共查询到20条相似文献,搜索用时 62 毫秒
1.
研究汛期短时强降水特征,对于南方低山丘陵地区山洪灾害的预报具有重要指导意义。以怀化市为研究区域,基于该区域11个国家站和403个区域自动气象站的2012-2017年4-9月期间逐小时降水量以及相对应的NCEP资料,分析了怀化市短时强降水的时空分布特征,得出了产生短时强降水天气系统模型,结果显示:①汛期短时强降水发生频率较高,时间集中,分布不均。主要出现在5~7月,占4~9月的72.9%,其次在8~9月;北部频数多,中南部少,西部最少,辰溪、麻阳和怀化三县交界处及沅陵县的大合坪附近是频发区域。②短时强降水日变化呈单峰型,4~10时最容易发生,峰值在8时,谷值在23时。③强度越强出现的频次越少;北部的强度和次数大于其它区域;50~79.9 mm/h,占总站数的68.4%;各月国家站的极值乘以2约等于区域站极值。④低涡型短时强降水出现概率最高,低涡位置和移动路径是短时强降水预报的关键点。 相似文献
2.
3.
本文利用遵义市2016-2020年夏季逐时降水资料和ERA5再分析资料,分析遵义市夏季短时强降水的时空分布特征,并统计午后和后半夜前发生短时强降水的物理量特征,得到以下结论:(1)遵义市夏季短时强降水日变化呈现双锋结构,夜间的峰值主要发生在6月,白天峰值贡献主要来自7-8月。6月和7月的短时强降水是夜间多于白天,而8月则是白天多于夜间,且多为午后强对流。遵义市夏季短时强降水夜间出现异常值概率的大于白天。(2)有6个县的夜雨均值明显高于昼雨,且在昼雨的1倍以上,仅有凤冈和湄潭的夜雨均值低于昼雨均值,7个县日变化双峰结构较为明显,仁怀有明显的4峰结构,可能与我市西高东低的地形分布有关。(3)遵义市夏季短时强降水在西部、北部地区发生短时强降水的概率较高,西部主要集中在河谷地带,北部主要集中在娄山山脉,短时强降水平均站次6-8月逐渐减少,10站次以上站点逐渐北推且减少,可能与副高西伸北抬有关。(4)高海拔站点午后短时强降水对CAPE、K、LI要求更低,低海拔站点需要更好的抬升和中低层暖湿条件,850hPa与500hPa温差则是高海拔站点高于低海拔站点。(5)与14时相比,后半夜发生短时强降水对CAPE、LI、T850-500等要求变低,且抬升指数有4个站均值高于0℃,指示意义没有午后好,后半夜短时强降水K指数的要求变高,大气可降水量要求也是变高的,但主要是高海拔站点变高。 相似文献
4.
5.
6.
山东省短时强降水天气的特征分析 总被引:1,自引:0,他引:1
通过分析山东省2007—2010年常规观测资料、山东省区域和国家级自动气象观测站降水观测资料,研究短时强降水天气的时间和地理分布特征,分析短时强降水出现的时间、落区和强度,并对1小时降水量≥100mm的短时特强降水的天气系统进行了分析,结果表明:2007—2010年山东省短时强降水天气一般出现在5—10月,7—8月较多;1小时降水量≥100mm的短时特强降水都发生在7—8月;出现短时强降水天气的时段以午后至傍晚居多,夜间次之,上午最少;当500hPa位于西风槽前和副高边缘,700hPa和850hPa位于西风槽前或存在切变线,地面有冷锋影响时,有可能发生1小时降水量≥100mm的短时特强降水天气。 相似文献
7.
基于甘肃省81个自动气象站2002—2012年逐小时降水数据,分析了甘肃省近11 a来短时强降水的时空变化特征。结果表明:短时强降水频次自甘肃省西北向东南逐步递增,陇东南地区是甘肃省短时强降水发生频次最多、强度最强的地区。短时强降水存在2个高发中心,一个在以合水为中心的陇东地区,另一个在以徽县为中心的徽成盆地。短时强降水主要发生在午后至前半夜,出现时段集中在16:00—00:00,17时前后是短时强降水天气高发时段。短时强降水主要出现在5—9月,其中7—8月是一年中出现最多的月份,其次是6月。近11 a来,短时强降水频次呈上升趋势,2006年和2010年出现了2个峰值,其中2010年最多,发生52次,2004年最少只有17次。 相似文献
8.
