households are earning as much as two-thirds of their income from the collection of Cordyceps; in China Cordyceps is now listed as an endangered species due to intense over-exploitation in the Tibetan Plateau. This paper seeks to fill the void in the scientific literature on the social, ecological and economic aspects of the emerging Cordyceps trade in the Garhwal. Our study investigates the socio-spatial dimensions of Cordyceps collection in the high alpine meadows. We document how a fusion of local knowledge and practice with alpine mountain systems has served to reinvigorate the economic integrity of mountain communities at a time of rapid socio-economic change and to reimagine a new relationship between alpine resources and community well-being. The article offers suggestions to address the sustainability of both Cordyceps collection and livelihood activities which hinge on this fungus population. We find a need for (1) community-based conservation measures that are rooted in (2) secure resource access rights for local communities to continue sustainable collection and sale of Cordyceps and (3) participatory-and science-based processes for determining appropriate local collection numbers.  相似文献   

9.
Soil fauna have been receiving more and more attention because they play an important role in nutrient cycling. However, there is a lack of information on soil arthropods in the forest-steppe ecotone in the mountainous region of northern Hebei, which makes it difficult to meet the need of protecting biodiversity in this area. Soil arthropod communities were investigated in the forest-steppe ecotone in northern Hebei province to provide basic information on changes in mountain soil fertility, which could promote the development of soil arthropod communities in mountain ecotones. From the preliminary identification, a total of 7994 individual soil arthropods were collected, which belonged to 25 groups, 6 classes and 24 orders. Acarina, Hymenoptera and Collembola were the dominant groups in the ecotone. The number of Acarina was higher than Collembola, and this phenomenon was obviously different from other areas in the same climate zone. The increased abundance of rare groups in the Forest zone with the richer vegetation, higher arthropod abundance and more substantial litter depth, could be interpreted as a reaction to the suitable soil environment and food supply. And these rare groups were sensitive to environmental changes, which could be regarded as biotic indicators for evaluating soil quality. The analysis of community diversity showed that the abundance index (d), the Shannon-Wiener index (H′), the evenness index (J) and the density-group index (DG) were significantly higher in the forest zone, lower in the forest-steppe zone, and lowest in the meadow-steppe zone. Seasonal variations in community composition correlated with changes in average air temperature and precipitation in this ecotone. Groups and individuals of soil arthropod communities in the three zones were present in greater numbers in the middle of the rainy season than in the early or late periods of the rainy season as a whole. At the same time, seasonal changes in soil arthropod communities from different plots were also influenced by habitat condition.  相似文献   

10.
Since 1940s, Mount Uludağ (Bithynian Olympus) has been considered famous with winter sports center in Turkey. In addition, it is one of the rare places because of its plant diversity and is also one of the important plant areas of Turkey. The ski run constructions are rapidly increased in the past decades in the alpine and subalpine belts of the mountain. Rate of nitrogen mineralization and some properties of soil were investigated in the soils of the three ski runs and undisturbed neighborhood forest sites. These ski runs are at the upper part of the forest belt in the mountain. Abies bornmuelleriana forest community is the postclimax and very sensitive to destruction. The rates of the nitrogen mineralization in the soils were determined in controlled conditions (60% water-holding capacity, 20°C). Nitrification and nitrogen mineralization were in the ski run inside where the natural recovery started, increased compared with the outside of the ski runs. Waterholding capacity, organic carbon, and total nitrogen were decreased in the massive damaged ski run, and due to these changes, the rates of mineralization and nitrification were also decreased.  相似文献   

11.
In this paper,an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau(QTP) was delineated.The vegetation map model was extracted from vegetation sampling with remote sensing(RS) datasets by decision tree method.The spatial resolution of the map is 1 km×1 km,and in it the alpine swamp meadow is firstly distinguished in the high-altitude areas.The results showed that the total vegetated area in the permafrost zone of the QTP is 1,201,751 km~2.In the vegetated region,50,260 km~2 is the areas of alpine swamp meadow,583,909 km~2 for alpine meadow,332,754 km~2 for alpine steppe,and 234,828 km~2 for alpine desert.This updated vegetation map in permafrost zone of QTP could provide more details about the distribution of alpine vegetation types for studying the vegetation mechanisms in the land surface processes of highaltitude areas.  相似文献   

12.
吐鲁番盆地是我国西部极端干旱地区的一个山间盆地,气候干旱、降雨稀少,荒漠生态典型,生态环境脆弱。文章从植被生长与土壤含水率、含盐量、地下水矿化度、埋深等方面进行分析,得出吐鲁番盆地艾丁湖周缘低湿地植被生态可持续发展的合理生态水位为埋深2.5~3.5 m。总结了吐鲁番盆地天然绿洲区的植被随地下水变化的关系及其演替模式。  相似文献   