河南省短时强降水及其云团特征分析 总被引:3,自引:0,他引:3
根据河南省119个气象站1991-2010年5-9月逐时降水量资料,利用线性趋势和克里金插值等方法,分析了河南省短时强降水及其云团的特征.结果表明:河南省短时强降水自西向东、自北向南呈递增趋势,20.0 ~49.9 mm/h级别的降水在驻马店地区东部和信阳地区西部有明显增多趋势;≥50.0 mm/h级别的降水在周口地区北部有一高值中心.年际变化表明,20.0~49.9 mm/h级别的降水呈显著增加趋势,而≥50.0 mm/h级别的降水呈略增加趋势,但是不显著.月份间的差异非常明显,7月份出现的频次最多,其次是8月份,再次是6月份,5月份和9月份最少.日变化统计表明,上午最少,午后逐渐增加,傍晚和凌晨最多.历年极值雨量7月份出现次数最多,并集中分布在河南省中东部地区,西部地区极值雨量不超过50.0 mm/h,明显低于中东部地区.影响河南省短时强降水的对流云团大致有3个源地6条路径,云团特征可分三种类型,分别为不规则对流云团、圆形或椭圆形云团、带状云系.当有强降水发生时,Tbb值一般很低,但是Tbb值的大小与小时雨量没有很好的相关性. 相似文献
9.
《湖北气象》2021,40(4)
利用2005—2018年贵州省84个国家气象站逐小时降水量资料,采用统计诊断分析方法,在区分量级前提下,结合地形特征,分析贵州1 h短时强降水和逐3 h降水的时空分布特征。结果表明:(1) 14 a中短时强降水共出现5 981站次,年均427.2站次,其空间分布与地形特征密切相关,整体呈现南多北少、东多西少的特征,贵州西南部“喇叭口”地形和东南部雷公山南侧“喇叭口”地形与河谷地形重叠区域为短时强降水高发区。短时强降水分级统计显示,99%的短时强降水集中在前两个雨强较小的等级,而R1h≥80 mm的短时强降水14 a只出现过5站次。各站点最大雨强空间分布与短时强降水的总站次数分布趋势较为一致,一般南部大于北部、中东部大于西部,局部存在差异。平均雨强整体呈现南强北弱的特征。(2)在2005—2013年期间,短时强降水站次数大多处于年均值(427.2站次)之下,2011年达到最低值275站次,2014年站次数骤然增加至564站次,2015年继续增加到最大值662站次,其后迅速回落到比年均值略高的位置小幅变化。各站点短时强降水的年际变化在高发区离散度较大,在贵州西北部低发区离散度较小;月际变化曲线呈单峰型,5—8月份是降水高发时段,6月达到峰值。短时强降水主要以单站出现的局地性降水为主,同一时次出现3站以上的情况很少,以6月最多;短时强降水最早出现旬数呈东早西晚、南早北晚的特征,结束旬数西早东晚,北早南晚;各站点短时强降水出现概率最大旬多数集中在第16—18旬(即6月);短时强降水日变化的时间曲线呈单峰型,21时至次日07时为高发时段,中午12时前后出现较少。短时强降水日变化的空间分布特征为傍晚到前半夜主要集中在贵州西部,而后半夜多出现在东部和南部地区,中午前后全省均较少出现。(3)逐3 h降水时空分布特征与R1h大体一致,局部存在一些差异。 相似文献
10.
为更好地把握中亚低涡造成新疆短时强降水天气过程的机理特征,利用温度露点温度廓线图(T-lnP图)和大气位温-风矢能量图(V-3θ图)研究了中亚低涡背景下新疆短时强降水的湿度特征和大气能量结构特征。主要结论有:(1)根据对短时强降水T-lnP图及湿度特征的分析统计,将短时强降水分成三类:对流层高低层干而中层湿度大型、对流层中层干燥型、对流层整层湿度都显著型。其中第一类最多,占短时强降水总个例的60%;而第二类和第三类分别占27.5%、12.5%。(2)一般在短时强降水天气发生前V-3θ图特征为:三条θ曲线呈曲折增长;有"顺滚流"结构存在;有"蜂腰"形构造;有较为浅薄的超低温层存在。 相似文献
11.
作为一种强对流天气,短时强降水的监测诊断和预报预警已成为气象预报部门的业务重点,也是当今社会各界的关注重点。为此,以上海短时强降水为例,利用上海地区2004—2012年11个基本气象站的逐时观测资料、NCEP/NCAR第二套逐日再分析资料及实况天气图等资料,基于对所有短时强降水的影响系统进行分类,重点分析了不同影响系统下短时强降水的大尺度环流背景。研究结果表明:1)上海汛期(6—9月)平均每年发生8次短时强降水,其中,8月份发生次数最多,占总次数的近一半。降水强度的空间分布呈现城市雨岛特征,大值区位于中心城区及其下风向的近郊。2)产生短时强降水的主要影响系统有准静止锋、热带气旋、低压倒槽、冷锋及中尺度对流系统。其中,准静止锋导致的短时强降水发生次数最多,发生比例达67%,且多出现在6—8月;热带气旋影响下的短时强降水发生比例占17%,多出现在8—9月;其他影响系统导致的短时强降水发生次数较少。3)各类影响系统为短时强降水提供了不同的大尺度背景及作用:准静止锋类型有利于形成上冷下暖的不稳定层结;热带气旋与高空急流辐散场相配合导致强烈的水汽辐合和垂直上升运动;暖性低压倒槽使地面增湿减压,高空冷平流有利于高空辐散;冷锋有利于形成北侧下沉、南侧上升的经向垂直环流圈;中尺度对流系统则主要与非均匀加热导致的局地垂直环流及其伴随的冷空气卷入相联系。 相似文献
12.
中亚低涡造成新疆北部区域暴雨成因分析 总被引:1,自引:0,他引:1
利用区域自动站、常规观测、EC细网格、卫星云图TBB及FNL资料,对新疆北部2013年6月20—21日区域性暴雨天气成因进行分析,并与前期南疆暴雨进行对比。结果表明,中亚低涡是该过程主要影响系统,暴雨由对流层中低层及地面中尺度系统直接造成,云图及自动站风场均监测到γ中尺度系统。受阿尔泰山脉西北段高东南段低及沙尔巴斯套北高南低的地形作用,中尺度低涡及850 hPa沿山前西北上的气旋性涡旋在暴雨区旋转、滞留、增强,使散度低层辐合、高层辐散结构与垂直上升运动在同一时次达最强,助推暴雨增幅。此次暴雨过程与南疆发生的暴雨存在一些差异。 相似文献
13.
利用内蒙古119个国家气象站逐小时降水量及常规的日降水量资料对2012—2015年内蒙古出现的短时强降水及大雨以上天气情况从时空分布、出现概率、降水比率等多方面进行了比较全面的统计。分析了内蒙古短时强降水的时空分布特征,特别是得出了内蒙古短时强降水发生时段,以及短时强降水在整个大到暴雨过程中所占比例等方面的特点,为预报员认识内蒙古短时强降水活动情况提供有利的参考。分析得出:短时强降水在时间、空间以及降水量级上的分布极不均匀,主要发生在6—8月,7月最多;短时强降水主要出现在午后到傍晚时段,集中在15—17时,尤其17时最多;短时强降水多出现在日降水在6h之内(含6h),占短时强降水发生总数的57%;短时强降水的降水比率相当高,有84%的短时强降水过程中短时强降水雨量占当日降水总量的50%以上,39%的占当日降水总量的80%以上;短时强降水受地形增幅影响极大,内蒙古东部偏东的大兴安岭东侧和西中部阴山山脉南侧均为短时强降水多发区。 相似文献
14.