13.
Primary productivity of ecosystem is important indicator about ecological assessment. Remote sensing technology has been used to monitor net primary productivity (NPP) of ecological system for several years. In this paper, the remotely sensed NPP simulation model of alpine vegetation in Qinghai Province of Tibet Plateau was set up based on the theory of light use efficiency. Firstly a new approach based on mixed pixels and Support Vector Machine (SVM) algorithm were used to correct simulated NPP values derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Finally, spatial distribution and monthly variation characteristics of NPP in Qinghai Province detail. The result showed in 2006 were analyzed in that NPP of vegetation in Qinghai Province in 2006 ranged from o to 422 gC/m2/a and the average NPP was 151 gC/m2/a. NPP gradually increased from northwest to southeast. NPP of different vegetation types were obviously different. The average NPP of broad-leaved forest was the largest (314 gC/m2/a), and sparse shrub was the smallest (101 gC/m2/a). NPP in Qinghai Province significantly changed with seasonal variation. The accumulation of NPP was primarily in the period (from April to September) with better moist and heat conditions. In July, the average NPP of vegetation reached the maximum value (43 gC/m2). In our model, the advantage of traditional LUE models was adopted, and our study fully considered typicalcharacteristics of alpine vegetation light use efficiency and environmental factors in the study area. Alpine vegetation is the most important ecological resource of Tibet Plateau, exactly monitoring its NPP value by remote sensing is an effective protection measure.  相似文献   

14.
遥感地表能量信息通过空间分布及变化趋势体现生态系统要素的格局、状态、质量,客观反映城市生态系统的状态,是度量区域生态系统要素生态过程的重要内容。本文以三亚市热带雨林植被环境的地表能量综合响应特征和作用、影响关系特征为基础,采用植被指数分级、地表能量分级和植被-能量关系等指标,结合雨林垂直分带和植被分布信息,探讨近30年(1987-2016年)不同时期热带雨林环境的水平地带性、垂直地带性及其时空变化特征。结果表明:①近30年三亚市域植被覆盖比例维持在90%左右,植被指数分级构成以高、中数值分布为主,并呈现整体趋高态势。②各级地表能量分布比例的波动幅度在10%之内,中等地表能量级别范围呈现向低地表能量区域扩展趋势。③随着海拔高度的提升,植被指数高数值的热带雨林分布比例增加,地表能量值降低。④热带雨林的地表能量和植被指数的时空分布稳定性均高于人工植被。本文基于遥感地表能量综合响应特征和作用、影响关系特征建立的指标评价体系,可以为热带雨林生态系统的量化评价提供支持。  相似文献   

15.
The objective of this study was to explore vegetation adaptability in a changing afro-alpine moorland terrestrial ecosystem on Mt. Rwenzori and to determine whether there were any links with response of vegetation to glacier recession. We analyzed the composition and distribution of plant species in relation to soils, geomorphic processes, and landscape positions in the Alpine zone. To accomplish this objective, archival data sources and published reports for this ecosystem were reviewed. A field trip was conducted in 2010 to study in detail seven vegetation sampling plots that were systematically selected using GIS maps and a nested-quadrat sampling design framework along an altitudinal gradient in the lower and upper alpine zones. Using these sampling plots, 105 vegetation and 13 soil samples were assessed in the alpine zone. Soil samples were taken for laboratory testing and analysis. The results show statistically significant differences in p H, OM, N, P, Ca, Mg, and K pools between soils samples drawn from the lower and upper alpine sites(p 0.0033). Furthermore, we observed a significant vegetation formation with numerous structural forms, but there was a limited diversity of species. The mostsignificant forms included Alchemilla carpets, Bogs, Dendrosenecio woodland, and Scree slopes. The lower alpine area(3500–3900 masl) had a more diverse plant species than other areas, especially Alchemilla argyrophylla and Dendrosenecio adnivalis species that were evident due to well-drained deeper soils. The Alchemilla subnivalis were evident at a higher altitude of above 4000 masl. Shifts in the Astareceae(e.g. Senecio species) were particularly prominent even on recently deglaciated areas. The spatial variations of species distribution, structure, and composition suggest there are serious implications in terms of ecosystem adaptability, resilience, and stability that require further evaluation.  相似文献   

16.
Implementing conservation actions on-the-ground is not a straightforward process,especially when faced with high scientific uncertainty due to limited available information. This is especially acute in regions of the world that harbor many unique species that have not been well studied,such as the alpine zone of the Hengduan Mountains of Northwest Yunnan (NWY),a global biodiversity hotspot and site of The Nature Conservancy’s Yunnan Great Rivers Project. We conducted a quantitative,but rapid regional-level assessment of the alpine flora across NWY to provide a broad-based understanding of local and regional patterns of the alpine flora,the first large-scale analysis of alpine biodiversity patterns in this region. Multivariate analyses were used to classify the major plant community types and link community patterns to habitat variables. Our analysis indicated that most species had small distributions and/or small population sizes. Strong patterns emerged with higher diversity in the more northern mountains,but beta diversity was high,averaging only 10% among sites. The ordinations indicated that elevation and geographic location were the dominant environ-mental gradients underlying the differences in the species composition among communities. The high beta diversity across the alpine of these mountains implies that conservation strategies ultimately will require the protection of large numbers of species over a large geographical area. However,prioritiza-tion should be given to areas where potential payoffs are greatest. Sites with high species richness also have a greater number of endemic species,and,by focusing efforts on these sites,conservation investments would be maximized by protecting the greatest number of unique species.  相似文献   