应用太原1996-2015年7个国家气象站、2008-2015年63个区域站6-9月逐时降水资料及相关探空、地面观测资料,对太原短时强降水日环流配置进行天气学分型,分析各流型下关键环境参数分布特征。结果表明,太原发生短时强降水的500 hPa环流形势有四种:冷涡型、高空槽型、高空槽加副高型、西北气流型。太原短时强降水常发生在比较温和的对流有效位能(CAPE)环境下,大部分过程CAPE值≤1500 J·kg^-1,冷涡型则≤1000 J·kg^-1。西北气流型850 hPa与500 hPa温差(ΔT850-500)大,静力不稳定度比其他型更强,且500 hPa有明显的干层存在。高空槽加副高型K指数大,且暖云厚度均值达3576 m,明显大于其他型2471~2608 m的均值。冷涡型全部、高空槽型85%的过程出现在弱0~6 km垂直风切变环境下,而高空槽加副高型、西北气流型0~6 km垂直风切变相对较大,35%以上达到中等强度。冷涡型、西北气流型短时强降水太原上空700 hPa水汽常比850 hPa更充沛。太原超过70 mm·h^-1的极端降水出现在西北气流型下,有中等强度的CAPE值、强层结不稳定、弱0~6 km垂直风切变、3550 m以上暖云厚度,中低空水汽充足,这些环境参量的配合对强降水效率有很好的指示意义。 相似文献
15.
16.
17.
18.
江西冰雹、大风与短时强降水的多普勒
雷达产品的对比分析 总被引:8,自引:4,他引:8
为发挥多普勒天气雷达监测和预警冰雹、雷雨大风、短时强降水等强对流天气的作用,制作出精细化的临近和短时预报,选取了江西8次典型的强对流天气过程,从7个方面对冰雹大风和短时强降水两类强对流天气的多普勒天气雷达回波特征进行对比分析。结果表明:江西省冰雹、雷雨大风过程45~55dBz强回波平均高度为12.4km,达到或超过-25℃层的高度,比短时强降水回波高5.6km。弱回波区(wER)或有界弱回波区(BwER)、三体散射长钉、持续高垂直积分液态水含量、中气旋、下湿上干或强风垂直切变特征等都是冰雹天气的典型特征。而相对平均径向速度图上“S”型暖平流及表现强低空急流的“牛眼”、深厚的湿度层等,则是短时强降水的主要特征,这些特征可为两类强对流天气短时临近预报提供预报参考。 相似文献
19.
基于SWAN产品的短时强降水雷达特征及预警分析 总被引:1,自引:0,他引:1
利用SWAN产品和自动站雨量资料,详细对比分析了2010~2012年区域性暴雨中的短时强降水雷达特征,结果表明:(1)短时强降水具有反射率因子大,液态水含量高、回波顶高,强回波厚度大等特征,在每隔6min的SWAN拼图产品中,短时强降水通常满足:3km高度处CAPPI回波≥30dBZ,组合反射率CR中心强度≥40dBZ,VIL>5kg/m2,45dBZ以上的回波中心厚度(H)≥3km,这些参数的变化可以作为短时强降水的预警临近指标。(2)现有SWAN产品中的QPE/QPF产品对未来逐小时的雨量和落区具有一定的预报能力,但QPE产品估测1h累计降水量更接近于实况雨量,在监测到有上述强回波发展时,可通过分析QPE产品和回波特征及预警指标对短时强降水过程进行预报。 相似文献
20.
一次中亚低涡造成的天山北坡暴雨GPS大气水汽总量演变特征 总被引:2,自引:4,他引:2
2015年6月26—28日中亚低涡造成天山北坡出现暴雨天气,本文利用常规观测、NCEP再分析资料及9站地基GPS遥感的大气水汽总量资料(GPS-PWV)对这次天气过程水汽特征进行深入研究,结果表明:(1)降水前,500 hPa阿拉伯海水汽经青藏高原向中亚低涡输送,低涡增湿明显;降水期间,500 hPa低涡向北移动并减弱成槽东移,700 hPa孟加拉湾经四川盆地、河西走廊的偏东水汽输送通道建立,与低涡自身偏南(东南)气流在暴雨区上空汇合,暴雨区中低层增湿剧烈;(2)深厚低涡造成的强降水前测站GPS-PWV均存在1~3 d增湿过程和1~2次跃变过程,强降水发生前GPS-PWV跃变均超过5 mm·(4 h)~(-1);(3)在同样水汽输送、辐合条件下,干旱区测站GPS-PWV急剧增幅越大,地面雨强越强,在一定程度上,水汽输送和水汽的辐合与GPS的剧增存在一定的对应关系;(4)中亚低涡造成的乌鲁木齐强降水发生前4~5 h的GPS-PWV增幅达到4 mm以上,GPS-PWV峰值往往达到气候平均值2倍左右。 相似文献