17.
Grazing exclusion is widely adopted in restoring degraded alpine grasslands on the Qinghai-Tibetan Plateau. However, its effectiveness remains poorly understood. In this study, we investigated the effects of grazing exclusion on plant productivity, species diversity and soil organic carbon (SOC) and soil total nitrogen (STN) storage along a transect spanning from east to west of alpine meadows in northern Tibet, China. After six years of grazing exclusion, plant cover, aboveground biomass (AGB), belowground biomass (BGB), SOC and STN were increased, but species diversity indices declined. The enhancement of AGB and SOC caused by grazing exclusion was correlated positively with mean annual precipitation (MAP). Grazing exclusion led to remarkable biomass increase of sedge species, especially Kobresia pygmaea, whereas decrease of biomass in forbs and no obvious change in grass, leguminous and noxious species. Root biomass was concentrated in the near surface layer (10 cm) after grazing exclusion. The effects of grazing exclusion on SOC storage were confined to shallow soil layer in sites with lower MAP. It is indicated that grazing exclusion is an effective measure to increase forage production and enhance soil carbon sequestration in the studied region. The effect is more efficient in sites with higher precipitation. However, the results revealed a tradeoff between vegetation restoration and ecological biodiversity. Therefore, carbon pools recover more quickly than plant biodiversity in the alpine meadows. We suggest that grazing exclusion should be combined with other measures to reconcile grassland restoration and biodiversitv conservation.  相似文献   

18.
The investigation of distribution patterns of species diversity is significant for successful biodiversity conservation. The spatial patterns of vegetation and different life-forms species diversity along an elevation gradient in the middle section of the southern slope of the Tianshan Mountains in Xinjiang, China were explored, using the detrended canonical correspondence analysis(DCCA) and the generalized additive model(GAM) methods based on a field survey of 53 sampling plots. In this work 158 species of seed plants were recorded, including 141 herbaceous, 14 shrub, and 2 tree species, in which the woody plants are very limited. 53 sampling plots were classified into 9 major plant communities. The results indicate that the herb communities were the most sensitive to changes in elevation gradient. The diversity indices of the community as a whole presented bimodal patterns. The peak values for the species diversities were found in the transition region between mountain steppe desert and mountain desert steppe(2,200–2,300m), and in the alpine grassland region(2,900–3,100m), while maximum species diversities were in the areas of intermediate environmental gradient. The main environmental factors on the distribution patterns in plant diversity were the elevation, soil water, total nitrogen, available nitrogen, organic matter, and total salt. The response tendency of the four diversity indices for the whole community to the soil environment was the same as that of the herb layers.  相似文献   

19.
The altitudinal pattern of vegetation is usually identified by field surveys,however,these can only provide discrete data on a local mountain.Few studies identifying and analyzing the altitudinal vegetation pattern on a regional scale are available.This study selected central Inner Mongolia as the study area,presented a method for extracting vegetation patterns in altitudinal and horizontal directions.The data included a vegetation map at a 1∶1 000 000 scale and a digital elevation model at a 1∶250 000 scale.The three-dimensional vegetation pattern indicated the distribution probability for each vegetation type and the transition zones between different vegetation landscapes.From low to high elevations,there were five vegetation types in the southern mountain flanks,including the montane steppe,broad-leaved forest,coniferous mixed forest,montane dwarf-scrub and sub-alpine shrub-meadow.Correspondingly,only four vegetation types were found in the northern flanks,except for the montane steppe.This study could provide a general model for understanding the complexity and diversity of mountain environment and landscape.  相似文献   

20.
《山地科学学报》2020,17(8):1974-1988
In an era of climate change,the availability of empirical data on alpine summit vegetation in the Himalaya is still scarce.Here we report the assessment of alpine summit flora in Gulmarg Wildlife Sanctuary,Kashmir Himalaya.We employed a globally standardized Multi-Summit Approach and four spatially isolated summits spanning an elevation gradient of 210 m(between 3530-3740 m a.s.l.) from natural treeline to nival zone were studied.Sampling of the summits was carried out in the year 2018 to collect floristic data together with records of soil temperature.A total of 142 vascular plant species were recorded in the sampled summits.Majority of the species were of herbaceous growth form and with perennial life span.Based on Raunkiaer's life form,hemicryptophytes were the most dominant followed by therophytes and phanerophytes.The summit flora showed the predominance of narrow-endemic species,with broad-and non-endemics declining with elevation.A significant relationship between growth form,Raunkiaer's life form,and the degree of endemism with elevation was observed.Both species diversity and soil temperature showed a monotonic decrease with increasing elevation.Interestingly,soil temperature clearly determined the magnitude of species diversity on the summits.Furthermore,based on floristic composition,the lowest summit had the highest dissimilarity with the rest of the summits.The present study employed globally standardized protocol to scientifically assess the patterns of plant diversity on the alpine mountain summits of Kashmir Himalaya,which in turn has wide implications towards long-term monitoring of climate change impact on alpine biodiversity in the rapidly warming Himalaya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号